Quantum ion acoustic shock waves in planar and nonplanar geometry
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The effects of unbounded planar geometry and bounded nonplanar geometry on guantum ion
acoustic shock waves (QLASWS) in unmagnetized plasmas, where plasma kinematic viscosities are
taiken into account, are investigated. By the reductive perturbation method, deformed Koneweg—de
Vries Burger (dKdVB), eylindrical, and spherical dKAVEB equations are obtained for quantum ion
acoustic shock waves inoan unmagnetized two-species quantum plasma system, comprising
electrons and 1ons. The propertes of quantum ion acoustic shock waves are studied taking into
account the gquantum-mechanical effects in planar and nonplanar geometry. 1L s shown that quantum
wn acoustic shock waves in nonplanar geometry differ from planar geometry, We have studied the
change of QLASW siructure due to the effect of the geometry, quantum parmmeter H, and ion
kinematic viscosities by numencal caleulations of the planar dKAVB, cylindneal, and spherical

dKdVE equations.

I. INTRODUCTION

Recently, considerable interest has been shown in guan-
tum effects’ in plasma. This 1s mainly doe to the fact that
these effects are of considerable importance in many aspects
of plasma, such as guantum plasma echo,” dense plasma
iparticularly in astrophysical and cosmological !-;tudil:!-;_l,j_ﬁ
quantum plasma instabilities in Fermi guu:!-;,-'l quantum Lan-
diu dumpingf among others. Among the prevalent models o
study quantum effects in plasma, the quantum hydrodynamic
I:(,}HD}?'*“ model has become popular because it extends
the usual fluid model to one incorporating the quantum ef-
fect. The QHD model is similar to the classical fluid model
as it is comprised of a set of equations describing charge,
momentum, and energy transport. The deviation from the
classical model occurs because of the presence of a lerm, the
s0 called Bohm potential. This term contains Planck’s con-
stant #, an indication of quantum effect. Another significant
quantum plasma theory is of the Wigner-Poisson !-;y!«;u:m,m_l_f'
which involves the integrodifferential system. Haas et al.'
used the QHD model to study quantum ion acoustic waves in
the weakly nonlineanzed theory and obtained a deformed
Korteweg—de Vres (dKdV) equation, which involves the pa-
rameter H, proportional to Planck’s constant fi. [t has already
been shown that the lincar quantum 1on acoustic waves are
descenbed by a dispersion relation that tends to the classical
dispersion relation as the guantum effect tends o zero. Opher
et al' studied the effects of highly damped models in the
energy and reaction rates in plasma and discussed the impli-
cation of introducing highly damped models, taking into ac-
count the gquantum effects, in the noclear reaction rates in a
plasma. More recently, Haas'® used a ma gnetohydrmody nami-
cal quantum model o extend their study in magnetized
plasma. Garcia et al.'’ used the hydrmodynamical model 1o
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study the modified Zakharov equation in a plasma with a
quantum correction. Al and Shukla™ studied dust acoustic
solitary waves mm quantum plasma. Misra and
Ruyuhuwdhury'l used the one-dimensional QHD model 1o
study modulation of dust acoustic waves. However, most of
the studies mentioned above were in either one-dimensional
or planar geometry, except the one by Haas, " who used cy-
lindneal geometry to study the magnetostatic equilibnium.
Recently, Sahu and Ruy-'i_'l'u:ru:dhur}-'H denved cylindrical and
sphencal dKdAV equations for quantum ion acousic waves in
an unmagnetized plasma. In this paper, we have studied pla-
nar amd cylindrical and sphencal deformed Koreweg—de
Vries Burger's (dKdVB ) equations to study shock-wave-like
solutions. The Burger term in the nonlinear wave equation
arses when one takes nto account the Kinematic viscosilics
of the plasma constituents. We have considered a two-species
plasma compnsing electrons and 1ons in both planar and
nonplanar (eylindrical and spherical) geometry. The plan of
the paper 15 as follows, The planar AKAVE equation 15 de-
rived in Sec. 11 for the one-dimensional case. Dervation of
dKdVB in nonplanar geometry 15 shown i See. L In Sec.
IV the numencal solutions are discussed, while Sec. 'V ois
containg the conclusion.

Il. BASIC EQUATIONS AND DERIVATION
OF DEFORMED KdVEBE EQUATIONS
IN PLANAR GEOMETRY

We consider a two-species quantum plasma system come-
prising electrons and ions in a planar geometry and study the
nonlinear propagation of ion acoustic shock waves, The one-
dimensional quantum hydmodynamic mode consists of the
continuity and momentum balance equations for both elec-
trons and 1ons together with Posson’s equaton for the self-
consistent potential. The nonlinear dynamics of the ion
acoustc waves in quantum plasma system in planar geom-
ewries are govemned by
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where n,, u,, m,, -¢ (n;, w;, m;, ¢) are the electron (ion)
density field, velocity field, mass, and charge, respectively,
and g; and fi are the dielectric and Planck constant divided
by 2, respectively. ¢b is the elecrostatic wave potential, p,
15 the pressure effects for electrons, g, and g, are the elec-
tron and ion kinematic viscosity, respectively. Pressure ef-
fects for ions are neglected for simplicity. We assume that the
electrons obey the equation of stale pertaining o a one-
dimensional zero-lemperature Fermi gas,
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where ny is the equilibriom density for both elecrons and
ions, pg, 15 the electronic Fermi velocity connected to the
A 2 .
Fermi temperature Ty, by movp [2=kgTp,. and kg 1s Bolte-
mann’s  constant.  Now  we  introduce  the  following
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and @, are the comresponding electron and ion

and ¢, 15 the guantum ion acoustic velocity given by
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where ?;.I‘,=#¥w},1-fcf and n,-:p,wj,lfc‘_f. As m fm< 1, after
integrating Eqg. (8) once and assuming the boundary condi-
tions =1, =0 at infinity, we get

(10)

This equation gives the electrostatic potential in terms of
electron density and its derivatives. In the momentum egqua-
tion (9}, the quantum diffraction term may be neglected due
to m,fm;<l.

MNow the continuity equation (2), momentum equation
i9), and Poisson's equations become
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Equations (11}-(13) and Eq. (10} are the fowr basic equations
with four unknown quantities n; w; n., and ¢. The only
remaining free parameter is H, which measures the effect of
quantum diffraction. Physically, H is the ratio between the
electron plasmon energy and the electron Fermi energy. The
electron fluid velocity can be found from the electron conti-
nuily equation.
We now introduce the stretched coordinates,

if2

= ePix—r), 7= (14)

and expand n;, ;. and n, in a power series of € as

2
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1 (2 .
=€ U+, (16)
il R E
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In many experimental situations, the value of w5 15 small, so
we may set =€ my. 7 is O(1). Due to the above expan-
sion of n,, the expansion for ¢ [Eqg. (10)] becomes
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Now we develop Egs. (11)={13) in the form of a power series
of e. Then the system of equations can be written as with the
help of Eqg. (18],
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The zeroth-order terms of the above equations together with

the assumption that the u{ " and :i:” vanish as £— 0 yield
n'=n"=ul" = Ulg7) (22)

defining a new function UiE, 7).
From Egs. (19)—=(21), considering the first-order terms
using Eg. (22}, we have
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Combining Egs. (23)-(25), we deduce a modified deformed
KAdVB equaton for quantum on acoustic waves,
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lll. DERIVATION FOR DEFORMED KdVB EQUATIONS
IN NONPLANAR (CYLINDRICAL AND SPHERICAL)
GEOMETRY

In a nonplanar cylindrical or sphencal geometry, the

nonlinear dynamics of the 10n acoustic waves in g quantum
plasma system is govemed by
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where =0 for one-dimensional geometry and v=1 and 2 for
cylindrical and spherical geometry, respectively.
Now we mtroduce the following nomalization:

F=w,rlt, f=w,t, #,=n/n, #=nin,,

(32)
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As mfm;< 1, after integrating Eq. (33) once and assuming
the boundary conditions n,=1, $=0 at infinity, we get

H 1 a( pa@)
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(35)

This equation gives the electrostatic potential in terms of
clectron density and its derivatives. In the momentum egua-
tion (34), the gquantum diffraction term may be neglected due
t m,fm < 1.
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Now the continuity equation (28), momentum equation
i34), and Poisson’s equations become
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The electron fluid velocity can be found from the continuity
equation.

We now introduce the stretched coordinates #=&(r
—t), 7=&"t and expand ny, u,, and 1, in 2 power seres of €
as given by (15)}-(17).
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Now we develop Egs. (36)-(38) in the form of a power series
of & Then the system of equations can be written, with the
help of Eq. (39), as
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FIG. 1. Numerical solution for Eg. (26), for different values of H, where
7,,=0.5, V=1, and r=-3.

FU 5w
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Combining Egs. (44)-{46), we deduce a modified deformed
KdVB equation for quantum ion acouslic waves,
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IV. NUMERICAL SOLUTIONS

The traveling solution of Eq. (26) can be obtained by the
so called “tanh method.™ The solution of the dKdVB equa-
Lion turns out o be

B E 7) = ay+ a, tanh{alé — V1)) +a, tanh*{ a £ - V7)),
(48)
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| , 6Ba ,
dyg = ;I:V+ 124a”), a1=——. a»=—06da",

s
1c 20°

-50=10 To 705 LTI

FIG. 2. Numerical solution for Eq. {26), for different values of m, where
H=15, V=1, and v=-3.
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FIG. 3. Plot of the numerical solution for Eq. (47) for different values of »,
where =18, V=1, 5,=06, r==3, and a=03.
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where Vis the shock wave velocity. For H=2, Eqg. (26) re-
duces o purely Burger’s equation, and Eq. {47) reduces 1o
the purely cylindncal or spherical Burger’s equation. The
initial profile that we have used in all our numerical results is
the statonary solution (48). Here we have scen that the
shock height and steepness inereases with an increase of H
and . In Figs. 1 and 2, we plot the numerical solution of
Eq. (26) for different values of H and g, respectively. It is
seen that the shape of the developed shock wave changes
appreciably with a decrease of H and #y. The effects of
geometry on the shock wave due o quantum diffraction are
also studied. Figure 3 shows the shock wave structure
evolved at 7=-3 in different geometries. It 1s elear that the
shock height and shape change remarkably in different ge-
ometries. In Figs. 4 and 5, we plot the solutions of Eg. (47)
for several values of 7 in cylindrical (»=1) and spherical
i r=2) geometry, respectively. We can see that as the value of
|7 increases, the solution looks like those for one-
dimensional KAVB solutions. This is because for large val-
ues of | 7 the nonplanar geometrical effect is no longer domi-

1
1

2.5
L=—2 L -
2 V=2
Lo
r—= d
. =7
i==110 Q-3
=4
\Mh %
-ZC =R 10 20

FIG. 4. Plot of the numerical solution for Eqg. (47) for different values of 7
for »=1, where K= LE, V=1, =04, and ax=10121.

U
Pk
T-—2 . =
i VoL
1.5
. —4d i
1
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r—-10 0. b}
_“\\
: : : s £
=20 =10 110 20 7

FIG. 5. Plot of the numerncal solution for Eq. (47) for differemt values of 7
for »=2, where H=18, V=1, n,=04, and a=0.21.

nunt. As the value of |7] decreases, the nonplanar geometrical
effects represented by (w/27)0 will become effective, and
shock waves differs from each other in eylindncal or spheri-
cal geometry. In Fig. 6, we have plotted the solutions of (47)
for several values of H for the eylindrical case. Here we have
also seen that the shape of the shock waves changes for
different H. As expected for values of H near 2, the KdV-
type kink disappears, whereas for values of H away from 2,
the kink is guite prominent. This 1s because KdV behavior is
prominent when H—2 is large numerically.

V. CONCLUSION

We have derived the dKdVB equation and eylindncal
and spherical dKAVE equations for gquantum ion acoustic
waves in an unmagnetized two-species quantum plasma sys-
tem, comprising electrons and ions taking into account the
viscosites of the plasma constituents. The standard reductive
perturbation method is employed o derive the dKAVB equa-
tion and the evlindneal and spherical dKdVB equations. We
have found that the propagation of guantum on acoustic
shock waves in nonplanar geometry differs from that in one-
dimensional planar geometry, and the quantum effect plays a
significant role in the nature of shock-wave-type solutions. It

U U
- 5 , i 5
¢.gH=1.3 C e H=1.0
G.4 o4
0.2 _ 0.2 _

_30-1in 10 Zos _30-in 10 Zod

FIG. 6. Plot of the numencal solution for Eq. (47) for different values of H
for p=1, where 7,=0.7, V=1, and r=-3.
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should be noted that for small values of |7], both the KdV
soliton behavior and Burger’s shock wave behavior are
present, while for large |4] only the shock-like structure is
dominant as in the one-dimensional KdVB solution. Itis also
seen that the shape of the shock structure changes substan-
tially depending on the geometry and the value of H, the
quantum effect parameter. In fact, the value of H determines
whether the KdV effect will be more prominent than the
Burger effect.
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