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Abstract

It has been shown how one can obtain an intertwining operator of order (in terms of derivatives) higher than two, linking a non- Hermitian
Hamiltonian to its Hermitian conjugate partner. Explicit third order realization of this intertwining operator is derived for complex Scarf potential.

The variety of non-Hermitian interactions in quantum phys-
1cs has been vsed in field theory and statistical mechanics for
many years with applications o condensed matter, quantum
optics and hadronic and nuclear physics [1]. An important sub-
class of non-Hermitian operators 15 the pseudo-Hermitian oper-
ators [2], 1.e., those operators A, which satisfy

xflx_l =A', (1)

AT being the Hermitian conjugate of A and yx is a linear
mvertible operator. If y 15 non-Hermitian then A s called
weakly pseudo-Hermitian [3]. Many interesting properties of
both pseudo-Hermitian and weakly pseudo-Hermitian operi-
ors have been examined by several authors [4.5] Particu-
Lirly, a generalization of supersymmetry [6], namely, pseudo-
supersymmetry was developed in Ref. [7] that would apply
for gencral pseudo-Hermitian Hamiltonians. In this Letter an
attempt has been made w find a higher order intetwining op-
crator linking a non-Hermitian Hamiltonian to i nonlinear
pseudo-supersymmetric partner Hamiltonian [8]. Till date the
mtertwining method is mostly stodied where the intertwining
operators are taken 1o be Hermitian first or second order differ-
ential operators and Hamiltonians are in the standard potential
forms. Recently the intertwining technigue has been general-
teed to the case where the intentwining operator 15 third order
in derivative [9-12] intertwining two Hermitian Hamiltonians.
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In [9], a particular form of third order intertwining operator was
mvestigated, which ked to a specific class of real shape invariant
potentials, while Refs. [10] and [11] were devoted to the con-
struction of real potentials with three lowest energy eigenvalues
fixed. In Ref. [12], the most general solution of the intertwin-
ing relations with supercharges of third order in derivatives was
derived and some particular properties of the spectrum were
studied and wave functions for three energy levels were con-
structed. The motivation for the present work stems from the
fact that compared o the studies on Hermitian intertwining
operators, the literature on intertwining of Hamiltonians with
complex potentials by non-Hermitian higher order intertwining
operators for obtaming isospectral partners of complex polen-
tial 15 rather few [13].

Let us now discuss how o construct a third order intertwin-
ing operator linking H and its adjoint H'. To accomplish this
wi shall make use of a result obtained in Ref. [14]. There an
mtertwining operator i of second order was derived explicitly
which links a non-Hermitian Hamiltonian to the adjoint of is
pseudo supersymmetnc partner. In symbols it means

nH = Hly, (2)

where H = AR, and its pseudo supersymmetric partner Hamil-
tonian H, = BA, A, B being first order differential operators
and A 15 a non-Hermitian diagonalizable Hamiltonian having
diserete spectrum consisting of real or complex conjugate pairs
of eigenvalues and the multiplicity of complex conjugate eigen-
values are the same. More specifically B admits o complete
biorthonommal system of eigenvectors {| W, a ), gy, al} which
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satisfy the following defining properties [7]:

Hlyrp, a} = Ep|y . al, H+|¢Jr~ﬂ} :E,:|¢Jr~ﬂ}~ (3)

(g, By, @) = d i » (4}
iy il

33 It adt.al=3_ D ¥ abig. al = 1, (5)
noa=l noa=l

where 7 stands for the adjoint of the cormesponding operator,
dy 15 the multiplicity (degree of degeneracy) of the eigenvalue
Ey. nis the spectral label and @ and £ are degenceracy labels.
Smce H; is the partner of H in the sense described above, H,
also admits a complete biorthonormal system of eigenvectors
and has either a real spectrum or complex conjugate pairs of
eigenvalues and the muluplicity of complex conjugate eigen-
values are the same. Then, as shown by Mostafazadeh, H; 1s
nr-pseudo-Hermitian [4], e, there exists an operator say g2
such that

mH, =H . (6)

Since H and H, are of the form H = AB and H;, = B A,
where the operators A and B are of the form A = % + Wix)
and B = —% + Wix), Wix) being a function of x, there exists
an intertwining operator iy such that

mH = Hym. (7

An almost trivial first order solution for ; s B or Al L fF
the latter exists,
Now using the adjoint of (2) in (7)) we gel

iIfHIH =11+H.-.'i'll = Hfi]+i]'|_ (8)

Therefore H is =5 = uri];m pseudo-Hermitian, It is ob-
vious that 77 is an third order operator if iy and 12 are first order
Operators.

AL this point let us remark that since A 18 non-Hermitian,
H; and H: are non-Hermitian in general, but in some particular
cases they may be Hermitian [15]. The intertwining operator
i and g2 may be Hermitin or non-Hermitian, In the former
case we have pseudo-Hermiticity [2] while in the latter we have
wiik pseudo-Hemmiticity [3].

Now following Mostafazadeh [7] it s possible to oblam a
two-component realization of nonlinear psewdo-supers ymmetry
[8] in which the state vector |1fr}, the nonlinear pscudo-
supersymmetry generator Q. and its pseudo-adjoint QF, the
Hamiltonian H and the opemtor gy are respectively mepre-

sented as

|<ﬁ}=(:?§j), Q:(f: 3) ©)
(3 ). a2 8)

el o)

where ij=n'n, Q@ = () ' Qe

It is not difficult to see that H, H satisfy the intertwining
relations
- fu aty—1 21 wti—1
nH =H"j, (") H'=H@ip')". (11)
As a consequence, H and HT are isospectral, ij maps the
cigenvectors of H o H' and (577)~" does the converse except
for those cigenvectors that are eliminated by these operators.
They also have identical degeneracy structure except possibly
for the zero eigenvalue. In analogy with ordinary supersym-
metric quantum mechanies they are called nonlinear pseudo-
superpartner Hamiltonians,

Using the mesults given in (11), it can easily be shown
that {4, Q‘ﬁ} commutes with H. So the antcommutator is ei-
ther an wentity or a function of H. So the nonlinear pseudo-
superalgebra is given by

Q*=0Q" =0, (Q.Q%=F(H). (12)

where Q% = (y) "' Q@ ay and F(H) denotes any function of
H. At this point it s to be pointed ot that in the above math-
ematical steps it is assumed that inverse of the operators like
ii", . ete., exist though to find the analytical expression for
the inverse of the operators 5T, 4y and to find the explicit form
of the function F{I;’} will be a nontrivial mathematical task it-
self. Our objective here to give explicit realization of third order
mlertwining operator, which does not need evaluation of the in-
VETSES.
The symmetry operator is given by 77 : {.‘r;;}_ Ly so that

)~ nH = Hy i)~y (13)
Below we give the realization for 3 in the case of complex
Scarf potential.
Complex Scarf potential. For Scarl potential
Wix) = —tanhx +i Vo sech x, (14}
where Vo ois an arbitrary parameter. Therefore
ﬂll
H=AB=—— 4+ Vix)
dx=
L
T d i +
d* ; g
=———7 — Vi +2)sech™(x
-5~ (Vi +2)sech™(x)
—3iVasechxtanhx + 1, (13)
2
Hi=BA=— + Vix
. R {x)
S S
= — + W —W
dx?
d? ;
==z =¥i sech’(x)
—iVasechx tanhy + 1, (16}
. J4% g
H = —— +V{x)"
f=—am V)
ﬂl'l

"
= ——s + wl_w'
dx- { }
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d* 2 2
:_.ﬁ'f- — V5 sech™(x)

+iVasechxtanhx + 1, {17}

where T denoles adjoint and

il

dx?
ﬂll
S (V3 +2) sech®(x)
+ 3iVasechxtanhx 4 1. (18}

+ (w2 W)

Now following the standard procedure to obtain second or-
der reahisation for g [ 16] and utilizing the factorization properly
of n =mam [17] we find

m:—d——lunhx+fV25'1'h-r~

x
d

nmr=——+iVasechx. (19}
dx

Consequently

) ﬂl.'!- ) ﬂll

1=———+3iVasechx—— + [(3V5 —2)sech’x

. . d
— 3i Vasech xtanh x + lunh‘.r} —
dx
—{3(V3 — 1) sech® x tanhx +iVa( V5" — 1) sech’® x}. (20)

Now if we consider the intertwining relation (8) with 5 given
by

i
Ry . Hilxia;

=l

il 2 21)
M B

where f(x) are complex and f3{x) = 1 15 chosen, then one
obtains 4 system of nonlinear differential equations for com-
plex functions fu{x), n =0, 1. 2 and complex potentials Vix),
Vi)
vi—v =25,
B f—2f1—3V=3a,
2fah— I —2f =3V -2hRV'=0,
fo+ V7 + V' + AV —2f =0, (22)
where @ is an arbitrary constant and ' = % Comparing (207
with (21} we get
Jalx)=3iVasechr,
Hix)= {3%_; — 2} sech” x — 3i Vo sech v tanh v + tanh® X,
fotx)= —{(V5 — 1) sech’ x tanhx
+iVa( V5 — 1) sech’ x}. (23)

It 15 noww straightforward to see that fylx).n =10,1.2 given in
Eq. (23) satisfies Eq. (22).

To summanze, we have found a third order intertwining

operator linking a non-Hermitian Hamiltonian to its nonlin-
ear pseudo-supersymmetric partner Hamilwonian, This s done

9%

using the second order intertwining operator between non-
Hermitian Hamiltonians A and H_:, where H_:r 15 the adjoint
of the partner Hamilonian &, of H. As a by product we have
obtained a highly non trivial symmetry operator for H. Our re-
sult 15 consistent with the one obtained by a direct approach
[12] in the sense that the coefficient functons fy(x),n=0,1,2
satisfy the nonlinear differential equations derived in the direct
method. So the present method allows us o oblain a new set
of solutions for third order intertwining operator in a subtle and
straightforward way.
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