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Summary. Axisyvmmetric stagnation-point flow is considered. A Newtonian fluid impinges orthogonally
on a plane surface lubricated by a thin non-Newtonian liquid film of variable thickness. A slip-flow
boundary condition is deduced. which allows For partial slip at the surface. The amount of slip, from full
slip to no-slip, is controlled by a dimensionless slip coefficient. Similarity solutions are generally prohibited
by the slip-flow boundary condition, except for one particular value of the power-law index of the
lubricant. Solutions are presented for this case in order to demonsteate the influence of partial slip on the
stagnation point flow. With increasing slip and reduced surface stress, a thinning of the viscous boundary
layer is observed. The classical Homann fow is recovered in the no-slip limit.

1 Introduction

One of the classical problems in fluid dynamics is the axisymmetric orthogonal stagnation-point
flow, first considered by Homann [1] and later by Frossling [2]. Howarth [3] and Davey [4]
considered the three-dimensional orthogonal stapnation-point flow of which the axisymmetric
case was studied as o special case. Yeckel et al [5] showed that the classical Homann flow can
be used to supply boundary conditions for Reynolds’ lubrication equations for flow within a
thin viscous film, thereby leading to a model for the thinning of the film in the stagnation region
of a turbulent water jet. Wang [6] studied the stagnation-point flow with surface shp that occurs
in rarefied flow or under high pressure, while Blyth and Pozrikidis [7] investigated the stag-
nation-point flow of a Newtonian fluid against a Newtonian liguid film resting on a plane wall.
They individually considered several cases for orthogonal two-dimensional, axisymmetric,
three-dimensional and oblique two-dimensional flow.

In the present study the steady and axisymmetnc stagnation-point flow of a Newtonian bulk
Auid impinging orthogonally on a solid surface covered by a non-Newtonian liguid film will be
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considered. Such jet-like flows of pases or liquids impinging on a solid surface have several
industrial applications which encompass the need to enhance the heat and/or mass trunsfer.
Typical examples are associated with the annealing of metals, cooling of gas turbine blades,
cooling in grinding processes [B] and cooling of photovoltae cells [9). The shear stressinduced by
the impinging fluid stream is utilized in surface cleaning [10], paper and photographic film
manufacturing, wire coating and finishing of metal strips. In a coating process the thickness of
the coating has to be accurately controlled. Excess matenial s removed by so ealled doctoring,
which can either be mechanieal (using serapers or squeeze rolls), electromagnetic or Auid-me-
chanical (using, e.g., an air jet to doctor off the excess coating liquid from the substrate). In the
present context, conventional no-slip conditions can no longer be applied due to the presence of
the lubricating film. A slip-flow boundary condition is therefore first deduced in a similar wiy as
deseribed by Andersson and Rousselet [11]. Some representative similarity solutions for various
degree of slip are presented to illustrate the effect of partial slip.

2 Formulation of the flow problem
20 Stagnation-point flow equations

Consider a steady axisymmetric stagnation-point flow over a flat disk covered by a thin layer of
an inelastic non-Newtonian liguid that obeys the power-law model due to Ostwald and
deWaele. The Newtonian bulk fluid first impinges orthogonally on the lubricated surface and
thereafter flows radially in all directions along the surface, as depicted in Fig. 1. A eylindrical
coordinate system (r, 0, 2), where the z-axis 15 pointing vertically upwards and the origin is at
the centre of the disk, is adopted to describe the axisymmetric fluid motion.

The lubricant is introduced at a constant flow rate (v /5) through a point source opening
at the centre O of the infinitely large disk. The centrally introduced lubricant gradually spreads
radially outwards and forms a thin lubrication layer of variable thickness A(r). Owing to the
malss conservitlion principle
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Fig. 1. Schematic of axisymmetric orthogonal stagnation-point flow over a lubricated disk, the z-axis
being an axis of symmetry
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where [7(r,2) represents the radially outward component of the velocity vector V= [[7.0, W]
inside the lubricant. The governing equations of the incompressible Newtonian bulk flow
v = [u, 0, w] are
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where @ and w are the veloaties in the radial and axial directions, respectively. p and v denote
the pressure and the kinematic viscosity of the Newtonian bulk fluid, respectively. It is to be
noted here that the impinging flow is axisymmetric, i.e. without swirl, implying that the cir-
cumferential velocity © = 0. Beyond the assumption of steady, axisymmetric flow, no other
simplifications have been made. It is particularly noteworthy that the terms representing radial
diffusion have been retained. The set of partial differential equations (2)-(4) does therefore not
rely on the validity of the boundary layer approximations.

2.2 Boundary conditions

(1) A¢ the disk z =10

The impermeability and no-slip conditions at the solid disk mve

Uir,0) =0, Wir.0) =0, i5)
Since there is no axial velocity inside the lubricating film, W =0 throughout its depth, ic.
Wir,2) =10 i6)
for z e [0, A(¥)].

(1) At the interface =z = hir):

At the interface between the lubricant and the bulk fluid, the velocity and the shear stress
components must be continuous. The continuity of the shear stress component at 2 = h(v)
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where poand g denote the viscosity of the Newtonian bulk fluid and the viscosity function of
the non-Newtonian power-law type lubricant, respectively. Assuming 4 < % i, here takes

the simplified form
au ™t

=K|_— y 8
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where K and #n denote the consistency coefficient and the power-law index of the lubricant,
respectively. Following Andersson and Rousselet [11] and Joseph [12] we assume that the radial
velocity component (7 varies linearly from the surface of the disk 2 = 0 to the interface between
the lubricant and the bulk flumd at 2 = A(r), Le.,
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Here, [7(r) denotes the interfacial velocity component for both fluids. The local film thickness
A{r) can now be expressed as

h{r}—i. i10)
mrli (v
Following the assumption that the lubricant is introduced from a point source at » = 0 rather
than through a small but finite opening, the expression (10) for the local film thickness becomes
singular at » = 0. This is of no major concern since the local film thickness Air) will be
climinated in the subsequent analysis.

Now, using Egs. (8), (9) and (10) in (7) we get the interfacial condition
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Continuity of the axial velocity at the interface gives

wir hir)) = Wirhir)) i12)
and the pressure distribution s taken as

A2
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where A is a positive constant indicating the strength of the stagnating flow.

MNow Egs. (6) and (12) together yield
i, hir)) =10, i14)
It has already been assumed that the lubrication layer is very thin. Thus, following Joseph [12],
the boundary conditions {11), (13) and (14) for the bulk Alow can be imposed at the disk 2 =0
rather than at =z = A{r).
(i) Far away from the disk:

Far from the disk, i.e. outside the viscous boundary layer, the bulk flow atiains the inviscid free
stream solution

w=Ar and w=-24z i15)
in the radial and axial directions, respectively.
1

23 Similarity transformation and resulting ODEs for n = 5

In order to express the system of equations in dimensionless form we choose the similarity

transformation
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and finally obtain the set of non-linear ordinary differential equations { ODEs):
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g =-2f, (18)
f=rf+g' -1, (19)
p* =2fg-2f, (20)

where the prime denotes differentiation with respect to the non-dimensional axial coordinate 2*.
In general the similarity transformation (16) and (17) can not remove the explicit appearance of
r from the shp-flow boundary condition (11). For the specific value n = 1, however, Eq. (11)
transforms exactly to

10y = 2oy (21)
and thereby assures exact similarity. The above condition (21) along with

a(0)=0 (22)
and

phin) =0 23]

are the appropriate boundary conditions for the bulk flow. The outer boundary condition (15)
reduces to

JF—lasz" —oo. 124)
In Eq. (21), 4 represents the dimensionless slip coefficient, given by
il ATY
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Here, 4 can be interpreted as the ratio between the viscous length scale L. and the lubrication

(25)

length Ly, For a small amount of (@ of a highly viscous (i.c., large &) lubricant, the lubrication
length Ly, is small and the slip coefficient 4 becomes large. In the limit 4 — oo, the conven-
tional no-slip condition f{0) =0 is retricved from (21). On the contrary, if Ly, becomes
infinitely large the slip coefficient 4 vanishes and full slip /" (0) = 0 is achieved. Accordingly, 4
can be interpreted as an inverse measure of slip.

Shear-thinning behavior is frequently exhibited by pharmaceutical, chemical and biochemical
fluids and processed food. Water gel propellants and various pasies and polymer suspensions
behave as power-law fluids with the power-law index n close to 0.3,

3 Numerical solution procedure

The governing ODEs (18)-(20) were expressed as a set of four first-order equations and
then integrated numerically by a standard Runge-Kutta technique for different values of the
slip coefficient 4 in the range from 001 to 10. In the computations constant step size
Az = 0001 was used throughout. The iterative process was terminated when (24) was
satisfied to within 107", The solution for the no-slip case 2 — oo was obtained with the
conventional no-slip boundary condition f(0) = 0. Note that if we put g= —2F then
Eqgs. (18) and (19), respectively, become

F=f (26)

and
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Table 1. Comparison of the present numerical solution for the no-slip case 4 — =c with that of White

[13]

Present work White [13]

(0} = F(0) = 1.31193769) (F"(0) = 1.31194)

A = 0,001 At = 0103
= f=r T
0.0 0.0 LLRL
0.2 (24239435 (242349
0.4 (44498662 04444949
(.6 (60870094 060871
0.8 0. 73577289 073577
1.0 (L H2086505 (0 B298T
1.2 OBOEOTTET LR
1.4 (93092673 O 93961
1.6 096717382 096718
1.5 0.983158 16 0 .98316
2.0 0.991892 16 0.991H)
22 (006344 76 O ra3n
24 (998454930 0.99847
2.6 0.9 Th O o
2.8 099977750 099979
3.0 LR 2 s 090
F'" 4 2FF" + 1 —F~ =0, (27)

Equation (27) together with F = F' =0 and F' — 1 as 2* — oc represents the classical ax-
symmetric stagnation-point, viz. Homann flow [1]. Relation (26) enables verification of the
accuracy of the numerical integration for the no-slip case. Table | provides a comparison
between the present resulis for the Homann flow and those tabulated in [13]. It is readily
observed that the two data sets compare to within 000001, The minor discrepancies are
probably due to different termination criteria for the iterative solution process and different
slep sizes.

4 Results and discussions

First, profiles of the radial and wall-normal velocity components and the pressure are presented
for some characteristic values of the slip coefficient £ in the range from 0.05 to 2 in Figs. 24,
together with the corresponding profiles for the no-slip case 4 — oo, The radial velocity profiles
Jin Fig. 2 show that the outward velocity of the bulk fluid along the lubricated surface
increases with increasing slip, i.e., as the slip coefficient £ is reduced. As the slip velocty [{0)
increases, the amount of adaption of the velocity from the lubricated surface to its free stream
vitlue J = 1 is reduced. It is intuitively clear that the flow field in the viscous boundary layer
approaches the potential solution (15) in the limiting case as 4 tends to zero (Le, full slip). In
terms of the similarity variables, the free stream solution yields [ = 1 and —g = 22*. This is
also a solution of the ODEs (18) and (19) subjected to the boundary conditions {0} = 1 and
i) = 1.

Obeying the mass conservation equation (18) the radial outward flow [ is balanced by an
axial inward flow —g towards the surface, as shown in Fig. 3. The enhancement of this axial
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Fig. 2. Similarity radial velocity profiles (") for variows values of the slip coefficient 4

inflow, as observed for the lower A-values, is therefore a natural consequence of the increased
radial outflow for higher slip. Tt is readily seen that the axial inflow approaches the linear full-
slip solution —g = 22* for the lowest A-value shown.

The variation of the pressure profiles —p* with 2* is presented in Fig. 4. As in the classical
Homann-flow (i.e., the no-slip case), the pressure inercases towards the surface in the stagna-
tion zone and —p* exhibits & minimum at 2* = 0. The pressure vanation across the boundary
liyer scems to increase with increasing shp, and the most pronounced pressure build-up s
found for full-slip. This observation may as first sight appear as 8 paradox. Let us therefore
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Fig. 3. Similarity axial velocity profiles —g(2") for various values of the slip coefficient £
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Fig. 4. Similarity pressure profiles —p*iz*) for various values of the slip coefficient A

look at the axial momentum equation (20). By first replacing [ and 7 by 059" and 0.5g",
respectively, and thereafter integrating once, we find

—p' = 0597 (2") +2(f(2") —S(0)). (28)
In the full shp case g = —22" and /=1 and Eq. (28) simplifics to the parabolic relation
—p* = 055" = 22**. For the high-slip case 4 =0.05 in Fig. 4, the pressure variation closely
rescmbles the full-slip parabola.

It 15 evident from Fig. 4 that the pressure curves intersect shightly beyond 2* = 1. A closer
inspection of the profiles reveals that the crossings of the profiles do not oceur in one single
point. According to Eq. (28), the pressure is affected both by the radial and the axial velocity
components, which in turn are affected differently by interfacial slip. Figure 3 shows that
(L5 (z*) increases with increasing slip, whercas Fig. 2 shows that (({z*) — f{0)) decreases with
increasing slip. The latter effect is dominating in the immediate vicinity of the surface and
thereby explains why —p* 15 reduced below its no-ship level close to the surface.

The pressure distribution in the classical Homann flow exhibits an inflection point somewhat
above the surface and this inflection point seems to shift towards the surface with increasing
amount of slip. Let us thus differentiate the axial momentum equation (20) and thereafter
eliminate g and g'. Then, by equating " to zero, we find that an inflection point in the pressure
distribution coincides with the axial position at which f = 1/v3 = 0577, Since the radial
velocity component [ is 8 monotonically increasing function of 2*, the inflection point vanishes
as soon as the slip velocity f{0) exceeds 1/, With the aid of the velocity profiles in Fig. 2, we
cin therefore conclude that the pressure distribution exhibits an inflection point only as long
the slip coeflicient 2 is above unity.

Figure 5 summarizes the effect of slip on the radial slip velocity (0}, the surface shear stress
J0) and on the displacement thickness 6° deduced from the formula

& =05 lim [22* + g(=*]]. (293
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Fig. 5. Effect of the slip coefficient 2 on some flow characteristics: Slip velocity (0, surface shear stress
S0y and displacement thickness &’

The radial slip velocity fi0) approaches asymptotically towards 0 as A becomes large, while the
surface shear stress (0 increases monotonically from 0 (corresponding to the fullslip case
A= 0jtoits imiting value 1312 in the no-slipcase. The variation of the displacement thickness 6°
with £ demonstrates the thinning of the momentum boundary layer in the bulk fluid with
increasing amount of interfacial slip. Since the displacement thickness is a measure of the outward
shift of the external streamlines due the presence of the viscous boundary layer, it is not surprising
to find the largest displacement thickness 0.5689 in the no-slip limit as A tends to infinity.

Let us finally recall that although the interfacial slip-flow condition (11) is valid for any
positive value of the power-law index #, the governing equations for the axisymmetnic stag-
nation-point flow in Sect. 2.1 transform into ordinary differential equations only for n = 1/3,
i.e., For a particular shear-thinning lubricant. For any other value of the power-law index n, the
slip-flow condition (11) prohibits exact similarity to be achieved. This does only imply that one
has to resort to the partial differential equations in Sect. 2.1 rather than the ordinary differ-
ential equations in Sect. 2.3, It s believed that the general influence of partial slip, as observed
herein for the particular parameter value » = 1/3, will be seen also for other values of the
power-law index, including also Newtonian lubricants n = 1.

5 Conclusions

Axisymmetric stagnation-point flow of 1 Newtonian fluid has been examined. In order to allow
for partial slip, the surface on which the flow stagnates was lubricated by o thin liquid film of a
power-law fluid. For the particular value of the power-law index w = 1/3, the governing
equations of motion transform to ODEs by means of a similarity transformation. The resulting
slip condition (0} = A{f(0) J-""I'I can be regarded as 8 generalized boundary condition for the
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stagnating flow, such that 4 = 0 implies full slip and 4 — oc represents the conventional no-slip
condition. The computed results showed that the effect of slip is to increase the radial outflow
and reduce the accompanying surface shear stress. As the thickness of the viscous boundary
Liyer 15 reduced with increasing slip, the pressure build-up in the stagnation zone turned out to
increase. The solution of the classical Homann flow is recovered in the limit £ — oo
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