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A predator—prey model with disease in the prey population is proposed and analysed. The mode of dis-
ease transmission plays an important role in such dynamics. Keeping this factor in mind, we observe the
dynamics of such a system for simple mass action incidence and standard incidence. Our observations
indicate that the phenomenon of rarity or non-occurrence of chaos in our proposed model is well defined
if the mode of disease transmission follows standard incidence. Moreover, using the method of Latin
hypercube sampling, we show that the region of stability increases if the disease transmission follows the
standard incidence law.
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1. Introduction

Mathematical models have become important tools o analyse the spread and control of infectious dis-
eases. Most models for the transmission of infectious diseases descend from the classical Susceptible-
Infective-Recovered model of Kermack and Me Kendnck. Susceptible individuals become infectious by
contact with infectious individuals. There are some biological differences between typical predator-prey
mteractions and infectous diseases, but these differences have identified some potentially frontful av-
enues of research (Eam er al., 1998). In the natural world, the species not only spreads the disease but
also competes with other species for space or food or is predated by other species. Probably, Hadeler &
Freedman (1989) were the first to describe a predator—prey model where the prey 1s infected by a par-
asite and the prey in turn infects the predator with the parasite. After that, a number of papers have
already appeared in this direction {e.g. see Venlrino, 1995, 2001; Hetheote, 2000; Chattopadhyay &
Bairagi, 2001 ; Hetheote ef al, 2004, ete.) and these type of models are known as cco-epidemiological
models (see Chattopadhyay & Anno, 1999),

Maost of the earier works on eco-epidemiology modelling are based on finding the stability and
persistence of a system (e.g Singh et al., 2004). These models are analysed by considenng a hnear
approximation to the non-lInear equations that ecologists conventionally assume o be more complex
situations (Hastings & Powell, 1991). But now the terms chaos, strange attractor and fractal are familiar
to many, if not all, ecologists (Schaffer & Kot, 1986). In fact, Allen ef all (1993) showed that chaos can
even prevent global population extinction if there are several distinet subpopulations that are weakly
coupled by migration and subject to locally varying external noise. The key feature of chaotic dynamics
15 the sensitive dependence on initial conditons. Even a small change in initial conditions can lead
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to different results. Chatterjee et al (2006) proposed and analysed an eco-cpidemiclogical model w0
abserve the oceurrence and control of chaos. They concluded that along with the rate of infection, the
rate of predation also plays a pivotal role for monitoring the dynamics of the system.

Chatterjee et al. (2006) assumed that the disease transmission follows asimple mass action incidence
Liw. It 15 seen that i the case of constant total population N, if the disease s not fatal and the model
does not address vital dynamics (the normal birth and death dynamics), then the infection tenm fsi may
be justified (since _ﬁj- is now a constant), where 5 is the susceptible population and i is the infective
population. Here, the meaning of b becomes the encounter infection rate. But, fora large population, an
individual’s finite and often slow movements prevent it from making contact with a large number of in-
dividuals in a unit time. Such a mechanism s better deseribed by bﬁ than bsi. For example, " Amico
et al (1996) fitted a simple mass action model and found that the estimated transmission coelficient
declined with both infected and susceptible host densities, showing that the simple mass action model
wis inadequate wo describe the transmission process. Begon er all (1998, 1999) concluded that standard
incidence is & better descriptor of transmission dynamics than density-dependent transmission for cow-
pox. Many more small-scale expenments showed that simple mass action did not deseribe tmnsmission
adequately (e.g. see Reeson et al, 2000; Barlow, 1991, 2000). The difference between the behaviour of
different forms of the discase ransmission are given in many papers (se¢ Gao & Hetheote, 1992; Gao
et al., 1995, 1996; Hetheote & Van Ark, 1987; Mena-Lorea & Hetheote, 1992, to mention a few). In
spite of the above observations, it is still an open guestion which functional form better describes the
mode of disease transmission.

The main wim of this article i to compare the outcomes of two infection mechanisms, standard
incidence or simple mass action incidence, with special emphasis on chaotic behaviour To address this
question, we have considered the model proposed by Chatterjee er all (2006) and modified the model
by assuming that the disease transmission follows staindard incidence law. We compared the dynamical
nature of the two systems numerically for a wider rmange of foree of infection. Finally, we use Latin
hypercube sampling (LHS), a stratified sampling technigue that produces 8 more uniform distribution
of sample pomts throughout the sample space (Smith et al., 2005), to observe the dynamics of our
considered model systems m the full range of parameter space. It helps us to indicate which form of
the disease transmission will increase the stability region when the parameters are randomly generated.
Our observations indicate that it 1s more casy o make the system stable around the positive inlerior
equilibrium when discase transmission follows standard mcidence instead of mass action incidence. 1t
15 also observed that the risk of getting chaos in the system becomes much less if the foree of infection
follows standard incidence.

The organization of the paper is as follows: We first discuss the basic formulation of the model in
Section 2. In Secton 3, we discuss some preliminary results that include the boundedness of the solu-
tions and the conditions for the existence of different steady state. In Section 4, we find the conditions for
the local stability of different equilibrium points and persistence of the coexistence equilibrium point. In
Section 5, we perform the numerncal simulations with special emphasis on the chaotic dynamic of the
system. In Section 5.1, we have used LHS technigue to see whether our result holds rue when all the
system parameters are vaned simultaneously. The article ends with a discussion.

2. The basic mathematical model

Chatterjee et al (2006) proposed a predator—prey model in which a transmissible disease 15 introduced
into the prey population. They made the following assumptions.
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They assumed that the disease spreads among the prey population and the disease is not genctically
inherited. As a result, the total prey population i divided into two classes: one 15 the susceplible prey
population *s7 and the other is the infected prey population 7. Therefore, at any time ¢, the total prey
population is n(t) = s(t) + i(r). They assumed that the susceptible prey population grows in a logistic
fashion with camrying capacity £ = 0 and mtrinsic growth rate constant » = () They further assumed
that the infected prey population cannot grow, recover or reproduce. But the infected prey population is
capable of contnbuting towards the carrying capacity of the susceptible prey population. The incidence
is assumed to follow simple mass action incidence csi, where ¢ = 0 is called the transmission coeffi-
cient. Finally, they assumed that the predator population p predates both the susceptible and the infected
prey population and the predation of both the prey population has a positive effect on the growth mte of
the predator population p

With these biological assumptions, they proposed the following mathematical model:

1'11,' s (1 i 5 + P) - PF{" r-} —(‘.‘-’!—.

ar i

"
L esi— pGls, i) —ei,

dr

L di Fis, i)+ d2G(s, i) — f
dT—p{ LF(s )+ d2Gis, i) — ),

where d) and &7 are the conversion rates of the susceptible and the infected prey population, respectively,
by the predator population. Moreover, dy and &> Lie in the interval (0, 1), £ denotes the natural death rate
of the infected prey populations and § s the natural death mte of the predator population. Fis, i) and
iy, 1) denote the predator functional responses for the predator p, respectively.

They took the predator functional responses (which play an important mole in determinmg the long-
term behaviour of a system; Hastings & Powell, 1991) for the predator p with respect to the susceptible
prey population s (Le. Fis, i) and the mfected prey population 7 (e, Gis, i) as modified Holling
type-11 functional responses (see Gakkhar & Naji, 2003), Le.

| 8 dai

Fis,il/=———— and Gisi)= ——F——,
14 b5+ bai 1 + b5+ bai

which satisty the following two condiions:

Hl. Fi{l i) =10 and % =0¥s =20,

H2. ({5, 0) =0 and dm_r' =0,¥i =0,
where a) and az are the searching efficiency constants or equivalently the predation rates on the suscep-
tible and the infected prey populations, respectvely, and by and b are the posiive parameters chame-

terizing the modified Holling type-1 functional response.
With these assumptions, they proposed the following set of differential equations:

ds e g4+ aysp .
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All the rate parameters are positive and constant. They assumed the positive initial conditions as
s(0) 2 0,600 = Oand p(0) = 0 for some initial tme.

Here, we modify the model of Chattegee e all (2006) by taking standard incidence as the mode of
disease transmission. Under this assumption, System (2.1) takes the following form:

ds i s+ ap cxi
—=rs|l- = = :
dr k I+ s+ b 541

LT . (22)
dlf s+ I 4+ bys + b

dp  (dia)s + daazi)p
dr ~ l+bs+b1i
For simplicity, we non-dimensionalize the model system (2.2) with the following scaling: § = %,
= %, F = % and ¢+ = rT; with these gquantities, System (2.2} 1 tansformed into a dimensionless
form as follows:

ds SP ASI

s ey — == .

dr l+aS+ 81 S+1

I _ S yIP i 3%

dt ~ S+1 l1+aS+pI

dP _ (ei5+ex)P
d  1+aS+p1

l’-‘hu‘l‘ci:?,ﬁ:%,;ﬂ = ﬁ,rx:hk,ﬂ =.|'J1.F:,,u=%,£’| =£‘%‘£und¢'¢_r=‘—'r3¥i.

3. Preliminaries
3.1 Positive invarianee

Let us put (2.3) in a vector form by setting

X =col(5, I, P) e R?, (3.1.1)
r sp L5T T
5{1—5—1}—1 T e
Fi(X) +als + f 5+
F(X) Fa(X) il rtf (3.12)
I - S+1 l+aS+pI ns
F3(X) (e1 5+ exl)P
1 +aS+ I 1
where F: O — R and F e C™(RY). Then, (2.3) becomes
X = F(X), (3.13)

with X{(() = Xp Ri It is easy to check in (3.1.2) that whenever choosing X () e R'}L such that
X; =0 then Fix) |y, =0 =0 = 1,2, 3). Due to the lemma of Nagumo (1942), any solution of (3.1.3)
with X € R, say X (1) = X(t; Xo). is such that X (1) € R forallt = 0.
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3.2 The equilibria and their existence conditions

System (2.3) possesses the following biological feasible equilibria (other then the positive equilibrium
point): Eg = (0,0,0), E1 = (1,0,0), E2 = (5,0, P'), where §' = £ and P’ = %‘ﬂ
[ R i— =

E;= (8, 1,0), where § = "--—-v-—j“_:";"ﬁ and [ = L—---—-F'_"'.][:__F'""ﬁ].

REMARK 3.2.1 The equilibria Ep and £y exist for any parametric value, while Ez exists if e = gla+1)
and Ezexistsif § <1 < 14+ 4.

We now seek the regions of parameter space for which the model system (2.3) admiis a feasible
interior equilibium. Any feasible equilibria must correspond 0 a positive oot 5* of the quadratic
equation

1 52+ S 4w, 32D
where w, wa, w3 ae given by

(i) wy =2y pae) — qurxz + 2y ;:Iaﬂ — 2o pfi — Iulﬂz -7y .-.’%
+2ye1e0 — 2y paer — y 3 + 2y e2uf,
(i) wr= }’L’% + 2y pey — 2y ,uza —yeer+ ;#,u:ﬂz — .J.L’EE +'§E§
—dejer + a7 — by ey uf + by praf — iy pae
—yptafl + dpaer — Su aff + deyuf + 2ieufl (32.2)
— ey pfi — 2y pea +2y 7 + dyerer — 2y eapf
1.2 a2
+ypaer +yeipfl —iut

(iii) wy= Ay f—yu” —yp*f—ou"f+yper—iyper+ dper,
for which additonally

_ ® ® ® ] _ ® ®
_atlap—e)st L, (@S teal ) (-8)st -~

li't
er— uff py (st +1%)

0.

REMARK 322 The sufficient conditions for the existence of unique interior equilibrium point are as
follows:

) 2(u(aa+ erf)) +erer+au®f) > pi@® + 47 + 2p(erf + era) + €] + &5,
(i) iy = 4,
(i) ez + dpf < wil + f).
33 Boundedness of the soluwtions

Let us first recall (without proof) the following lemma due o Barbalat (1959).

(118
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LEMMA 33.1 Let g be a real-valued differential function defined on some half line [a, +00), a €
{—oo, +oo). (i) im; o g(t) = a, |a| < +oo, and (i) g'(1) is uniformly continuous fort = a, then
|iiTI;_; 400 glff} == {}.

We shall prove the following key lemma.
LEmma 3.3.2 Assume that the iminal conditon of (2.3) satsfies 5 + fp = 1. Then, either (1) 5(r) +
f(r) = 1 forall = 0and therefore ast — oo, (S(), F(r), P — Ey = (1, 0,0 or (o) thene exists

atp = Osuch that S() 4+ F{t) < 1 forall f = ¢ Finally, if 554+ & < 1, then §{t) + F{r) < 1 for all
=0

Proaf. See Appendix A. O
LEMMA 3.33 Assuming e; < | and ez < p, there s an M = (0 such that for any positive solution

(S, d (), Pie)) of System (2.3), P(r) = M for all large ¢, where

T | —

Pmof. See Appendix A, O
THEOREM 3.3.1 The set £2 15 a global attractor in Rfj__r and, of course, it is positively invariant, where
Q=((5,1,PeR;, :S+1<1,P<M).

Pmof. Sec Appendix A, O

4. Local stability analysis and persistence

THEOREM 4.1 If the axial equilibrium is stable, then the discase-free equilibnom E; and the planar
equilibrium E3 do not exist, while the existence of Ez or E3 ensures the instability of Ep. The disease-
free equilibrium E3 is stable provided 4 — y +yp — 4 = Oand ey + pa < ale; — pa). The planar
equilibrium E3 isstable if § = 0, ie. (—a+ )F +(la + f—a— 2806 — i+ pi2 — i = 0.
FPmof. The variational matnx J of System (2.3) around any arbitrary point (5, I, P) s given by

2§ — 3 — HEAE it g BSF is? =5

l+asefn® ~ (34017 (xas=fir (511 TTas i1
i ariP ist 7 Pll4af) y i
J(§5, I, P)= (507 ks (l+af+iht T [Ir+a.‘i+_.f1'f]3 = T la
L Plej 4y i —aes 1) Pl—es—eal4 e 5) legS4eaf) J
(454007 [1+a5+00)" rasapl — #H
{4.1)
Al the axial equilibrium E,, we have
; ~1
JLO0 =] 0 A—d 0 . (4.2}
&
0 0 Ta —H
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Since J(1, {} 07 15 a upper triangular mdLﬁx,itﬁLiganaluusum =1, A—dand |£T].r_-“ Accordingly,
Eyisstableif == < g and 4 < §, andis saddle if ;== = g or 4 = 4. Thus, the existence of the disease-
free Lqmllbnum E: or the planar equilibrium E3 Ln'-..uru-.. the instability of £ and vice versa.

Consider now the disease-free equilibrium Bz, We have

[ ety tpaepain  atf) et H(—flegde;—de a)ptiel ot L

el —pa) ey leg—nee) T
J{j‘ﬂ 0, P’} i 0 [ratr—datdalpdde—dey—re ] % (4.3)
e —
i i — ey —p ey — e —gil
£l HE—H ) — i 0 4

The charactenstic equation of (4.3} i given by
[—le) — palx + ey — pa)d —y +yu —d)|[—ei e — ,urx}.-.'l
- ,u{,urx: 4+ pa ey —ep)r —puley — pa)le) —pu — pa)] =100 (4.4)

We know that Ez exists if ) = g{a + 1). Henee, (4.4) will have roots with negative real parts if
A—y+yu—93<0ande) + pa < ale] — pa).
Finally, at the planar equilibriom E;, we have

(—l+2i—206  (—1+i— 2 z
" i 7 dé "
= (i—id® (i—d)d o = 3
J(§,1,0) G- — = (4 — 8) : (4.5)
0 0 —(de) + e2l —de)d—
where
(1—4+d)

d=

(—a +fd +(la+fi—a—2006— A+ g2 —pi°
The charactenstic equation of (4.5) is given by
[x + dde; + dea(d — &) + p[dix? +d(1 + 6= Dx+ (A =81+ —4)] = 0. (4.6)

Assuming & = 0, we see from (4.6) thal whenever Ez exists, it is locally, asymptotically stable,
Hence the theorem.

For the positive steady state E* = (5%, 7%, P*), it is not an easy task o find the explicit criteda for
the local stability of the interior equilibrium points in terms of the system parameters. The application
of the Routh—-Hurwitz eriteria gives rise o a complicated mathematical expression, and as such we do
not find its biological meaning. Before proceeding to numerical experiments of the system around E*|
we would like to stwdy the persistence of System (2.3). Biologically, persistence means the survival of
all populations for all future time. To examine the persistence of the model systems under consideration,
we shall use the method of “average Lyapunoy function” (see Gard & Hallam, 1979; Hofbawer, 1981).
This method was first applied by Hutson & Vickers (1983) on ecological problems. O
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THEOREM 4.2 System (2.3) is persistent if

(i)

(er —ua)l —yer —8)+e1yu >0,
(1)
(148 — iMdey +ea(i — ) > p(—f2+ (2 —aVd+ 1+ i+ (a — F)F + (a — Hid) > 0.
FProof. We consider the average Lyapunovy function of the form
V(S,1, P)=S8"I"p",

where each o (7 = 1,2, 3) 15 assumed o be positive. In the interior of R,;‘}'__r, wi have

V
S. 1L Py=—
i 1 >

— ] S - Tiras+p1 5+1
18 y P e1§+ eal
= s il s e WS 47
+“1[5+f 1+as + g1 ]+ﬂ3[1+rx.‘;+ﬁf F] B

We have already proved that the solutions are bounded in the region £ (see Section 3.3) and the
trivial equilibrium is a repeller under certain conditions (see Appendix B). To establish the persistence
of the solution, we have o show that (S, I, P) = Oat the equilibria £y, E3, Ez & Ré__;_, forany a; = 0
i=1,2,3).

For E|. we have

wi(S, 1, P) =

<| =

=a|{ﬁ.—ﬁ}+a3( —,u). (4.8)

!.E] ].+vI'I

Thus, w5, I, P) = 0 whenever E> and E5 exist.
For E3, we have

v el —pa—p—ei+epate
s pey] s (ocre-r-qramtas
V g,

€] — ja

+ﬂ1(if|—..i.lem—;aflz+yf|,t.r{rx+1}—ﬁe|+:3,urx)_ (4.9)
e — pa

Thus, pi(S, I, Py = 0ife) —pa — u —fll +ejpatep = Oand de) — A pa — ;u;l" + reppia+
1) — dey + dpa = 0. Since e; < 1 (condition for the boundedness of the solution of System (2.3), see
Lemma 3.3.3), e — o — 0 — f?‘ + eppa +epp = 0. Thus, if Condition (i) of Theorem 4.2 holds, then
w28, I, P) = 0.
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For Ez, we have

l;.'.r}_.{.‘;.f,P}:; ! :rx_;( U+9 -2l eals = d)) F)
Ey

A4 (2 —a¥+1+ Pt @R +@-/s

(4. 101
Thus, wa(S, I, P) = 01 Condition (i) of Theorem 4.2 holds.
This completes the proof. O

5. Numerical resulis

e o the complexity of the model system, the only choice for investigating the long-term behaviour of
System (2.3) is numerical integration. In our numercal study, we shall confine our analysis 1o System
(2.2). We have performed our numerical simulations with the help of MATLAB (version 6.5) software.
First, we shall study System (2.2) and compare the results with that of System (2.1). Then, for the better
understanding of discase ransmission dynamics, we have used LHS echnigques.

The main objective of the present analysis o follow is W investigate the role of the disease rans-
mission 10 maintain the stability of an eco-cpidemiological system. This is a very important problem
from the current research point of view as the gquestion “how should disease transmission be modelled”
remains unsolved (MeCallum er af., 2000). Several laboratory studies have been performed to find an
appropriate solution of this question, some of which have been addressed in the mtrodoction. Our second
concem is on the occurrence of chaotic behaviour in such a system and the role of disease ransmission
in such occurmences.

It should be noted here that the two models, Systems (2.1) and (2.2), differ only in the functional
response associated with the parameter o So, it is very reasonable o compare the stability of the two
systems around their inlenor steady states by varying the key parameter ¢ and keeping all the other
parameters fixed at some desired feasible levels. The model system (2.1) was proposed and analysed
by Chatterjee et al. (2006). Accordingly, we begin our numencal analysis with the set of hypothet-
ical parameter values (see Table 1) previously vsed by Chattejee er all (2006) to represent an eco-
epidemiological system where the discase factors influence the predator—prey system dynamics.

Chatterjee er al. (2006) observed in their paper that for ¢ = 00845, Systermn (2.1) enters into a chaotic
region. But here we observe that for the same parameter values, System (2.2) 15 stable around the positive
steady state (see Fig. 1),

Now, if we decrease the value of ¢ from 00845 to 0048, retaining the other parmmeter values same, we
observe that the dynamical behaviour of System (2.2) changes from a stable focus o a strange attraclor
{see Fig. 2). Figure 2 is obtained by letting the system run for 200000 time steps and examining for the
last 16,000 time steps to eliminate transient behaviour (see Hastings & Powell, 1991 ),

Our next task 1s o observe whether the strange attractor s a chaotic attractor or not. We begin the
study by examining plots of each species of System (2.2) against time for ¢ = (L4858, Dynamics that have
tregular behaviour, suggestive of chaos (see Hastings & Powell, 1991), are illustrated in Fig. 3. 1t is
clear that the solutions are bounded but not periodic (see Fig. 3) and there 1s no observable regulanty in
the time evolution for individual species, ¢.g. a varying number of secondary maxima between primary
maxima for species 5 and i. The solution plots reveal wandering solutions of an irregulardy oscillating
type without any uniform pattern. These type of solutions are said to display chaotic behaviour (Jordon &
Smith, 1999).

Moreover, we know that there are quite a good number of available sophisticated mathematical tools
to analyse the dynamical behaviour of autonomous systems, in order o conclude the actual nature of
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TaBLE 1 Default parameter values taken from the paper of Chatterjee et al. (2006), which is treated
ax the fixed set of parameter values in owr numerical section

Purameters/variable De finition Default values Unit

r Intrinsic growth mte 1 day !

k Carrying capacily 1 individuals ha~!

iy Predation rate on s 1 ha per individual day !
az Predation rate on § 0.344 ha per individual duy_l
L0 Positive constant 40055 ha per individual

b Positive constant 8.0 ha per individual

F Dezath rate of p 002 day~!

e Death rate of { 0.051 day ™!

d| Conversion rate 021 —

P Conversion rate 067742 —

(0 Initial value of & (0494 individuals ha™!

i Initial value of § 0091 individuals ha=!

i) Initial value of p 005 individuals ha~!

-

(3] [b]: %2
4.

1 e
z et - e -
E! g = i __,_,-__—;-;f
TS - [ =l e
] E T
B 2 T
B @ i
H H b ATt
9 k] o
b E a
o I =
E
0g L =
i
1 BEE P
[ L ‘-H"'\-\.ﬁ .-r"-;-- 0
] 0 e IR
i T et S
Ifersie prap popustzns L2000 Infzectinz pey poctlatonz 013 om

Suzzzghblz aze ccpulstars Sazceplibe prep popu stcns:

FiG. 1. The figun: depicts the dynamics of (a) the system (2.1 ) with mass action incidence; and (h) the system (2.2 ) with standard
incidence for e = (.845.

it. Here, we find Lyapunoy exponents (see Sprott, 2003) 1o show that the dynamics shown by System
(2.2)forc = 0.48 15 actwally chaotie. A fundamental property of chaotic dynamics 1s sensitivity 1o small
changes in initial conditions. Lyapunoy exponents quantify this divergence by measunng the mean rale
of exponential divergence of neighbouring rajectones. If the largest Lyapunoy exponent of a tmjectory
15 negative, then it s stable, while a rajectory with the largest Lyapunov exponent as zemo 15 periodic,
but if the largest Lyapunoy exponent is positive then it is chaotic.

All the Lyapunoy exponents corresponding to the strange attractor seen in Fig. 2 are depicted in
Fig. 4, and it 15 clear that the largest Lyapunov exponent is positive (4 = 001221, mking 4| = 42 = A1)
and other two Lyapunov exponents are zero (A2 = 0.0) and negative (47 = —0.195), respectively.
Consequently, the strange attractor is chaotic.

Now, we shall check for the sensitive dependence of the future dynamics on the current state, the final
signature of chaos, where a small change in initial conditions may lead o different dynamical behaviour.
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F1G. 2. The figure depicts the dynamics of System (2.2) {stundard incidence ) for ¢ =048,

We have illustrated this behaviour by comparing the rajectones generated by shightly different initial
conditions. We have changed the mmitial value of the predator population by 0.01 (from 0,05 1o 0.06),
keeping the mitial values of the susceptible and infected prey population fixed, and observed that the
teor initial conditions lead to dynamics that are essentially uncormrelated (although, of course, restneted
to the attrmactor). ILwas seen that as tme progresses, the system would be indeterminate (see Fig. 5).
Thus, even a shight perturbation in species numbers, as would occur naturally, may lead o unpredictable
results through time.

So, we observe that when ¢ = 0,48, System (2.2) enters into a chaotic region. It is known that de-
terministic predator—prey models with strong penodic foreing have a complicated bifurcation diagram
which includes limit cyeles, the period-doubling route to chaos and the gquasi-periodic route © chaos
(Rinaldi et al., 1993; Gragnanm & Rinaldi, 1995). To understand the moute to chaos, a systematic mvest-
gation of the dynamics was done by constructing a bifurcation diagram. Here, also we have un System
(2.2} for 200000 tme steps and examined the last 16,000 time steps to eliminate tansient behaviour.
Then, we have plotted the successive maxima and minima of all the species with ¢ as a function of the
control parameter and other parameters are kept fixed at the kevel given in Table 1 (see Fig. 6).

One objective of studying chaos is to find the reasons behind the occurrence of such dynamics and
hence to find a probable solution to control such dynamics. We observe from the bifurcation diagram
(Fig. &) that if the force of infection ¢ 1 inereased from 0L48 o 0.75, the dynamics of System (2.2
gradually changes from chaos to a stable focus. Thus, to keep System (2.2) stable around the positive
steady state or o prevent the system from chaos, we shall have o keep the foree of infection above
certain threshold value ¢, = 0175,

We shall now try to find the role of simple mass incidence i the occurrence of chaos in an eco-
epidemiological system and compare it with the standard incidence.

We observe from the bifurcation diagram (Fig. 7 that w keep System (2.1) stable around the positive
steady state and to prevent the occumrence of chaos, we shall have to keep the foree of infection above a
certain threshold value o, = 2.8 which s roughly four times that of ¢, . S0, we may say that it 1s more
easy W keep System (2.2) stable around the positive steady state, than System (2.1).

The main result obtained by comparing the bifurcation diagrams (Figs 6 and 7) are presented in
Table 2.
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From Table 2, it s clear that the range of ¢ for which chaos occurs 15 much smaller for System
(2.2) in comparison o System (2.1). Thus, we may conclude that the oceurrence of chaos in the case of
the population following standard incidence rate as the mode of disease transmission 15 much less than
the population following simple mass action. Hence, we see that the phenomenon of non-occumence
or rarty of chaos in nature 15 well defined by the model where the mode of disease ransmission
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TABLE 2 Simulation experiments of model svstems (2.1) and (2.2) with other parameter
values fived at the level given in Table |

Dynamical behaviour Dynamical behaviour
of System (2.1) of System (2.2)

Range in which (where the mode of disease (where the mode of disease
the parmmeter transmission follows transmission follows
15 vaned simple mass action) standard incidence)
042 = ¢ = 0.47 Limit cyele Limit cycle
048 = ¢ = (.56 Limit cycle Chaos
057 =c <075 Limit cyele Limit eyele
0713 =c£125 Chaos Stable focus
125 = =27 Limit cycle Stable focus
o= 27 Stable focus Stable focus

follows standard incidence rate. Moreover, the system with mass action incidence as the mode of
disease transmission s more stable around the interior steady state than the system with standard in-
cidence.

We have reached such a conclusion by varying the parameter ¢ only, holding the other parameter
values fixed at the level given in Tablke 1. Naturally, a gquestion anses whether the same result holds
when the parameters are not fixed but are chosen randomly from a joint probability distribution. 5o
a possible extension, as a more sophisticated and powerful support of the above mesults, 15 oblaned
by assuming that a set of parameter values 15 a random sample from the joint probability distribo-
tion of the whole parameter space. We assume a Gaussian distobution of the pammeters. The logic
behind this assumption s very simple and realistic. First, we have fised some arbitrary parameters un-
der which both the processess are stable and these values are taken to be the mean of the Gaussian
distribution. Now, we can set the mnge of the variance in such a way that most of the random sam-
ples will fall in the positive plane. In other words, most of the 3¢ limits of the Gawssian distribu-
tion of the parameters will lie in the positive plane and as a result, most of the random sample will
full in the positive plane with high probability. It is illustmted through Fig. 8 where almost all the
histograms are defined in the positive x-plane. So, although the Gavssian distnibution is defined in
whole real line, it 15 not unrealistic o assume the underdying distnbution of the model parameters o be
Craussian,

To draw the mndom sample, we adopt the most commonly and frequently used method of uncer-
tainty and sensitivity analysis of parameters populady known as LHS.

5.1  Latin hypercube sampling

LHS, a stratified random procedure, provides an efficient way of sampling variables from their distribu-
tions (Iman & Conover, 19800, The LHS involves sampling ny values from the prescribed distribution
of each of k variables X, X2, ..., X, The cumulative distribution for each vanable is divided into
equipmbable intervals. A valoe 15 selected randomly from each interval. The N values obtained for each
vanable are pared randomly with the other vanables. Unlike simple random sampling, this method en-
sures a full coverage of the range of cach variable by maximally stratifying each marginal distnbution. In
our case, we have (X, X2, ..., Xp)=le,rk,ay,az, by, b2, e, fody, d2), e, the number of varables
k=11 and the number of random samples drawn N = 10, (00,
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The algonthm vsed here to find which mewdence function tends to yield greater stability using LHS

can be summarized as follows:

(1) Give the mean value of cach pammeter and its standard deviation. In our case, we observe
from Table 1 that both the systems are stable around the positive steady state for ¢ = 3 with
other parameters the same as i the text. So, we have considered these parameter values as the
mean values of the parameters. We have taken the standard deviation o be (001 because this
15 the maximum standard deviation for which all the parameters fall in the posiive egion (see
Fig. ).

(2) Then, LHS is used to draw a random sample. The LHS involves the following steps:

(1) Divide the cumulative distribution of each variable into N equiprobable intervals.

(b) From each interval, selecting a value mndomly, for the ith interval, the sampled cumula-
tive probability can be written as (Wyss & Jorgensen, 1998) Proby = (1/Nyry+i{i —1)/ N,
where ry 15 8 normally distmibuted random number. #, 15 an uniformly distributed random
number ranging from O 1o 1.

(¢} Transform the probability values sampled into the value x using the inverse of the distnbu-
tion function F~', where F is the cumulative density function of the nommal distribution:

x = F~Y{Prwb).
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(d) The N values obtained for each variable x are paired mndomly {equally likely combina-
tions ) with the & values of the other vanables,

(3) Using Steps (1) and (2), we have drawn 10,000 random samples (ecach of which s actually a set
of all the parameter values) from the 1 1-dimensional parameter space. Then, we have collected
those mandom samples noset *5° for which all the parameter values are positive.

(4) Then, we have used the rejection technigue. Within the mndom samples collected in the set *57,
those sample values for which System (2,13 is stable are collected in set *A7 and others are re-
Jected. Finally, the probability of a sample parameter value falling in a region of parmeter space
where System (2.1) 15 stable around the positive steady state, P{A), was obtained by

niA)
n(s)’

Pid) =
where n(A) 15 the number of elements in set *A” and 7(5) 1$ the number of elements in set *S7.
Similarly, a probability P{8) is also obtained for System (2.2) from

ni{B)

Pe= e

where r{ B) 15 the number of elements in set *B7.
We subtract these two probabilities to obtain a probability difference.

(5) Repeat Steps (3) and (4) for 1000 times. Find the average of all these probability differences. We
observe that the mean of (P{B) — P(A)) = 0 (see Fig. 9).

We observe that when the parameters are random, then also the system followng standard incidence

15 more stable than mass acton incidence in probabilistic sense. We obtain the above result by setting the
standard deviation at 0001, In the second stage, we slowly increase the standard deviation up to 0.1 and
0.5 1 v ! !
0.45 1
[F 1

035 - 1

oas| -
0.2
o1s | 1

[ERN o 4

average of the probability differances (P{B)-FP{A})

0.05 1

a 0.02 0.04 0.0E 0.08 01
Standard deviation

F1G. 9. Figure depicting the relation between the probahility difference between the two systems and the standard devi ati on.
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observe that the probability of System (2.1) to be stable s stll more than System (2.2). But obviously,
the probability differences decrease when the standard deviation increases.

6. Conclusion

In this paper, we have modified the model proposed by Chatterjee er all (2006). The main objective of
this paper 1 to compare the different modes of disease ransmission giving special emphasis to chaotic
dynamics. The mode of ransmission 1$ crucially important for two reasons. Fist it determines the
probable response of the disease to control. Second, the objective in many models of eco-epidemiology
is 1o predict what will happen when the infection is introduced into a system in which it does not
currently exist. So. i we know the threshold for disease (e, the minimum population size or population
density of susceptible hosts necessary For the disease o increase), there 15 a possibility o control the
disease (MeCallum er al, 2001 ). Another important aspect of a dynamical system is the ocourrence of
the chaos. It 1s already known to us that though chaos 15 rare, 1L may occur in nature for some realistic
parameter values (Hastings & Powell, 1991). In the present study, we have also tned to find a relatwon
between the occurence of the chaos and the mode of disease transmission.

We have first shown the boundedness of the solution and worked oot analytically the conditions
for the local stability entena of different equilibrivm points and the conditions for the persistence of
both the prey and the predator species. Since the structure of the model presented here 15 a complex
one, our main results are based on the numerical simulations. Moreover, numencal simulations help us
to find the long-term behaviour of the system. With the help of numencal integration, we have shown
different dynamical behaviour exhibited by the considered model, e.go stable population distribution,
limit eycle, quasi-periodic oscillation and chaotic behaviour. To confinm the presence of the chaos, we
have caleulated the Lyapunov exponent of the system and the largest Lyapunov exponent is found to be
positive. [t is seen during the chaotic behaviour that though for a short period of time the behaviour may
be faidy regular, over a long penod of tme the rregulanties oceur in the behaviour of the system, and
the sensitivity o the nitial condition and unpredictability becomes more visible.

We observe that if the system follows standard incidence as the mode of disease transmission, then
the chance for the occurrence of chaos decreases and it becomes easier to make that system stable around
the positive steady state. These observations were obtained by varying the parameter ¢ and holding the
other parameter values fixed. Finally, using the method of LHS, we have shown that the system with
standard incidence yields more stability even when all the parameters are varied mndomly. Explonng
the entire parameter space, we have observed that the stability region increases in the case of standard
incidence.

Finally, our observations may be summarteed as follows:

(4) The phenomenon of non-occurrence or ranty of chaos in nature is well defined by the model
where the mode of disease transmission follows standard incidence rate.

(b} The stability region s larger in the case of standard incidence than the simple mass action.
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Appendix A

Proaf of Lemma 332, We consider first S(#)+ 1{t) = 1 forall t = 0. From the first two equations of
(2.3), we get

(S+y0)P

St b Al TR § A.l
| +aS+ i @b

d
— SO+ =51-5-1 —
dr
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Hence, for all 1 2= 0, we have that ‘“”] 4 S d”” = (. Let
lim S{t)+ f(t) =n. (A2)
f— 00

If i = 1, then by the Barbalat lemma, we have

0= II_|}n;|C %{S{f} + 1)) = I|_|}|:1;‘|C [.T{f}{l — Sty =1t - W)+ p M1 B o ﬁf{f}]

1 +aS(t)+ A1)
E IE}F_J;G[SU}U — §(t) — 1)) —d1(1)]
= IEEG[HF}U —n)=di(1)]
= —min{{y— 1), d} lim (S{r)+ T{t))
f—oa
=—min{{y— 1), d} =0
This contradiction shows that 5 = 1, e,
him (S{t)+ Tt =1. (A3
Let us denote git) = S(r) + (1) for ¢ & [0, oo). Of course, git) is differentiable and g'(1) is uniformly

continuous for + € (0, +o0). Thus, with (A3) all the assumptions of the Barbalat lemma hold troe and,
therefore,

:[E];Ic j—r{.'i'{r} + =0 (A4)

Since from the first two equations of (2.3)

_S() — Hyy = By T)PE)
_.mr}+f{r}}_€{r}{1 S0 =~ 10) = T~ O, (AS)

then (A3) implies that

lim %{5{:} + I = lim [5{:1{1 — S0 — 1)) — LW L 2 TP ) —ﬁf{f}]

14+ aS(t)+ f1(1)

(AG)

I—*20

(S0 + p I Pr)
[ L +as(n)+ A1) +‘”'[”]

Hence, (A4) and (A.6) are in agreement if and only if limy o 7{t) = 0and lim;_,~ P{t) = 0, which
jointly from (A 3) implies that limy_, o 5{t) = 1. This completes the case (i)

Suppose that assumption (1) 15 violated. Then, there exists & = 0 at which for the first time S () +
Fitg) = 1. According to {A5), we have

Ed-;{f'?{ri + I(1)) o [“—-"{f:]}l + y Fto)) P(t0)

af < ()
L+ a8in)+ 1) i Uﬂ}]

1=ly

This implies that once a solution with § 4 1 has entered into the interval (0, 1), then it remains bounded
there forall + = fp.de. S0+ Fi8) = 1 lorall ¢ = .
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Finally, if S{r) 4+ (i) < 1, then applying the previous argument it follows that S(r) + J{1) =
for all ¢+ = 0, e (1) holds |.1'IJL. This completes the proof.
FProof of Lemma 3.3.3. Lemma 3.3.2 implies that for any {S(ig), 1), Prg)) such that () 4+ T =
1, cither a time &y = 0 exists for which S(t) + 7{t) = 1 forall + = fp or im0 S(H) = % and
limy ne () =10 FIJI'LhLFn'I{}l'L, if S{rg) 4+ Trg) < 1, then S(e)+ I{r) < 1 forall ¢ = 0. Hence, in any
case i non-negative time, say 1%, exists such that 7(r) = 1, 8i1) = 1 forallr = ¢*

Set W =58y + 1)+ Pir).

Calculating the derivative of W oalong the solution of System (2.3), we find for ¢ = 1%,

(S(t) —erS(1) + 7 1(1) — ea (1)) P(1)

W =58(r)(1 — 8(t)— I()) — T+ S0 1 A1)

—di(t) —uP(t)

< 8(N1 =8I {t) — uP(1) (rer < lez<y)
= 1—min{ L, d, g {8+ () + Pir))
=1—EW,

where & = min{l, d, u}.
Thus, there exists a positive constant M such that Wiy = M for all large ¢. The asserion of Lemma
332 pow follows and the proof is L{JmpILlud.

Let £ be the following subset of R:] £k

Q ={(5,1,P)eR} .:S+1<1,P< M| (AT)

FProof of Theorem 3.3.1. Due w0 Lemmas 3.3.2 and 3.3.3, for all mitial conditions m R'}L_;] such that
(Sitn), Tm), Plg)) does not belong to €2, either there exists a positive time, say T, T = max{r, t*},
such that the corresponding solution (S(r), F(r), Pit) eint £ forallr = T orthe comesponding solution
is such that (S(r), I(r), P(1)) — Ej(1,0,0)as ¢+ — +oo. But, E| & 80 Hence, the global attractivity
of £2in R:] . has been proved.
Agsume now that (S(r), f), Plg)) € int 2. Then, Lemma 3.3.2 implies that S(e) 4+ (1) <

for all + = 0 and also by Lemma 3.3.3, we know that P(r) < M for all large ¢, Let us remark [h.il |I'
(&), ), Plto)) & 082, because S(to)+1 (1) = 1or Pitg) = M orboth, then stll the corresponding
solutions (5(r), T(r), P{1)) must immediately enter int £ or coincide with E;.

Appendix B. Behaviours of the system around Ey (0, 0, ()

Al the mvial equilibium pomt Ey, the Jacobian matrix (4.1) 15 not defined. We have analysed the
stability of the system armound the trivial steady state following the technigue used by Arino er all (2004,
Let us now for a moment consider in a general context, i.e. to say we consider a system in R“"

X
T H(X({t)) + (X (1), (B.1)

in which H is C'-outside the origin and is continuous and homogenous of degree 1.

HizX)=sH(X)
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foralls =20, X e R"\",und isa C'-function such that

X)) =0(X)

in the vicinity of the origin. Throughout the section, ||| denotes the Euclidian normon B and (-,

associated inner product. In the case of our model, N = 3,
X=lx1.x2,x3)=(51, P),
H(X)= (H|(X), H:(X), Hi(X)),
Q(X)=(Q1(X), @2(X), Qz(X)).
The function H; and O (i = 1,2, 3) are given by

AST
S+

HiX)=5—

iS1
PR e B

S4+1T
Hy(X)=—puP,
Q””=‘?:§§qa~
Qﬂﬁ=—rﬁ%%E?
0s(X) = (e1 5+ exI) P

l+aS+ 41"

-) the

Let X (1) be a solution of System (B.1). Assume that liminf; —, | X(r)]| = 0 and X is bounded.
One can extract from the family (X (r +-) )y 2o sequences X, +-), 8, — oo, such that X, +-) — 0

locally uniformly on s & R. Define

X(ty +5)
A PR T
Fecall that
Q(X) =o(X)

in the vicinity of the ongin. We can then write 0 as
Q(X) = (IX1)o(1).
We have

dXt, + )

R = H(X(ty + 5)) + Q(X {1ty + 5)).

(B.2)

(B.3)

B.4)
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From (B.2), we have
1
Xty +35)= ,\‘nfd-'}'lIIX{nr + 5} = yuls)- (X {ty + 5D, Xty +5))2. (B.5)
Now, using the derivative of (X {r, + ), X{1, + &)} with respect to s

d ( dX (1, +~'"}>
—{{ Xty +5), Xty + 50 =2{X{ty +5), ———
dx dx

in (B.3), we obtain

dX(ty +5)  dyals) . yuls)
At = X+ )+ e D

Therefore, we have

(X{fn +s1),

dX{t, + 5)
ds '

dv,is
H(X(ty + 5)) + Q(X(ty +5)) = — f”uxm +3)]
) n 450, HX (O + 5) + QX (tn +5))).
1X(n +5)]

MNow, dividing by || X (#, 4 5} and replacing "‘YUL’] by vy (s). we oblain

A el
dy,(s)

Paai Hiyn(s)) — {yuls), H{yu (5))vu(s) + 1 X {tx + 5)] [ X1y + 5))

| X (tx + )|

1
— { wuls), m Q{X{ﬁr =+ ‘-}}) ¥n f‘-}] s

which is equivalent to
dyy,

== [H(yels)) — (nls), H{p (D3 (] + 1 X (e + 31O (we(5)) — (3 (5, Qlyn (5130 ()]

Clearly, v, is bounded, v, (s)| = | for any 5 and ‘:% = 1 & bounded wo. So, applying the
Ascoli-Arzela theorem (see, e.g. Breeis, 1983), one can extract from v, asubsequence—also denoted by
vye—which converges locally, uniformly on R towards some function v such that || X ()| [ Qv (s))—
(vels), QUynls) ) vuls) ], —ne — O and y satisfies the following system:

d 4
dr—-‘ = H(y(1)) — (y(1), HGOD¥(), y@)) =1, vr. (B.6)

Equation (B.6) is defined for all 1 € R.

Let us, for 8 moment, focus on the study of (B.6). The steady states of H are vectors V osatisfying
H{V) =(V, H{V)V.
This is the so-called non-linear eigenvaloe. Note that the equation can be alternatively writlen as
H{V) =gV,
with | V|| = 1: it then holds that ¢ = (V, H({V)).
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These stationary solutions correspond o fixed direction that the tmjectories of (B.6) may reach
asymptotcally:

[ — o) + (p— 14 Dualp, =0, B.7)
[igp — 4+ oy + {p +dIoalos =0, (B.8)
[{gh + phozjus =10 (B.9)

Now, we are in a position to discuss in detail the possibility of reaching the origin following fixed
direction.
Case I.vp =0

{a) vp =0and vy 7= 0 In this case, there 15 4 possibility of reaching the origin following the P-axis

with g = —pu.
(b} w2 # Oand vy = (1. In this case also, there 15 a possibility of reaching zero following the F-axis
with ¢p = —d.

{c) vy % 0 and vz % 00 In this case, there is a possibility wo reach the origin either with ¢ = —d or
with ¢¢ = —u following the P 7-plane.

Case 2. m # 0.

fa) pp =10, 3 =0 In this case, we cannot reach the origin following the S-axis, e, o say that the
S-axis 15 not 4 fixed direction that the rajectones can follow o reach the zem.
(b 2 =0 and vz 3= 0. In this case, we have two possibilitics:
(1) with ¢¢ = —u, there i a possibility to reach the origing
(i) with ¢ = 1, there is no possibility of reaching the origin following the §P-plane.
() pr #10, vy = 0. In this case, there s no possibility of reaching the origin following the S7-plane.
(d) np£0, 0330

(i) With ¢» = —p, there is a possibility for going to the origin following a fixed direction that
15 contained in the positive oclant
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