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Ahstract

Chatterjee and Chattopadhy ay [Role of migratory bird population in an simple eco-epidemiological model, Math. Comp. Model.
Dyn. Syst.. in press| proposed and analvzed a one season eco-epidemiological model of susceptible and infective prey together with
their predators. In such systems, time lags due to the gestation of the infective prey are of importance. In this paper we modify and
analyze their model by taking this factor into consideration. Our analysis shows that the outbreak of the disease can be controlled
by a careful and suitable increment of the time lag factor. Moreover, to preserve the stability of the coexisting equilibrium, the
time lag factor plays an important role. To substantiate our analytical results, extensive numerical simulations are performed for a
hypothetical set of parameter values.
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1. Introduction

The study of ecological systems with the influence of epidemiological parameters is termed as eco-epidemiology.
The relevant literature on this field is now very rich [26,5,18,27,6,19] etc. Probably Hadeler and Freedman [ 14] were
the first who described a predator-prey model where the prey is infected by a parasite, and the prey in turn infects
the predator with the parasite. Xiao and Chen [29] claimed that they were the first 1o formulate and analyze an eco-
epidemiological model with time delay. But, as far as our knowledge goes, very little attention has been paid so far
to understand the role played by a migratory prey in the spread of a disease. Such dynamics has its own importance.
Migration may introduce a new disease 10 a new place, or it can even re-introduce a disease which was totally washed
away from that place. For example, the 1962 epidemic of EEE in Jamaica resulted from the transport of the virus by
birds from the continental United States, see [24]. In another example, West Nile virus (WNV) is introduced in the
Middle East by migrating white storks, see [23]. It is observed that a predator can become infected by predation of a
prey infected by WNV, see [12] (for other examples, see [4]).

*Cormesponding author. Fax: 491 33 25753049,
E-mail address: joydev@ isical.acin (1. Chattopadhyay).
! The research work is supported by Depattment of Atomic energy {Govemment of India),



5 Charterjee et al. # Nonlinear Analvsis: 1473

Chattegee and Chattopadhyay [4] proposed and analyzed a one-season mathematical model of such a situation,
where the prey population migrates from one place to another and camies a disease. They divided the migratory
prey population into two groups, namely, the susceptible prey and the infective prey. They assumed that the predator
population 15 present in the system, and s growth mte 15 governed by an allernative source along with the mu-
gratory prey population. Since most of the diseases that are spread by migratory birds, like salmonella [3], WNV
[28] ete., are seasonally dependent, so they were mainly interested o see the behavior of the dynamical system
for the period when the migratory birds were present in the considered system. Their analytical and numerical
results showed that the introduction of a disease through a migratory population destabilizes an otherwise stable
system around the mterior equilibnum. They also observed that proper predation may be used as a suitable con-
rol measure for preventing the extinction of the species. These findings are in accordance with some experimental
results [25,21].

However, in the above case the effects due to time lags have been neglected. It seems reasonable 1o assume that the
predator population will not die instantaneously afier eating the infective prey population. Rather, there is some time
lag for gestation of the infective prey by the predator. Keeping this in mind, we have modified the model proposed
by Chatterjee and Chattopadhyay [4] by incorporating a delay in the term involving the gestation of infective prey
by the predator. We find that the solutions of the system are positively invariant and bounded. We have analytically
studied the model and derived the conditions for the permanence of the positive steady state and global stability of
the disease free steady state. We have estimated length of delay for which the system preserves its stability around
the positive steady state. We have also derived the conditions for instability of the system around the interior equilib-
rdum and Hopf bifurcation. We have observed that in our model system the stability of the disease free equilibrium
does not depend on the value of 7, ie., the tme delay. Numerical simulations for a hypothetical set of parameter
vitlues have been performed o support our analytical findings. It has been observed that a dme delay can drve the
system 1o sustained oscillations. Moreover, a time delay effect produced by a delay in gestation of the infective
prey population may prevent the outbreak of the disease and may be a worthy candidate for a control programme
implementation.

The paper is organized as follows. In Section 2, we outling the basic mathematical model with the positivity (see
Section 2.1) and the boundedness of solutions (see Secton 2.2). We recapitulate the main results obtained by Chatterjee
and Chatopadhyay [4] in Section 3. In Section 4 we find conditions for the local stability (see Section 4.1), the time
delay is estimated for which local stability is preserved (see Section 4.2), and bifurcation results (see Section 4.3) is
studied both analytically and numerically. The global stability results and the permanence of the system are given in
Section 5. The paper ends with a discussion.

2. Mathematical model

Chattergee and Chattopadhyay [4] considered a predator—prey system, where the predator population P is present in
the system and the prey population N is migrating into the system. Before formulating the model equations, we would
like to recall the basie assumption made by Chatterjee and Chattopadhyay [4] on the predator and the migratory prey
populations present in the system:

[ A1) The model considered by them is for one season and so, instead of taking a logistic growth in the prey population,
they considered a growth term known as constant immigration with exponental deaths [20] for the migratory prey
population. Let A be the constant rate of recruitment of the prey population (including newborns and migration) [1.9]
and d be the natural death rate of the prey population. Then the growth rate of the migmtory prey population is
mven by,

dn
— =4 —dN.
dr

In this case the population approaches A/d as ¢ goes 1o infinity.
(A2) The infective prey population {1 generated through infection of the susceptible prey 5. [ was assumed that the
mfiective prey population 1s not m a state of reproducton. But as time passes, some of them recover from the disease
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and become susceptible again. So, the dynamics of the prey population may be writlen as

L T
— = A — bxi —dx i,
di

dr
— =hsi — (e + i,
7 e+ f)

where b is the force of infection, fis the recovery rate and ¢ is the death rate of the infective prey population which
i ludes natural death and death doe to the disease. Obviously, e 2d.

(A3) In their paper they were studying the dynamics of the system for the season when the migratory prey is present.
But in the absence of the migratory prey it was assumed that the predator population is present in the system. So, in
the absence of migratory prey, ie., outside the considered season, there must exist some altemative resource for the
growth of the predator populaton. Depending on that altemative resource the predator population 15 assumed 0 grow
in logistic fashion with carrying capacity k = ) and an intrinsic growth rate constant r > (0. Hence in the absence of the
migratory prey the growth equation of the predator 1s given by

dp P
wc ey G o
d 'F( k)

Nowy, in the presence of the migrtory prey it was reasonable w0 assume that the predator population would not switch
over 1ts predation totally from that alternative resource 1o the newly entered migratory prey populaton. So, in ther
model formulation they assumed that the growth rate of the predator population was govemed by both the alternative
source and the migrmtory prey populaton.

(A4) They also assumed that the predator population becomes infected after the predation of the infective prey.
For example, the cats which predate on the song birds mfected by salmonella can pick up the illness and die
[hip:fwww. goval cafagric/pubfact/salmonellahim|, the same is seen for WNV [12]. So, the predation of the in-
fected prey population is included in the predator’s growth equation with a negative sign, as done by Chattopadhyay
etal. [7] in an eco-epidemiological context. But it was assumed that the infection does not spread among the predator
population because either the infected predators die oul immediately after becoming infected by the disease and thus
are removed from the system [27], or they are the dead end host of the disease like mammals in the case of WNV [8].

(A35) Further for mathematical simplicity, they assumed that the functional response (prey eaten per predator per unit
of time) and the mode of disease transmission follow the simple law of mass action.

With the above assumptions Chatlefjee and Chatlopadhyay [4] proposed the following system of differential equations
for their problem:

ds

—=A—bsi —kjsp—ds + fi

P 15p !

di

— =fyi —kapi — e+ )i i (2.1)
ey api — e+ f)

dp _ Py oppais s ap o
T =rp (1— -{_)+£l.\p—.{1pr

where s(1) 15 the density of the susceptuble prey population, ({1 ) 15 the density of the infective prey population and pir)
is the density of their predator population at any time . Moreover, s(0) =0, i{0) 20, p(0)=0.

In system (2.1), &) and k7 are the searching efficiency constants or the predation rate on the susceptible and infective
prey population, respectively. &) and k; are the growth rates of the predator due to predation of the susceptible and
infective prey populations. Obviously, ky =k and k; =k5. Also, k) <k; which is quite natural. For example, in the
case of salmonella, the sick birds often appear uncomfortable, with heads drooped, wings out, feathers fluffed up,
and breathing heavily and these types of behavior leave them more susceptible to predation by large birds or cats
[hipfiwww. goval cafagric/publact/salmonella him], [8].

In the above model given by system (2.1), it was assumed that the infectve prey has a negative effect on the growth
rate of the predator population. But it seems reasonable 1o assume that the death of the predator population is not
instantaneous, i.e., there is an elapsed time for the gestation of infected prey and hence a delay arises in the system. In
this paper we are mainly interested to see how the predation process influences the epidemics. It is & well-known fact
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(also mentioned in the above paragraph) that an infective prey is less active and can be caught more easily (see [29]),
and thus the epidemic in a system is mainly monitored by the infective prey, especially if it has a negative effect on
the growth of all other species as in our case. So, here we have assumed the delay effect only on the gestation of the
mfective prey. With this new assumption model Eq. (2.1) becomes

dx

—=A—bsi —kpsp—ds + fi

= 15p s

di

— =bsi —kapi — e+ )i i (2.2)
i api — (e + f)

d—p:rp(l—g)+.I:’:.'p—k§p{r—i}£{r—?}

dr k : =

where T(T = () is the time required for the gestation of infective prey by the predator.
For simplicity, we write model (2.2) in dimensionless form as follows, by using the same variable transformations
P=plk.S=s,1=IT=rt

ds -

E:B—rjﬂf—:.’iP—ﬂS+pf

dr

SFe aSf — fIP — (y+ ) . (23)

dr '

— =Pl —-P)+ 5P - Pr—oit—1)

dr

[ T _ b _ A g _d . _ _I_I" ki _ kka r_IQI _'Q.;.. — E Y : o ;

where g =2, B = i d=L ., y=L,p=c,a==1, f==2, ¢ =1, ff = 2 and t = ri, with initial conditions
dr = (g, gha, gy} defined in the Banach space

Co={d eC(—. 00, R .): () =SB, p,(th = [, ps(0) = P(D)), (24)

where S{h =0, I{h =0, P( =0, ! € C[—z,0]. For convenience, in the following we replace T by r for the
dimensionless time.

2 1. Positive invariance

Let us put Eq. (2.3) in a vector form by setling

X =col(S, I, P) e R, (2.5)
Fi(X) B —aSI—aSP — 85+ pul

FiX)=| FiX) | = oSl — P —(y+ wi . (2.6)
Fi(X) P(l—P)+2SP—FPit—DI(t—1)

where F: C. — R and F € C™(R?). Then Eq. (2.3) becomes
X = F(X), (2.7)
with X (1) = (b (1, gho (), o () € Cpoand ¢ () =0 (i = 1,2, 3). It is easy o check in Eq. (2.6) that whenever

choosing X{f1) € C4 such that X; =0, then Fi(x)|y =0, xinec, =0 (i =1, 2, 3). Due to lemma in [30], any solution
of Eq. (2.7) with X(fh € C..ie., X(r) = X(r. X(?), is such that X (/) € R* forall r = 0.
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2.2, Boundedness of solutions

Lemma 2.1. Assume that the initial conditions of Eq. (2.3) satisfv ¢ (0 + ¢{ = %, il & [—1, 0). Then either (i)
S+ = ‘?—;ﬁ‘)rﬂ”f z=0and therefore ast — +oc, (S5(r) 1(r), P{1)) — E, ={%, O, 0) or (it) there exists a tg =0
suich that §(t)+ 1(t) < § for all t > to. Finally, if ¢ (0) + ¢2(0) < 5. 0 € [~7. 0L, then S(1) + 1 (1) < £ forall 1 =0.

Proof. We consider first 5(r) + I'(r) = % for all t = 0. From the first two equations of {2.3) we get
d " - g &
E{5+I}:B—:5P—a5—ﬁfp_;~;
< [B —(8(t) + 1] (d=7)
=0 (2.8)

Hence, for all 1 20, we have that & + 41 <0, Let

lim S(1) + (1) =n. (29
I— o0
If iy = %. then by the Barbalat Lemma [2], we have
d
O= lim —({5{t)+ I{t))= lim [B —a85{)P{r) — d85(1) — BI{t) P(t) — v1(1)]
r—o0 (dp I—+ 00
= lim [B —8(5(t) 4+ Tit)]
I— 00
=8 —d lim (5(t) + M) <0
I— 00
This contradiction shows that § = %, i
g B
hm (5 + () =—. (2. 1)
I— oo il

Let us denote by git) = S(1)+ Tit) fort £ [0, oc). Of course, g(t) is differentiable and gff}l is uniformly continuous
forr € (0, +oc). Thus, with Eq. (2.10) all the assumptions of the Barbalat Lemma holds true, and therefore

d
lim —{&5(r)+ i) =00 (2.11)
r—oody
Since from the first two equations of Eq. (2.3)
d
E{":{f}l + 1)) =B — aS(r)Pir) — d5i(1) — BI{t)P{t) — v1{1), i2.12)
then Eg. (2.10) implies that

lim ;;{S{r} + Iy = lim [B — a5t Pir)— 885(r) — fI{n Pty — p1i{nl

lim [(8 — )1 (1) — 28(1) P(r) — Bl (1) P()]
= — lim [(7 — &) (1) + (25(1) + IO P(D]. (2.13)

Hence Egs. (2.11) and (2.13) are in agreement if and only if lim,_, . 7 {r ) =0 and lim,_. ., P{r) =0, which jointly from
Eq. (2.10) implies lim,_. $(t) = ¥. This completes case (i).
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Suppose that assumption (i) is violated. Then there exists fp = 0 at which for the first time Sin) + Tip) = %.
According to Eq. (2.12) we have

d R
E{‘“” + 1)) =B — af(tg) Pltg) — d85(1) — B (o) Plrg) — 70 (1p) = 0.

lr=ra

This implies that once a solution with § + I has entered into the interval (0, %}, then it remains bounded there for all
F g, ie., S+ ) = % for all t = #y.

Finally, if ¢ () 4 ¢, (1) = %, {l € [—1, O], then applying the previous argument it follows that S(t) + I{t) < % for
all ¢ = 0, i.e., (iii) holds true. This completes the proof. O

Lemma 2.2, There is a M = 0 such that for any positive solution (S(t), Ft), P(1)) of system (2.3) P{t) = M for all
farge t, where

(1+8)2

k=8+
4

M=

| =y

Proof. Lemma2.1 implies that forany (¢, 2. d3) € C= suchthat by () +h2(0) = £.0 € [—. 0] either a time t = 0
exists for which S(1)+ 1 (1)< & forallt > 1g, or lim, . oo S(1) =%, lim, . o 1(£)=0. Furthermore, if ¢, (1) + ¢, (1) < &,
the [—t, 0] then S{:) + F{1)= % for all r = 0. Hence in any case a non-negative time, say 1%, exists such that f{r) = %,
Sit) = % + & forall ¢ = t*.

Set W=58{t)+ Tir)+ Pir).

Caleulating the derivative of W along the solutions of system (2.3), we find for f = * 4+ 1

W =B —aS(t)P(t) —85(1) — BHOP) — v I+ PN — Pty — P — 0t — ) + 2 S(t) Plt)

B —8(5(0) + 1)+ Pl — Pir)) (o <a)
=B -850+ + P+ Pitl +8— P

. 14 8)?
=B — oW+ u,
4
where % is the maximum valoe of the function P{t){1 + & — P{1)). Therefore

W< —aW 4k,
whene

_E_B+Ll+ﬁ]3

= A

Thus, there exists a positive constant M, such that Wir) = M for all large 1. The assertion of Lemma 2.2 now follows
and the proof is completed. O

Let £2 be the following subset of R"}'__,_:

| &=

Q={(5.1.PeR} . :S+I<—.P<M}. (2.14)

L=

Theorem 2.1. The set 2 isa global attractor in RS | and it is positively invariant.
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Proof. Due to Lemmas 2.1 and 2.2 for all initial conditions in C. such that (¢ (1), ¢=(0), ¢1(0)) do not belong 1o
Qfor ) € [—1, 0], either there exists a positive time, say T, T = max{ry, *}, such that the comresponding solution
(S(0), Lit), P(t) € int 22 for all r = T, or the corresponding solution is such that (8{r), J{t), P(1)) — E|{%, 0,0 as
t — +oc. But Ey € 80, Hence the global attractively of @ in R}, | has been proved. [

Assume now that (b (), (), ¢1() € int £ Then Lemma 2.1 implies that §(r) 4+ I{r) < ‘? forall ¢ = 0 and also
by Lemma 2.2 we know Lhdl Pit) = M for all large r. Let us remark that if (g (), b2 (DD, () € 843, 0 € [—1, 0],
because o () + g2 (h = ﬁ- or (1) = M or both, then the coresponding solutions {(8(¢), {{¢), P(r)) immediately
enter int £2 or coincide with £,

3. Qualitative analysis of the model withoul time delay

In this section we recall the main resuls obtained by Chatterjee and Chatwpadhyay [4]. The model without time
delay i.e., the system (2.3) (with £ = ), possesses the following biological feasible equilibria.

Er=(£,0,0), E2 = (5,0, P2), where 5> = “27' and P is given by the positive ot of the quadratic equation
2P 4 (5 — )P — (3 + Bo{) =0, and Ez = (83, I2, 0), where §3 = £, | = 22200500 pyged on their results we
make the following two remarks.

Remark 3.1. The equilibria E, and E3 exist for any parametric values, while E3 exists if 2 = 2 é”ﬁ

Remark 3.2 (LAS). The axial equilibrium £ is a saddle point with S-axis as stable manifold and the [P-plane as an
unstable manifold if 2 = Y *;”'i or the P-axis as an unstable manifold and the SI-plane as stable manifold if 2 < 2 4;”‘5

Ifi= IJ[H[‘E_TE:L{E]__QZH 50 where O=/(6 — %)% + 42(6 + Ba') > 0 holds, then E, is locally asymptotically stable
(LAS).

If i > ZHAEIED) polds, then Ey is LAS.

The regions of parameter space for which the model system (2.3) (with © = () admits feasible inernor equilibrium
(s) must correspond Lo a positive root §* of the quadratic equation

w87 4+ wa 5 4wy =0, (3.1}
where w, ws, wy are given by

(i) wy=4ili—fz —afif),

(il) wa=affi{y+ @ —Af+7v4+p) — o +pla’fi— 2

(iil) wy=Bff + plff+v4+p

for which additionally,

B = DS+ B+y+0) . IS —GHR)
pp’ ) B fi )

They described the range of possibilities for which the interior positive equilibrium (s ) exists. They found that if there
is exactly one interor stationary solution E*(§* [* P*), §* =0, I* =0, P* =0, then it is a sink provided w =0
and w; = 0. If there are two interior solutions, then one is saddle point and the other is a sink. They also found other
possibilities for which a unigque interior equilibrium exists like (i) 4 = fio’ and (i) fo" < 4 < o’ + 2f", but for these
parametric conditions {given by (i) and (i)}, the intedor equilibrium is saddle point in nature.

Finally, they concluded that predation can be used as a key factor for controlling the disease.

I*=
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4. Qualitative analysis of the model with time delay
4 1. Local stability analysis

The vanational matrix L of system (2.3) about any arbitrary point (8, 1, P) is given by

—al —aP — 4§ —a8 4+ p —25
L= al g —fiP — (v + u) — il
2P —f Pe=* 1 —2P +o'S— fle "

Remark 4.1. The characteristic equation for the variational matrix L) about the steady state £y and the characteristic
equation for the vanational matrix Lz about the disease free steady state Es remains the same as obtained for the non-
delayed system (2.1) (in the dimensionless form). Thus, in our model system, the delay has no effect on the stability
nature of the system about £y and E;.

The characteristic equation for the variational matrix L* about E* takes the following form:

DUD=LP+I2 +mi+i—e " (F2+5i+h) =0, (4.1)
whene

¥

=2P" + 5 +al® +aP* —1 —o' 5%,

—

= —al*&'§* — So'S* +2aP* — aP* — § — al*u+ 26P* — ol* + 2aI* P* + a2 1*5*,

n

27 IS P f ol — 201 uP* — oI PP 5 4ol ol 5 + o P*Blp— o 1* 520 — ° I*S*,
f=—pr,

g=B8 P —aP 1 — 88 I + aff,

h=oaaf S I P* —auf — aff P* + SPP I* P* +a*f'S* + apf'1* P,

To find condiions for the local asymptotic stability of system (2.3), we use the following theorem of
Gopalsamy [13].

Theorem 4.1. A set of necessary and sufficient conditions for the equilibrium(s) to be asymprotically stable for all
20 is the foflowing:

(i) The rwal parts aof all the roots of D{ 4,0 = 0 are negative.
(i) Forall real vy and any 120, D, 1) £ 0 where i = /= 1.

Here DA, () =0 has roots with negative real parts provided system (2.1) is locally asymptotically stable about
different equilibria (for the conditions see Section 3).

Forom=0, D0, 0)=n—h £ 0.

Now for o #£ 0,

D, 1) = —ier’ —Teo® + mier +1 — u“"‘”"‘{—_f_'wl + gie + fi).
Let Dr{icy, 7) = 0 and separating the real and imaginary parts we get
—lw” +i= —fmz cos T 4 hcos T 4 Fosin wr,
— i + = _f_'mz sin eyt — h sin it + gorcos wr.
Squaring and adding the above two equations we gel

ot + le" + ngl + Ja=0,
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whene

0=P -7 —2m,

-2

Qz=m
1= oty 1y

—20n* +2fh— g,

Sufficient conditions for the non-existence of a real number o satisfying D4, 7) = 0 can be writlen as
o+ QHU4 -+ QI{:JI + J1=0,

which can be transfomed o

7 3
£ 3 & | QE
LTI T o BTG ) TR MU B |
o {'l[” 2!)[] O 40

2
Therefore, a sufficient condition for £* 1o be stable is (1) ¢ > Oand (ii) 01 = 4—%31-

4.2, Estimation of the length of delay to preserve stability

In this section we assume that in the absence of delays, E* is locally asymptotically stable. By continuity and for
sufficiently small 7 = 0, all eigenvalues of (4.1) have negative real parts provided one can guarantee that no eigenvalue
with positive real part bifurcates from infinity (which could happen since it is a retarded system). For the stability
analysis we use the Nygquist eriterion [ 10]. To do this, we consider the space of real valued continuous functions defined
on [z, o) satisfying the initial conditions and linearize system (2.3) near its interior equilibrivm E{x*, v*, z%). Let
wit), vir) and wir) be the respective linearized variables of this model. Then system (2.3) becomes

du - . =
— = A+ Azvi(r) + Azwir)

di
duv = =
— = Buit) + Baw(t) t (4.2)
dr
dw ” - - -
d_ = Ciul(t) + Cawlr) + Croir — 1) + Cywit — 1)
I
whene
A =—al* —aP* -, Ay = —85* + p. Ay = —a8*
B =al* B. =—fil* ; (4.3)

E| =D:rP*,£,::=].—EP*+ZIS*,L:3=_HP*~E4=_ﬁrI*

Leta(L), 0(L) and ip{ L) be the Laplace transform of wir), vit) and wir), respectively. Taking the Laplace wansfor-
mation of system (4.2), we have

(L — Apa(L)y= Aty + Az L) + u(0),
Li(L) = Biit(L) + Baw(L) + vi0),
(L —Cowll)y=Cia(L) + Ca{Lye ™ + G K Lye Y + Cam( Lye LT 4+ CuKa(Lye 5" + w(ly,

whene

i
KLy =f e~ i) dr,

T

L]
Ka(L) =f e~ M) dr.

T
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The inverse Laplace transform of w(L) will have terms which exponentially increase with time, if 5{L) has poles
with positive real parts. Since E* needs to be locally asymplotically stable, it is necessary and sufficient that all poles
of u(L) have negative real parts. We shall employ the Nyquist criterion which states that if L is the arc kength of a
curve encircling the right half-plane, the curve ui{ L) will encirele the origin a number of times equal to the difference
between the number of poles and the number of zeroes of @i L) in the right half-plane.

Let F{L) =L} +1L* +mL +n—e Y (fL* + gL + ) (from (4.1)). Then conditions for local asympiotic stability
of E* as given by Freedman et al. [10] are

Re Flivmg) =1, (4.4)
Im Fiivg) = 0, (4.5)

where vy is the smallest positive root of Eq. (4.4).
Now (4.4) and (4.5) become

TFF = =7 i = B
—lvy 4+ 1= — fvgeos vat + ficos vot + gvg sinvpt,

= = F oo =
—1'51]' + mvg = fypsinvgt — A s vt 4 gy oos wt.

To get an estimation on the length of delay, we utilize the following conditions,

i 4+a= —_f:r:r cos vT + heosvr 4 gvsinvr, (4.6)
— v .,f_'rl sin vt — fisin vt + gveos vt (4.7)

Therefore, E* will be stable if inequality (4.7) holds at v = v, where vy is the first positive root of Eg. (4.6). We shall
now estimate an upper bound v of vy, which would be independent of 7. Then we estimate 7 s0 that (4.7) holds for all
vitlues of v, 0= v< v, and hence in particular at v = wy.

Maximizing —frluus v+ heos vt + gvsin v, subject to | sm vz 1, | cosvr] = 1 we oblain

v +ag frl +h + gv. (4.8)

Thus the unique positive solution of { f +1)v* + gv— (7 — h) =0 denoted by v, is always greater than or equal to vy.

e el i

Henece if vy = T ! then from (4.8) we have vg <v..
Here we see that v, s independent of 7. Now we need o estimate 7 so that (4.7) holds for all 0<v<v, . Now
rearranging (4.7) by |sinvr|< tvand |1 —cosve| £ %t—qrz, we el

£
2

v+ h— Ve + i — g —v)=0. (4.9)
Thus (4.7) will be satisfied if
Agt® + Byt + Cy >0,

where Ag= §v3, Byg=h — /i, Cp=(m — g —v3).
e
Then the Nyquist criterion holds for 0 < t< 1, where 14 = T—ELU{_BU + ﬁ,-"IBE + 44;CH) and T4 gives an estimate

for the length of delay for which stability is preserved. Thus we are now in g position to state the following theorem.

Theorem 4.2. If there exists a Tin 0< 1<ty such that Agt™ + Byt + Cy = 0, then t2 is the mavimum value (length
of delav) of © for which E* is asvmprotically stable.
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4.3, Bifurcation wesults

Let us consider 7 = Oand assume A= ji+ivini{4.1). Then separmting the real and imaginary parts, we get the system
of transcendental equations

i =3 — I + ) + mje+ i
= f(p* — ¥ )cos e~ T 4+ 2 Fopsin vre ™ + gjicos Fre T 4 feos e TFT 4 gEsinvr, e HT, (.10

— 7 4 3p% + 20y + mv

= — f(i — ) sin vre™* 4 2 f¥ficos Fre ~HT — giisin Fre T — hsin vre T 4 gV cos fre HT, (4.11)

Let us consider 4 and hence frand v as functions of 7. We are interested to know the change of stability of E* which
will oceur at the values of T = 7 for which fi=0 and ¥ &£ (.
Then the Egs. (4.10) and (4.11) become

—Ii? + i = —f#*cos #T + hcos 7T + gisin it
i - GaaEn s gmtEs - - I i4.12)
— +mv = frsintT — hsin ¥T + greos vt
Eliminating 7, we have
# 4+ (F’- e zna) o (n'iz —Aftaeafhe ':3) P4t k=0 (4.13)

In order w establish Hopf bifurcation at © = 7, we need to show that "% # (at T =1. We differentiate (4. 10) and (4.11)
with respect to 7 and setting t =7, it = O and ¥ =7 we get

o calo=x
=1L —I1T) =
dr dr

- : : (4.14)
e i8a=r
M —(Z —(T) =
dr dr
where L= —37"4-m — g cos 71 — 2 f ¥sin #7, M = =203 + 2 f ¥ cos 77 — g sin 71, X = f77 sin 7 — hi sin #74 217 cos 1,
Y = —gi#*sin 7t + f1° cos 7T + hicos ¥t

Solving (4.14), we get

dii

& LX - MY
T)=—=—=——=="»
dr I e

where %{%} has the same sign as that of LX — MY,
Substituting the values of L, M, X, ¥ and using (4.12), we get

Px— gy =+ [3i~4 + 2P = 2= 200) + (% — 2R + 2 fh —5,:2}]_
Let
F(2) =2+ A12° + Azz + A3,

where A, =F — f2—2m, A; =m” —2In> +2fh — g°, A; =(n” — i) which is left hand side of (4.13) with ¥ =z.
Then F(i*) = 0 and we note that

SE U = e e (P, 4.15
FE LI+M'dzh} )

Hence we can describe criteria for the preservation of stability {instability) geometrically as follows:
(1) If the polynomial £{z) has no positive roots, there is no change of stability.
{2) If Fiz) is decreasing (increasing) at all its positive roots, stability {instability) is preserved.
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We note the following fact:
(1) For the existence of 7 = (), F{z) must have at keast one positive real root.
(11) Since F{z) 1scubic in g,

hm Fiz)=oc.
z—+0g

{ii1) If F{z) has a unique positive root, then it must increase at that point to satisfy (ii).

{iv) If F(z) has two or three distinet positive real roots, then it muost decrease at one root and inerease at the other,
hence (1) 1s not satisfied.

(v) If A3 <0, then Fi{z) has only one root.

(vi)If A; =0, 43 =0 and A> <0, then (1) will be satisfied.

Now, if 4] =10, Az = 0and Az = 0, then the minimum of F{z) will exist at

o
—A 4 AT — 34,

S LI

Zmin = 3

and (1) will be satisfied if F{zpi) = 0. 1.6,

2471 — 94 A2 + 2743 > 2(A] — 342)? (4.16)
or

2A1(A] —342) + 2743 — 34,45 = 2{A] — 340,

Since 2741 — 34147 = 27A; (since A =0, A3 >0 and A; < 0), and AII — 34> = A-I'r, hence 24, {A-i-r — 34 +
27A3 —3A A7 > 2745 + 247,
Thus, for Eq. (4.16) w0 hold it is sufficient that

3

/3
3 5 1 - 2743+ 243
27434+ 247> 2(A7 — 3427 = Ax > o | = (—')

Now we can state the following theorem.

Theorem 4.3. [f A =0, Az = 0 and relation (4.16) holds, then the stable positive equilibrinm E* remains stable for
all T=10.

Example 4.1. Let us consider the following hypothetical set of parameter values:

A =7 individuals ha='day~', r =5.4day~', k =40 individuals ha=', k| = 0.6 x k; ha per individual day ', k, =
0.6 % k3 ha per individual day ', & =0.009day ", f =0.7day~", e =0.00097 day !, b =0.05 ha per imji'.-''|1.1Lui|5vd.'ij,'__l~
ky = 0.002 ha per individualsday !, and k; = 0,003 ha per individualsday .

For this set of parameter values there exists a unigue interior equilibrium E* (165683, 431378, 39.5721). Moreover,
this positive steady state E* is locally asymptotically stable, since the eigenvalues associated with the variational malrix
of system (2.2) (given in the paper of Chaterjee and Chattopadhyay [4]) at E* are given by {—1.6278, —0.00535,
—(1.9898). With these parameter values and taking the initial population of the susceptible prey, infective prey and the
predator as 3.3 individualsha—!, 1.6 individualsha =", 1individual ha— !, respectively, we get Fig. 1.

With this set of parameter values one can easily see that A} = (L1853 = 0, and A = 8.5661 = 1077 = 0. Thus,
according to Theorem 4.3, this interor equilibriom E* remain stable for all = 0. For 7 = 250, we observe that all
three populations remain stable (see Fig. 2).

From Fig. 2 it is clear that system (2.2) is stable for 1 = 250, Moreover, we have also checked for other values of
7= 250 and found that the system remains stable for any 1= 0.

Theorem 4.4. [f A =0, Az < 0and if the positive equilibrivm E* is unstable for © = 1y, then it will remain unstable
Jorall T = 1.
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Fig. 1. Time evoltion of all the population for the model system (2.1).

5 ] 1
0 50 100 150 200 250 300 350 400 450
Time

Fig. 2. This fi gure depicts the time evolution of all populations for the model system (2.2), © = 250,

Before proceeding further we state the following lemma due to G.J. Butler (see Appendix 2 in [11]).
;. J. Butler's Lemma: Let

A(h, 1) =4 —(A+ D)i+(AD— BC) — BEe™™
WA+ D <0, AD — BC = BE, then the real pants of the solutions of the above equation are negative for T < 7y, where
7y = 0 is the smallest value for which there is a solution to the above equation with real part zero.

The existence of unique v is given by (v) and hence from (4.12) we have

feopefiotmt ol i 0 B i @.17)
v g1 — gmit + fav? — Rl 4+ fI — hi v
wheren =0, 1,2, ... . Our required 7 is given by n =0 in (4.17). Since, %{%} =0, it is clear that at least one eigen-
value of

P2+ mh+ i — e (2R + gh+ hy =0,
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Fig. 3. Time evolution of different populations for model system (2.1).

with negative real part at © = (0 which will become positive for 7 = 7, where 7 is the smallest positive value of T given
by (4.17). The negative real part of the eigenvalue will continue to be negative for 7 < 7 which is guaranteed by the
direct extension of GJ. Butler's Lemma for the three dimensional problem. Therefore, the Hopf bifurcation criterdon
is satisfied and consequently there exists a small amplitude perdodic solution as t passes through 7.

Remark 4.2, It must be pointed out that from the above analysis we can not determine the stability of the bifurcating
perodic orbits, that is, the perodic solutions may exist either for t = T or for 7 < , near 7.

Remark 4.3, If (v) is violated, that is, 4 =0, A2 =0 and Az = 0 then by Descartes’ rule of signs there exists two
posiive roots v and v satisfying Eq. (4.13). According to Theorem 3.1 of Kuang [22], the stability of E* changes a
finite number of times as 7 is increased and eventually becomes unstable for sufficiently large values of 7. This will be
clear from the following example.

Example 4.2 {An epidemic case). Letus consider the following hypothetical set of parameter values: A= 7 individuals
ha='day=', r = 0.33day~", k = 40individualsha=', k| = 0.6 x kj ha per individualday=", k; = 0.6 x k ha per
individuals day !, d=0.009day =", f=0.03 day~!,e=0.0097 day "', b=0.05 ha per individual day ',k =0.002 ha per
individuals day~', and k2 = (.05 ha per individuals day—!. For this set of parameter values, the coexistence equilibrium
E* is given by (403775, 1.7296, 39 5835). We find that for these parameter values system (2.1), that is, the system
without the time lag, becomes unstable aboul the coexistence equilibrivm ( the eigenvalues associated with the vadational
matrix of system (2.2) at E* are (—21.14,0.535, —1.62)). Moreover, for this set of parameter values the predator
population is washed away from the system (see Fig. 3), and so this is a typical example for occurrence of an epidemic
in the system.
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Fig. 4. The figure depicts the time evolution of all populations for system (2.2) far t=11.
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Fig. 5. Time evolution of all populations for model system {2.2). (a) Depicts the populations for r= 16 and (b} depicts the populations for t = 17.

From Fig. 3 we observed that there is a remarkable variation in the susceptible and infective prey population level.
The susceptible population decline from the initial population of 3.3 individuals ha~! 10 0.794 individuals ha—'. On the
other hand the infective population increases from the initial population of 1.6 individualsha~" 1o 720.87 individuals
ha~!. The huge increase in the infective prey population keads to the extinction of the predator population.

Now we shall find the role of the time lag 7. For this we first substitute these values in Eq. (4.13). Substituting these
vilues in Eg. (4.13), we obtain

P — 112.14300% — 9961677 + (.9488 =10, (4.18)
Solving Eq. (4.18), we get two positive values of ¥, that is, v =0.24028 and v7 = 10.5939, and so according to Remark
4.3 there exists two critical values of 7, 7 and 75, such that the positive equilibrum E* bifurcates to periodic solutions

when 7 lies near 7] and 2. We have already seen that the positive steady state £* is unstable for © = 0. When we
increase the value of 1 from © = 010 7 = 11 we observe that the positive steady state E* bifurcates into a periodic
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Fig. 6. Time evalution of all populations for model system (2.2). (a) Depicts the populations for T= 25 and (h) depicts the populations for r = 26.
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Fig. 7. Unstable solution {with growing oscil lations) of model system (2.2) for 1 = 3.

solution, see Fig. 4. 1f 1 is further increased from © = 1610 © = 17 the positive steady state E* becomes a stable focus
{with decaying oscillations), see Fig. 5. Hence we see that when © passes through 77 = 12,4 small amplitude periodic
solution occurs, and the unstable positive steady state E* becomes a stable focus. I 7 is further increased from © = 25
o 26 the positive steady state E* bifurcates from the stable focus into another periodic solution, (see Fig. 6). Finally,
when 7 is increased beyond © = 30 the positive steady state £* becomes unstable (by means of a growing oscillation)
{Fig. 7). Hence we observe that when 1 passes through 75 =~ 28 a small amplitude periodic solution occuwrs and £*
loses its stability. This suggests that the delay in the gestation of the infective prey population plays an important role
in maintaining the stability of the system about the coexistence equilibrium, and helps in preventing an outbreak of
the disease. However, the stability of the coexistence equilibrium becomes weaker as © increases and eventually, it
becomes unstable for sufficiently large 7.

Probable control of the epidemic: A control of the epidemic by a careful increase of the value of 7, i.e., the time-lag
for the gestation of the infective prey, can be a very useful policy, since it works even if we increase the value of the
parameter b (the force of infection), see Fig. 8.
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Fig. 8 Time evolution for different values of b {1) for model system (2.1), (h) for model system (2.2).

In Fig. 8, we vary the value of the parameter b in the range [0.03, 0.09], keeping the other parameters, including 7,
fixed. In Fig. 8(a) time evolution for system (2.1) is plotted for different values of b tken from the above range staring
from (.03 to (0L.09 with a step size of 0.003. In Fig. 8(b) time evolution for system (2.2) is plotted for same values of b, as
taken for Fig. 8(a). We observe that the gestation of the infective prey population plays an important role in controlling
the epidemic in the sysiem.

5. Global stability results, permanence

In this section we shall prove the global stability result of the disease free equilibrivm and the permanence of the
coexistence equilibrium. We begin with the global stability of the disease free equilibrium E;. We proved that any
solution of Eq. (2.3) starting outside 2 (in R-}_} either enters into £ al some finite Wme, say fy = 0, and then it remains
in its interor £ for all ¢ = 1y or tends o the boundary equilibrium £, But the boundary equilibrium £} is always a
repeller, see Remark (4.1). 1t is therefore sufficient 1o prove that the disease free equilibrium is asymptotically stable
(under certain conditions) with respect to int £2 1o prove the global stability in & .

Theorem 5.1. If the following conditions hold, then all solutions with initial conditions (2.4) of svstem (2.3) starting
in £ approach the disease free equilibrium E2(85:.0, P2) as t — 400

(i) B(d+ p)=d"85.
(i) o8B =d(p+ 7).
(iii) 4 = '

Proof. From Theorem 2.1, we see that the set 2 is a global attractor in B}, and, of course it is positively invariant

Let us consider the following Lyapunov function:

1) P(1)
5 TP — P —Pylog—=.

Vit) = é{.&'m — 5P+ 1) — I — I log
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Taking the time derivative of Vi) along the solution of (2.3) and because of the positivity of the solutions, we have
ffﬂiﬂ—ﬂz}{ﬂ — a5+l + (PPl - P+ 5+ (1 — B)oS —y —p}
=(§—SB-d5—-S)—0S:+pu}+(P—P)1—(P—P2)— P2
+ 2 (S-S +a' S+ (I — a5 —y—ph
For all the solutions of {2.3) starting in £, we konow that S(t) + (1) < % and Piry= M.

Hence, using the existence condition 1 — Pa + 2" 5 = 0, we have

V(5 —5) I—é{.ﬁ'— S2)+ B—-d85:+ ?I + (P — P){—(P — P2) + 4(S5 — $2)}

+U—f1]llr-Ilf —','—pl.

Assuming B{d + p) = §°%5 and 0B = e + 7). we gel
VE —HS— 5P —(P— P + (5 — S0P — P2).

The rght hand side of the above expression can be writlen as —ZTRZ where Z = (5 — 5. P — P2) and the symmelric
matrix & 15 given by

Now, V < 0if the symmetric matrix R is positive definite. R is positive definite if 46 > =%, Hence by LaSalle’s extension
of Lyapunov theorem (see [15]), the disease free equilibrium is asymptotically stable with respect o int £2, provided
the conditions stated in Theorem 5.1 holds true. O

In the following we shall prove that the instability of E; and Ez implies that system (2.3) is permanent. Before
starting our theorem, we give the following two definitions from Xiao and Chen [29].

Definition 5.1. System (2.3) is uniformly persistent if there is an g = O {independent of the inital data) such that every
solution (S{t), T{t), P(r)) with initial condition (2.4) satisfies
lim inf S{r)=n, lim inf 1{t) =y, lim inf Pit) 25,
I—+4oo =400

I—400

Definition 5.2, System (2.3} is said 1o be permanent if there exists a compactregion £ € int £2 such that every solution
of Eq. (2.3) with initial condition {2.4) will eventually enter and remain in region (3.

Cleady for a dissipative system uniform persistence is equivalent o permanence.

Lemma 5.1. Consider the following equation:

d.

sad = —axy —dx,
dr :

dy

—— =axy — ev.

dr 0 3

Existence of the interior equilibrium of the above system ensures ity global asvmprotic stabifity.

Proofl. Sce[4]. O



145) 8. Chatterjee etal.
Lemma 5.2. Consider the following equation:

() =x{r){l — x{r)) — axir — 1), (5.1)
where % is a non-negative constant. Then the trivial steady state of the above system (5.1) is a repeller, provided 2 > 1.
Proofl. Linearizing system (5.1) about the trivial equilibrium, we get

yir) =y(t) —ay(t —1), (5.1a)

where vis the lincadzed variable. We have o show that w=lim inf;_. . . v{t)=+4oc. We will prove this by contradiction.
If possible let u be a positive finite constant. Then there is a sufficiently small &= 0, such that

H+e=<alw—g) Cooe=1). (52)
The definition of u implies that there exists a T = T(g) = 1 such that

vit)=u—g fore=T. (5.3)

Letf = T + 7 be a local minimum point of y(t) such that v(f) =u + & Then ¥(r) = 0. This leads 1o

avi(f — ) =vif) =u + &

By (5.2), we have v(f — 1) =u — g, acontradiction to (33). Then v = +oc, that is
lim y(t) =+oc.

1—+o0
Hence the lemma. [
Theorem 5.2. Svstem (2.3) is permanent provided

_ PPy

] ﬁ =a(Py +e1)+ &, where k) = =—————and P, = e [ﬁ_;:*u“hh'],
W) FAlB+ )= iy + By + p,

where g;, 1 = 1, 2 is sufficiently small.

In order to prove Theorem 5.2, we present uniform persistence theory for infinite dimensional systems from [17].
Let X be a complete metric space. Suppose that X" is open and dense in X and X” U Xg = X, X" 1 Xy = &, Assume
that T{x) is a € semigroup on X satisfying

T s X XV e X Xy, (5.4)
Let Tpit ) = Tit)|x, and et Ap be the global attractor for Tuit).

Lemma 5.3. Suppose that T () satisfies (5.4) and we have the following:

(1) thereis atp 20 such that T(t) is compact fort = ty;
(1) T(r) ix a point dissipative in X;
(i) Ap = Uyea, er x) is isolated and thus has an acyelic covering M, where

M= M, M, ..., My);
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Then Xy is a uniform vepeller with respect to X", Le., there is an & = 0 such that for any x € X”, lim; s o inf
d(T(t)x, Xp) 2, whew d is the distance of T(1)x from Xy.

We are now able to state the proof of Theorem 5.2.

Proof of Theorem 5.2. We begin by showing that the boundary planes of R repel the positive solutions of system
(2.3) uniformly. Let us define

Cr=1{{gh. s, 1) € CI—7, 00 BE) : b () # 0, o() =0, 0 £ [—1, 0]},
Ca={(gh. . P3) € C(I—7. 00, RL) : () =0, (D), p5(0) £ 0,0 € [—1, O]},
Ca={{¢h, s h3) € C{—7,00, BE) : (N =0, b (O, () £ 0,0 € [—7,0]}.

If Cy=C, UC:UC and CV=int C {[—z, 0], Ri}l, it suffices 1o show that there exists an & = Osuch that forany solution
w; of system (2.3) initiating from €Y, lim inf, . ~d{n;, Cp) 2 & To this end, we verify below that the conditions of
Lemma 5.3 are satisfied. 1t is easy 1o see that " and Cyp are positively mvariant. Moreover, conditions (i) and {ii) of
Lemma 3.3 are cleady satisfied. Thus we only need to verify conditions (iii) and (iv). There are three constant solutions
E\, Ez and E; in Cp, corresponding, respectively, to (5(r) = %, Ho=0, PiN=00. (5 =8, T{H)=0, P(r)= P1)
and (§(t)= 5., Tt =11, P(r)=0). I (S(r). 1(t), Pit))is asolution of system (2.3) initiating from O with ¢ {(0) = 0,
it follows that S{f) — %, Ity — 0, Pty — Oast — +oo I (S(r), T(r), P(r))is asolution of system (2.3) initiating
from Cz with ¢y (D = 0, i =1, 3,itfollows that 5(t) — S2.7{t) — 0, P{t) — Prast — +oc. W (S{r), T{r), P(r))is
a solution of system (2.3) initiating from Cz with ¢ {0) = 0, i =1, 2, it follows that §{r) — S, I{t) — L, P(t) = 0
as t — +oo. This shows that if invariant sets £y, E; and E3 are isolated invariant, { £}, E2, Ex} are isolated and is
an acyclic covering. 1t is obvious that £ is isolated variant. The isolated vadance of E7 and £z will follow from the
following proof.

We now show that W9 (E|) NCY = &, W (E2) N C" = @ and W¥(E1) N €Y = &. We restrict our attention to the
second and third equations, since the proof for the first is simple.

Assuming the contrary, i.e, W*(E2) N C" & @, then there exists a positive solution (5(r), I{r), P{r)) of system
(2.3) such that (§(1), I(t), P{r)) — (5.0, Pr)ast — +oc. Let us choose g > 00 small enough such that

B .
= > a(Pyta) +4. (5.5)
1
Let ty = 0 be sufficiently large such that P — &) < P{t) <= P2+ g for f = iy — 7. Then we have, forr > 1y
d5i(r) . " i
: di ) Z[8 —al(t)5(1) — (2P + &)+ )51 ]
I (5.6)
). .
2H[aS(t) — (P +e)—y—ul
Let us consuder
X =B —axi(t)xa(t) — (2P 4 £1) 4 d)x) {f}ll 5T
1z = x2(t)ox1(8) — B(Pr + &1) — 7 — pl. - -

Let v = {1y, v2) and let £ = 0 be small enough such that &y < Sirg), Sve < T,
If {xp(r), x2(r)) is a solution of system (5.7) satisfying x;{fp) = Ev;, i = 1, 2, we know from comparison theorem
(see [290) Sty =xp (), Tt) 2xa(r) for all t = . 1 is easy 1o know that system (3.7) has a unique positive equilibrium

1 /B :
(x], x3) = (h. 2 (— —a(Pr4g) — ﬂ)) .k
a \k

1

KB te)+y+p
T

]

which is globally asymptotically stable, from Lemma 5.1, Note that S{t) =x (), T{r) =x2(t) for all 1 =1y and
lim;—, +~cx2(f) = x5. This is a contradiction. Hence W (E2) N CY = &b,

Let WH(E3) NCY # &. Then there exisis a positive solution (S(t), 7{r). P(r)) of system (2.3) such that (5{(r), I (1),
Pit)) — (5. . 0)asr — +oc.
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Let us choose g = 0 small enough such that ﬁr{h + £2) = 1. That 1s,
BB + e27) = iy + [y + p). (5.8)

Let 1 = 0 be sufficiently larpe such that
i —er=I{t)= I+ g2 for ¢t =1 — 1. Then we have, for r = 1)

dP{r}

5 AP F— B+ e2) Pir — 7). (5.9)
Mow let us consider
t=z(l —z) — B h + ex)zlt — 7). (5.10)

Let uy and let £ = 0 be small enough such that [y < Pin).

If zy is a solution of system (5.10) satisfying z | (1) = [, we know from comparison theorem (see [29]), P{t)=z(1)
for all ¢ = ¢). From Lemma 5.2, we observe that the trivial solution of Eqg. (5.10) is a repeller (- {1z +22) = 1).

MNote that P(t) Zz() for all ¢ = 1 and so hmy_ oo Pt -0, This i1s a contradiction. Hence WY E3) N Y = AL
this time, we are able to conclude from Lemma 5.3 that Cy repels the positive solutions of { 2.3) uniformly. Incorporating
the above into Lemmas 2.1 and 2.2, we know that system (2.3) is permanent.

6. Discussion

In this paper we have attempted to study the effect of a time lag inthe model proposed by Chatterjee and Chattopadhyay
[4]. It was interesting 1o compare the three species eco-epidemiological model analyzed here, which has a fixed delay
comresponding o the gestation period, with the analogous model analyzed by Chatterjee and Chattopadhyay. Here we
have also pointed out the well-known phenomenon of ‘exchange of stability” through a simple bifurcation.

It was observed that the stability of the disease free equilibrinm does not depend on the time lag due to the gestation
of the infective prey (see Remark 4.1). We also found a sufficient condition for the stability of E*, (see Section (4.1)).
Moreover, we have also found the maximum value (length of delay) of 7 (ie., 7o) for which a locally asymploti-
cally stable interior equilibrium £ will remain asymptotically stable, where 7, = ﬁ{—ﬂﬂ + 1I',I'IBE + 44,0, (see
Theorem 4.2).

Further, in Section 4.3 we found conditions for the bifurcation of the interior positive steady state. We observed
both analytically and numercally that if 4; = 0 and Az = 0, then a stable interior equilibdum E* remains stable for
all T = 0 (see Theorem 4.3). But, if the interor equilibrdum E* is unstable at t = 1 and A) = 0 and Az <0, then E*
remains unstable for all T = 1 (see Theorem 4.4) It was also observed that the positive equilibrium enters a Hopf
bifurcation and consequently there exists a small amplitude perodic solution as © passes through 7, where T is given by
Eq. (4.17) for n = 0. However if A = 0, Az =0and Az = 0, then there exists positive vy and 1% satisfying Eq. (4.13),
and consequently there exists two critical values of tie., 71 and 72 around which small amplitude periodic solutions

iy OCCur.
BlPa+u)+7+0 | and

We have also observed that system (2.3) is permanent provided (i) A_ = a{ Py &)+ 4, where k) = -

A I]_""m‘i*h L) AB 4 7)) = Ay + B'8(y 4 p).where g, i = 1, 2, is sufficiently small. Moreover
if the conditions hl}.llllﬂ in Theomem 5.1 hold, then [hL disease free equilibrium is globally stable. It should be noted
here that this is also independent of the value of 7. Thus, we may conclude that the time lag does not play any role in
making the system disease free.

Finally from our numerical simulations, we find two critical values 77 = 12 and 75 = 28 such that the positive
equilibrium E* bifurcates into small amplitude perdodic solutions, supporting our analytical claim. We have observed
from Figs. 4 and 5 that when t passes through 7) the unstable positive equilibrium becomes stable through a small
amplitude periodic solution, while, from Figs. 6 and 7, we have observed that when t passes through 73, a stable
positive equilibrium bifurcates into a perodic solution and finally becomes unstable. This suggests that the delay in
the gestation of the infective prey population plays an important role in maintaining the stability of the coexistence
equilibrium and helps 1o control the outbreak of the disease, (see Fig. 8). But the stability of the positive equilibium
becomes weaker as © increases, and eventually it becomes unstable for sufficiently large 7, supporting the well-known
phenomenon of ‘exchange of stability” through simple bifurcation.
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