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Cylindrical and spherical deformed Korteweg—de Vries (dKdV) equations are derived for quantum
ion acoustic waves in an unmagnetized two species quantum plasma system, comprised of electrons
and ions, by the reductive perturbation technigue in the weakly nonlinear limit The properties of
quantum ion acoustic solitary waves are studied aking into account the quantum mechanical effects
in a nonplanar cylindrical or spherical geometry, which differs from one-dimensional planar
geometry. Both analytical and numercal solutions of the dKdV equations are discussed in some
detail. There exists a critical value of quantum parameters beyond which the guantum ion acoustic
soliton collapses. It is also found that for the critical values of H, viz.,, H=2 come nontrivial
analytical solution exists for both cylindrical and spherical dKdV equations. z

I. INTRODUCTION

Owver the recent years quantum effects in plumm' have
received a lot of attention because of their application in
many aspects of plasma like guantum plasma echo,” dense
plasma  particulady  in  astrophysical and  cosmological
studies,™™® quantum plasma instabilities in Fermi }_!4'.[543!5,7
quantum Landau 1.1:1:'11pin,\-__e,ei and other important plasma re-
searches. One of the popular models 1o study guantum ef-
fects in plasma is the quantum hydrodynamical model” "
(QHD) which has been studied by several authors. Essen-
tally the QHD model is an extension of the usual fluid
model in plasma. This model is comprised of a set of equa-
tons descnbing transportation of charge momentum and ¢n-
ergy. The deviation from the elassical fluid model lies in the
fact that a so-called Bohm p-ulunliulm 15 introduced in the
equation of motion for the charged particles. Another impor-
tant quantum plasma theory is the Wigner Poisson .sysu:mlj
which involves the integrodifferential system. Haas er al.'®
used the QHD model to study quantum won acoustic waves in
the weakly nonlincarized theory and obtained a deformed
Korteweg-de Vres (dkdV) equation which depends on the
quantum parameter & inoa nontnvial way. In the case of
quantum ion acoustic waves several characteristic features of
pure quantum ongin were observed for the linear, weakly
nonlmear and fully nonlinear waves. The linear quantum on
acoustic waves are desenbed by a dispersion relation that
tends Lo classical dispersion relation as quantum effects tend
o zero in accordance with the comespondence principle,
whereas, the weakly nonlinear gquantum 1on acouslic waves
are described through a modified KAV equation depending
on fi. Later Haas" used a magnetohydrodynamical gquantum
model o extend their study in magnetized plasma. Eadier
Opher er al’ studied the effects of highly damped modes
in the energy and reaction rates in plasma and discussed the
implication of inwroducing highly damped modes (with
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fi#0) in the nuclear reaction rates in a plasma. Garcia
etal.' used the hydrodynamical model to sudy the modified
Zakharov equation in a plasma with a guantum correction.
Most of the studics mentioned above were in either one di-
mension or planar geometry excepl the one by Haas' who
used cylindneal geometry o study the magnetostatic equilib-
rdum. However no study is made for nonlinear waves in the
framework of nonplanar geomety. In this paper we have
investigated the cylindrical and  spherical  deformed
Korteweg—de Vries (dKdV) equation for gquantum ion acous-
L waves noan unmagnetized two species quantum plasma
system, comprised of electrons and ions in nonplanar geom-
etry. The paper is organized as follows: In Sec. 1 we derived
the cylindrical and spherical deformed KdV equations. In
Sec. 111 we discuss an analytical solution for eylindrcal and
spherical KdV equations. In Sec. IV we discuss the numeri-
cal solutions of cylindrical and spherical dKdV equations,
while Sec. V is kept for conclusions.

Il. DERIVATION OF CYLINDRICAL AND SPHERICAL
DEFORMED KDV EQUATIONS

We consider a two species quantum plasma syslem com-
prised of electrons and ions in a nonplanar cylindrical or
spherical geometry and study the nonlinear propagation ion
acoustic solitary waves. The one-dimensional gquantum hy-
drodynamic mode consists of the continuity and momentum
balance equations for both electron ions together with the
Poisson’s equation for the self-consistent potential.'® The
nonlinear dynamics of the ion acoustic waves in quantum
plasma system in nonplanar eylindrical and spherical geom-
etnes 15 governed by
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where v=0, for one-dimensional geometry and v=1, 2 for
cylindrical and spherical peometries, respectively. n,, 1,
m,, —€ (n, u, m, ¢) are the electron (ion) density field,
velocity field, mass, and charge, respectively, and g, and #
are the dielectric and Planck constant divided by 27, ¢ is the
electrostatic wave polential, p,, the pressure effects for elec-
trons. Pressure effects for ions are neglected for simplicity.
We assume that the electrons obey the equation of state per-
laining to a one-dimensional zero temperature Fermi gas,”

A
m e'u;"r 3
P.=—" 3 M (6)
3ng,

where ny is the equilibrium density for both electrons and
ions, and v, is the electronic Fermi velocity connected o the
Fermi temperature Tr, by mvi/ 2=kTr. kg is the Bolte-
mann’s constant. Now we introduce the following nomaliza-
Lion:

r=wyrlt, t=wut, n.=ndng ni=ndng,

(7)

H.=ule, W=uic, d=ed/(2hzTE),

where w,, and w@,,

plasma frequencies,

2412 24102
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¢, 1% the guantum on acoustic velocity given by

are the corresponding eleciron and ion
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We have denoted the nondimensional quanium parmmeler

2ks T,

Using the above normalization we obtain from Egs. (3) and
i) (dropping bars)
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As m,/m; <1, after integrating Eg. (8) once and assuming
the boundary conditions n,=1, d=0 al infinity, we get
o OH a( pa@)

ar |

(10)

This equation gives the elecrostatic potential in terms of
electron density and its derivatives. In the momentum equa-
tion (9), the quantum diffraction term may be neglected due
o m,fm<1.

Now the continuily equation (2), momentum equation
i9), and Poisson’s equations become
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Equations {1113} and Eq. (10} are the four basic equations
with four unknown quantities ny, u;, n,, and ¢. The only
remaining free parameter is M, which measures the effect of
quantum diffraction. Physically H is the ratio between the
electron plasmon energy and the elecron Fermi energy. The
electron fluid velocity can be found from the continuity
equation (11) n,, replacing n, We now introduce the
stretched coordinates

£= er—n, =% (14)

and expand n, 1, and n, in a power series of € as

2
J'!J-=].+ﬂ'!j|:l+t_:!!:':‘+“', (15)
e I »
w=eal'eu 4, i16)

-
n‘,=1+ﬂ::,”+t—’n:,"+ (17)

Due o the above expansion of n,, the expansion for ¢ [Eq.
(10}] becomes
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Now we develop Egs. (11)-(13) in the form of a power series
of e. Then the system of equations can be writlen as with the
help of Eq. (18)
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The zeroth order terms of the above equations wogether with
the assumption the ' and n'" vanish as £—0 yields

L 1

::""‘--::J":':u}”EI.-"({.f,T} (22)

defining a new function U(£, 7).
From (19)-(21), considering the first order terms using
Eq. (22) we have
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Combining Egs. (23}-(25), we deduce a modified deformed
KdV equation for quantum ion acoustic waves

sl v a1 ( HE)&‘U

— +—U+2U0—+-|1 2 —=0. (26)

ar 27 af 2 ;

ll. AN ANALYTICAL SOLUTION OF CYLINDRICAL
AND SPHERICAL KDV EQUATIONS

It can be shown' that a suitable coordinate transforma-
tion reduces the above cylindrical deformed KdV eguation
[Eg. (26). for v=1] into the ordinary KdV equation which
can be solved analytically. In this way the exact solution of
Eqg. (26) for v=1 can be wrillen ag™?

ot e R

FIG. I. Numerical solution for Eg. (26), for different values of 7, and for
severil values of H (solid line for #= 1.0 and dashed line for #=1.5), where

p=

(£+2v) ||, @7)

Vv

—

H
2(1 - —)T

4
where V is the solitary wave velocity and the solution is valid
for (1-HY4)r=00r 7=0, H<2 or 7=0, H=2. It s not
valid for H=2.

Another analytical solution of the eylindrical and spheri-
cal KdV equations can be found by the group analysis
3 : ; A

method.™ By this method the solution of cylindrical dKdV
equation is given by

'f 1 2 —1£2 2
U= Aot _Tl:ﬂ,::,-l-ﬂz tanh~(£7 7)), (28)
whene
O HY ., HC .
.n(,=2(1——) and m#—3(1——). (29)
4 = 4

The solution (28) reduces to the solution U= £/47, when
H=2_ When H=2 the dKdV equation reduces o the first
order partial differential equation which can be solved ex-
actly by the method of characteristics. In the case of cylin-
drical geomelry one gets the solution

1
U= —=F(£-4U7) (30)
YT

and for sphercal geometry the solution is

& Fllrr
= —= k] 31)
27lnT  TinT
for a constant F the solution reduces 1o
3 C
=— 32)
27lnT 7lnT (

which 1s valid for all values of H.

IV. NUMERICAL SOLUTIONS

Equation (26) has the following solitary wave solution
for v=(}
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FIG. 2. Mumerical solution for Eq. (26), for differemt values of 7 and for
severil values of H (solid line for =110 and dashed line tor H=1.5), where
w=2

) (33)

where Vis the solitary wave velocity. With this imitial profile
at 7=—9 we solve the cylindrical and spherical deformed
KdV equation. In Fig. 1 and Fig. 2 we plot the solutions of
i26) for several values of 7ranges from 7=—3 10 7=—9Y in
cylindrical (w=1) and spherical (w=2) geomelry, respec-
tively, and for different values of H (guantum parameter) for
H=-2_ It is seen that as the magnitude of 7 increases the
solutions look like those for one-dimensional KdV solitons,
This 15 becawse the extra termm (/20U becomes small for
large values of 7 and we get back the known KAV solution.
Here we have seen that the ampliude of the solitary waves
do not change as H increases, but the width of the solitary
waves is reduced as H increases for H<2. For H=2, the
soliton velocity V' owould be negative, otherwise the soliton
would cease o exist. For H>=2, the solutons of (26) are
plotted for different values of 7 in Fig. 3 and in Fig. 4 for
v=1 and »=2, respectively, and for several values of H, the
quantum parameter. 1L s seen that for A =2, the solitary

FIG. 3. Mumerical solution for Eq. (26), for differemt values of 7 and for
severtl values of H (solid line for B =410 and dashed line for H=7.0), where
r=1.

un

FIG. 4. Numerical solution for Eq. (26), for ditferent values of 7 and for
several values of H (solid line for H=4.0 and dashed line for H=7.0), where
v=2

waves propagate in the negative direction with a decrease of
7. It is also seen that the amplitude of the sphercal solitary
wave is greater than that of the cylindrical solitary wave.
Also the amplitude of the solitary waves remains unchanged,
but the width increases as H increases for H=2. 5o for both
cases, viz, H=<2 and A =2 the amplitude of the solitary
waves remains unaffected, but the width of the solitary
waves decreases as M increases for H-=C 2, whereas the width
of the soltary waves expands as H increases for A =2, In
Figs. 5 and 6 the exact solution [Eq. (27)] of the cylindrical
deformed KdV equation is plotted for H=<<2 (r=1) and
H=2 (r=—1), respectively.

V. CONCLUSION

We have denved cyhindrical and sphencal dKAVY equa-
tions for quantum ion acoustic waves in an unmagnelized
two species quantum plasma system, comprised of electrons
and 1woms. The standard reductive perturbaton technigque 1s
employed o denve dKAY equations in the weakly nonlinear
lirmit. It s found that the propagation of quantum on acous-
tic waves in nonplanar geometry differs from that in one-
dimensional planar geometry. It is also seen that for large
values of 7 the solution 15 similar o the one-dimensional

FIG. 5. Plot of the analytical solution for Eq. (27), for different values of #
{molid line for H=1.0 and dashed line for H=1.5), where p=1 and r=1.



012304-5 Cylindrical and sphercal guantum ion acoustic waves

FIG. 6. Plot of the anal ytical solution for Eq. (27), for different values of #
(solid line for H=4.0 and dashed line for H=7.0), where »=1 and r=-1.

dKdV soliton, but for small values of 7 the soliton solution
differs from the one-dimensional soliton. This is because of
the extra term (/2 7) U7 which becomes small for large values
of 7 It is also found that for H=2 one gets positive (bright)
soliton solution whereas for H>2 one gels negative (dark)
soliton solution. It is also seen that there exists a critical
value of the quantum parmmeter (H=2) for which the guan-
tum ion acoustic soliton collapses. We have also obtained
exact analytical solutions for H+ 2 and an exact solution of
the deformed sphencal KdV equation for H=2. These resulis
may be uwsed for the description of ulracold neutral atom
gases.
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