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Chatteriee and Chattopadhyay! proposed snd analyzed s simple one sesson eco-
epidemiclogical model to understand the role of migratory birds in an eco-epidemiological
seenario. In this paper, we have modified their model taking into sccount standard inci-
dence as horizontal incidence. We havwe studied the proposed model both in the absence
and in the presence of environmental disturbances. From our analysis, we observe that
in the absence of the environmental Auctuations, the disesse spread by migratory birds
may be controlled by either decressing the contact rate, or incressing the recovery or
predation rates. Further, we also observe that if the artificial entrophication (or intensity
af white noise) is kept under a certain threshold value, the control procedure proposed
in the deterministic case is also valid in the presence of environmental disturbances.
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1. Introduction

Omne of the unsolved problems in today’s world i the emerging infections diseases
that are spread by the migratory birds. But unfortunately no real efforts have been
made so far by the researchers to study this. This problem needs special attention
as the migratory birds are mainly responsible for the introduction of a new disease
to a new place, and alo responsible for the re-introduction of a disease to a place
that was totally washed away from that place. For example, the 1962 epidemic of
Eastern equine encephalomyelitis (EEE) in Jamaica resulted from transport of the
virus by hirds from the continental United States? In another example, the West
Nile virus (WNV) is introduced to the Middle East by migrating white storks.®
It is observed that a predator becomes infected by predation of a prey infected hy
WNV A The sume problem arises in the case of Salmonella bacteria. It was observed
that some wild migrating birds are responsible for the spread of this bacteria® In

H1
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another example, the highly pathogenic avian influenza virus which is suspected to
he re-introduced into Japan by some wild migrating birds from South Korea®
Chatterjes and Chattopadhyay! proposed and analyzed a predator-prey model,
where the prey population migrates and carries disease from one place to another.
They divided the migratory prey population into two groups, namely the suscep-
tible and the infective prey. Since, most of the diseases that are spread by the
migratory birds, like Salmonella,”® are season dependent, so their model is a one-
season model. Their analytical and numerical results showed that the introduction
of a disease through migratory population destabilizes the otherwise stable system
around the co-existence steady state. They also observed that proper predation may
be used as a suitable control measure for preventing the extinction of the species.
Their findings are in accordance with some earlier experimental results.?: 1
But in their paper they have ignored the following two important points:

(1) First they assumed that the transmission of the disease follows simple mass
action incidence. It is seen that in the case of constant total population, if the
disease is not fatal and the model does not address vital dynamies (the normal
birth and death dynamics), then the infection term bey may be justified (since
IL_'_H is now a constant ). Then the meaning of b becomes the encounter infection
rate. But, for larpe populations like migratory birds, individual's finite and often
slow movements prevent it to make contact to a large number of individuals
in a unit time. Such a mechanism is better described by bﬁy than hry 19
As migratory birds always appear in a large population, so standard incidence
should be taken as horizontal incidence to get an appropriate and correct result.
The second point which & more vital and the main focus of the present paper

—
I
——

is the role of environmental fuctuation in such systems. The paper of Chat-
terjee and Chattopadhyay! rests on the assumption that the environmental
parameters involved with the model system are all constant irrespective of time
and environmental fluctuations. But, environmental fluctuation is an important
component of an ecosystem. Within deterministic environment we seek the con-
stant equilibrivm population and then investigate their stability which follows
from the dynamics of the interactions between and within the species. But,
most natural phenomena do not follow strictly deterministic laws; they oscil-
late randomly about some average value so that the deterministic equilibrinm
is no longer an absolutely fixed state!®:'" May'® pointed out the fact that
due to environmental fluctuation, the birth rates, carrying capacity, competi-
tion coefficients and other parameters nvolved with the model system exhibit
random fluctuation to a greater or lesser extent. Consequently the equilibrinm
population distribution Huctuates randomly around some averape values.

In this paper, we have modified their model taking into account the above-
mentioned factors and studied the modified model both in the absence and presence
of environmental Huctuation. Our analysis shows that the control method proposed
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by us in the absence of the environmental disturbances, are also walid in the pres-
ence of environmental stochasticity, provided the intensity of the environmental
fluctuation is under certain threshold value.

We have organized the paper as follows. In Sec. 2, we introduce the basic deter-
ministic model with some preliminary results. The stability of different equilibrinm
points is discussed in Sec. 3. In Sec. 4, we outline the stochastic analogne of the
deterministic model discussed in the above sections. The stochastic stability of the
interior equilibrium point is discussed in Sec. 5. The mimerical simulation & per-
formed for both the models and the results are given in Sec. 6. The paper ends with
a discussion.

2. The Deterministic Model

Chatterjee and Chattopadhyay! considered a predator-prey system, where the
predator population P is present in the system and the prey population N migrates
into the system. Before formulating the model equation, we would like to recall the
hasic assumptions made by Chatterjee and Chattopadhyay! on the predator and
the migratory prey populations present in the system:

{Al) They considered the growth rate of the migratory prey population as,

a e

where A is the constant rate of recruitment of the prey population (including new-
borns and migration) and d is the natural death rate of the prey population. In this
case the population approaches f as t goes to infinity.

(AZ) It was assumed that the infective prey population i & penerated through

infection of susceptible prey s, and also the infective prey population is not in a

state of reproduction. But as time passes, some of them recover from the disease and

become susceptible apain. So, the dynamics of the prey population was written as
s

T =A—bsi —ds + fi

% =bsi— (e+ [N,

where b is the force of infection, f & the recovery rate, and e is the death rate of
the infective prey population, which includes the natural death and the death duoe
to the disease. Obviowsly, e = d.

(A3) They assumed that in the absence of the migratory prey, there exists some
alternative resource for the prowth of the predator population. Depending on that
alternative resource, the predator population is assumed to grow in logistic fashion
with carrying capacity & > 0 and an intrinsic growth rate constant r > (. Hence,
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in the absence of the migratory prey, the growth equation of the predator & given
by

dp ( P
o AR £, )
P
They assumed that, in the presence of the migratory prey populations, the growth
rate of the predator population was poverned by both the alternative source and
the migratory prey population.

{ Ad) It was observed that in the case of WNV, Salmonella, the predator population
becomes infected after the predation of the infective prey. So, the predation of the
infected prey population was included in the predator’s growth equation with a

negative sign. Moreover it was also observed that the infection does not spread
among the predator population.’

{ A5) Further for mathematical simplicity, they assumed that the functional response
(prey eaten per predator per unit of time) and the mode of disease transmission
follow the simple law of mass action.

With the above assumptions, Chatterjee and Chattopadhyay® proposed the fol-
lowing system of differential equations:

i . )

d_': =A—bsi —kysp—ds+ fi

di

é:h,ﬂ—kgpﬂl—{e+ﬂi (1)
s =p (1= B) + k'sp — ko'pi

dt i ?

where s(t) is the density of susceptible prey population, i(#) is the density infective
prey population, and p(f) & the density of their predator population at any time §.
Moreover, s{(0) = 0, 4(0) =0, p(0) = 0.

In system (1), &y and ks are the searching efficiency constants or the predation
rate on the susceptible and infective prey population, respectively. k" and ks are
the prowth rates of the predator due to predation of the susceptible and infective
prey population. Obviously, k; = k&', ks = ko' and ky < kot

We modify their model by taking standard incidence as the mode of disease
transmission. The modified model & as follows:

s hsi :

5= A- = R bysp —ds + fi

i hsi : ;

D = 2 kypi—(e+ 1) @)
5+

dp

L (1-B) + koo — ki
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2.1. Positive invariance
Let us put Eq. (2) in a vector form by setting

X = col(s, i, p) € R%. ()

Fi(X) |-A—wb*'—_'_i—k1.ip—ds+f?:-|
F(X)=|F(X)| = | 2 —lopi—(e+f)i
L‘P (1-2)+k'sp— ko'pa
where F: Cy — B*. Then Eq. (2) becomes
X = F(X), (5)

with X(0) = Xg € B, It & easy to check in Eq. (4) that whenever chowsing
X{0) € R, such that X; =0, then Fy(z) lx, =0z 0, (i = 1, 2, 3). Due to lemma, ¥
any solution of Eq. (5) with Xy € B, say X (#) = X(#: Xy), is such that X(#) €
R.,.s for all ¢ = (0.

2.2. FEguilibrium points and conditions for their erislience

The system (2] has the following equilibrivm points, the axal equilibrinm point

A
E,=|-=.0,0],
= (G 00)
the planar equilibrium point

" Ale+ ) Alb—e—f)
= (E{b—ﬁ'—fj+d{ﬁ'+f:|~E{b—ﬁ—fj+d{ﬁ+f:|1ﬂ) ’

k k'
g (”}M)
T
where
kkyk,'s2 +r{d+kk))5—rA=0

and the interior equilibrium point E* = (5*,i*, p*), where

ol e+ " —K)

i . ‘

o rlhap et £ —b)(k—p")
L :

where,

B =kikap®™ +(e+ ){k" + k") — kk2"b},
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and p* satisfies the relation

1y p*s + 1:}2;13*2 +unp” +wy =0, (6]

where

wn = kikar — rha?,

wa = (ky — ka) [r(e+ f) — kkar] + kar(b+d —€)

—Akky(ky' + ka') + (k2 — ko) k(e + f) + (e — kak)rb

+ (e —d)r(kk; — (e + f)),

wy = —Akle+ ik’ + k") + bk(Aky' —er) + (e — dirk(e + f).

sy

The axial equilibrium point E; = {%,{L 0) and the planar equilibrium point Ejz =
(E, 0, H't—k’rﬂ) exist for all parameter values, while the steady state Es exists if

b>e+f (1)

Remark 2.2.1. From the relation {7), we observe that if the contact rate is greater
then the death rate and the recovery rate of the infective prey population, then it
may lead to the extinction of the predator population.

We have a unique positive value of p* that satisfies the relation (6) if

by = b < ba, (8)
where,
En B E R il i b2
b, — akks & e+ ) (ks ;:H{f DR oy e e
where,
rie+ filk(ks — k) +d—e) + (e —dirkks — Akka(k," + k2"
I =
(kks — &)
L Ak(e+ )k + k") + rki{d — e+ f)
e T T R

E(Aks —er)

Additionally, for the existence of a unique positive equilibrivm point £¥, the param-
eter b must also satisfy the following condition,

(k1" + k") (kap® + e+ f)
ks’

b= = by. (o)
Remark 2.2.2. From relation (8) and (9], we observe that for the existence of a
unique positive equilibrinm point E*, the contact rate must lie within certain range
whose upper bound is be and the lower bound & the maximum between by and bg.
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2.3. Boundedness of the solutions

Let us first recall {without proof) the following lemma (2.3.1) due to Barbalat. 2"

Lemma 2.3.1. Let g be a real valued differential function defined on some half
line [a, +00), a € {—oo, +oa). If (i) Bme_ oo g{f) = o ja| < +o0o, and (i) g'(t) is
uniformly continwous fort = a, then lim, . g'(#) = 0.

Lemma 2.3.2. Assume that the initial condition of Eq. (2) satisfies sy + i = f.
Then either (1) =(t) + ) = f Jor all t = 0 and therefore as t — oo,
(s(t),i(f),p(t)) — E; = {ﬁ-u[}._{]:l or (ii): there exists aty > 0 such that s(t) +i(t) <
f} forall t = t;. Finally if sp+ip < f}, then s(t) + () < f} for allt = (0.

Proof. Using the Barbalat lemma pgiven in Lemma 2.3.1, one can prove the above
Lemma 2.3.2 and hence the proof & omitted. O

Lemma 2.3.3. There is a M = 0 such that for any positive solution (s(t) (), plf))
of the system (2], p{t) < M for all large £, where

k r(1 + d)?
M=-, k=A+——
& BT
Proof. See Appendix A O
Let € be the following subset of B :
: 3 -
1= {s,mp]sR;,__,_:.=+7.£E,p£fk:f : (107

Theorem 2.3.1. The set Q is a global attractor in R}, and, of course, it is
positively invariant.

Proof. Due to Lemmas 2.3.2 and 2.3.3 for all initial conditions in B3 ; such that
(s(ta), i ta), pltn)) does not belong to 0, either there exists a positive time, say T,
T = max{ty, t*}, such that the corresponding solution (s(t),#(t),p(f)) € int  for
all t > T, or the corresponding solution & such that (s(t),i(t), p(t)) — El{f},{h )
as f — +oo. But, E; € 0. Hence the global atiraction of ) in Rﬁ__'_ has been
proved. |

Assume now that (s(fy),i(tg). plta)) € int £2. Then Lemma 2.3.2 implies that
s(t)+ift) < f for all ¢ = 0 and also by Lemma 2.3.3 we know that p(t) < M for
all large £. Let us remark that if {s(tn), 4(80), p{fa)) £ 99, because s(ty) +i(fy) = ﬁ
or pity) = M or both, then still the corresponding solutions (s(£),4(#), p(t)) must
immediately enter Q or coincide with E;.
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3. Local Stability of Different Equilibrium Points

Theorem 3.1. The avial equilibrium El{g,l[}, 0) is a saddle point with s-azis as
stable manifold and ip-plane as an unstable manifold if b > e + f or p-azis as
an unstable manifold and si-plane as stable manifold if b < e + f. The planar
equilibrium Es is locally stable or unstable accordingly hl > or < 0 respectively,

wrhere

hl=(b—e— filre — k" A) + (e + f)lrd + k" A).

The planar equilibrivm Eg is locally stable or unstable accordingly

respectively.

Proof. The proof & obvious (using the variational matrix approach) and hence

omitted.

Theorem 3.2. The positive stendy state E*{s* 1%, p*) is locally asymptotically sta-

rh—kaklr +l'5) —vle+ fil= or <0,

ble if Fy, By, ), Gy all are greater than 1, where

where,

L+t ) +hikast

F =
1 ke kai®
; fhiks
By Jebi bk ka2
{klkﬂL + kl;.-r'+:"']ﬂ + |::.r-|!+ﬂ:-.-]ﬂ}
i LMs* + M2s* + s*2p" ky ks + 5% p*hy ks
Fi = - B
{L + [P j:r:::] } {f';.* + 1];_5x} + ,qxzj}*k]_kﬂ
ki 2L+ M)s*
Ga = —,
Fa( Mz + fho)i*
bi*? hs*q®
—— + Iyp* + d, d M=——
{R* +'i';¥:|2 2 1P T en {R* +'i';*:|2 +

Proof. See Appendix B.

The above discussion rests on the assumption that the environmental param-
eters involved with the model system are all constants rrespective of time and
environmental fluctuations. In the next section, we will consider the effect of envi-
ronmental fluctuation on the model system (2) and the stochastic stability of the

co-existing equilibrium point associated with the model system.
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4. The Stochastic Model

The study of the dynamical behavior of the migratory bird population under vari-
able environmental conditions i of great interest,?! specially since their mobility
depends on the environmental conditions.?? The relation between the environ-
ment and the population dynamics in the birds has been studied by various
researchers.?® 2% In the present article, we also like to observe the dynamics of
system (2] under the influence of stochastic perturbation.

There are two ways to develop the stochastic model corresponding to an existing
deterministic one to study the effect of the fluctnating environment. Firstly, one can
replace the environmental parameters involved with the deterministic model system
by some random parameters (e.g. the growth rate parameter “r” can be replaced
by o+ evit), where ry is the average growth rate, v(#) & the noise function and ¢ is
the intensity of fuctuation), secondly, one can add the randomly fuctuating driving
force directly to the deterministic growth equations of prey and predator popula-
tions without altering any particular parameter.”” A widely used way to incorporate
the effect of environmental fluctuation in a system is to add the stochastic pertur-
hation terms into the growth equation of the populations.®®* Thus we introduce
stochastic perturbation terms into the growth equations of both prey and predator
population to incorporate the effect of the randomly fluctuating environment. We
assume that stochastic perturbations of the state variables around their steady-
state values E* are of Gaussian white noise type which are proportional to the
distances of s, i, p from their steady-state values s*, i*, p*, respectively ** Gaussian
white noise is extremely wseful to model rapidly fluctuating phenomena. Specially
for terrestrial system, where the environmental variability is larpe at both short-
periods and lonp-term periods and could be expected to develop internal mecha-
nisms to the system which would cope with short-term wariability and minimize
the effects of long-term variations.3! Hence, analysis of the system with white noise
gives better results. So the deterministic model system (2) results in the following
stochastic model system

ds = Fi(s,i,p)dt + oy (s — s*)d€}
di = Fy(s,i,p)dt + aqli —i*)dE? (11)
dp = Fy(s.i,p)dt + o3(p — p*)de},

where oy, o2 and g3 are real constants and known as intensity of environmental

Auctuation, £ = £(t), i = 1,2,3 are standard Wiener processes independent from
each other,® and F,, F,, and F are given hy

; bsi .
Fi(syi,p) = A—- j:»; —kysp—ds+ fi
. bsi . s
Fi(s.i.p) = —— — kapi — (e + )i

Fals i pl =rp (l - %) +ky ’,gp - sz;m.
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In the rest of the work, we consider (11) as an Itd stochastic differential system of
the type

dX: - f{fw X:jdf +§{f1-¥::|d‘f:~ X:u — Xﬂ- {12]

where the solution (Xt > 0) is an [td process, “f" is a slowly varying continu-
ous component or drift coefficient, *g” is the rapidly varying continuons random
component or diffusion coefficient, and & is a three-dimensional stochastic process
having scalar Wiener process components with increments Ag) = £t 4+ AF) —£,(F)
are independent Gaussian random variables N{0, A#).

In the case of system (11),

Fils.i.p)
Xe=(s,i,p)7, & =(8.&.&)", f=|Fl(sip)
.F:‘;{-?..'?:,P:'
(13)
myls— 8" 0 0
q= ] Tali —i*) 1]
0 1] aslp—p*)

Since the diffusion matrix *¢" depends upon the solution of X, system (11) i said
to have multiplicative noke.

5. Stochastic Stability of Interior Equilibrium

The stochastic differential system (11) can be centered at its positive equilibrinm
point E*(s* 4% p*) by introducing the variables 1 = s— 5% ws = i—i*, ug = p—p*.
It looks to be a very difficult problem to derive asymptotic stability in mean square
sense by Lyapunov functions method working on the complete nonlinear Eqs. (11).
For simplicity of mathematical caleulations, we deal with the stochastic differential
equations obtained by linearizing the vector function " in (13) about the positive
equilibrivm point E*. The linearized version of (12) around E* & given by

dU(t) = F(U(t))dt + g(U(t))dE(E). (14)
where U(t) = col{uy(t), wy(£), us(t)) and
[ —apu — ajaus — ajgug
F{U(t)) = | azimn — anpup —asgug | .
| iy — Qgaliz — gzl

ity ] ]
g(U(t)) = 0 gausg g |,

] (] Tolis
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with
bix? bs*?
W= ey TR e =y as=het
Bi? hs®i® b
as = ————=, = e oan G = Ral,
A= WS e TR
rp*

P !
an =kip*, aGm=rk'p*, am= o

Note that, in (14) the positive equilibrium E* corresponds to the trivial solution
(11,12, u3) = (0,0,0). Let  be the set defined by 0 = [(t = #) xR # € R*]. Let
V € C*(0) he a differentiable function of time ¢ and twice differentiable function
of X. We define the following theorem due to Afanasév et al®*

Theorem 5.1. Suppose there exists a function V(U #) € C¥Q) satisfying the
inegualities

K U™ = V(U t) = Ka|UT™. (16)
LVt < —Kq|Ul*, K;>0, i=123 a=>0 (17)
Then the trivial solution of (14) is exponentially o-stable for all ime ¢ = (0.

Note that, if in (16), (17), & = 2, then the trivial solution of (14) is expo-
nentially mean square stable. Furthermore, the trivial solution of (14) is globally
asymptotically stable in probability.

For definitions of stability again we refer to Afanasév et al.®

Remark that, with reference to (14),

i L1 Vit u 8Vt u
LV(t,u) = ?V{‘;wf{f:'l + T {u{t) ?Igf} + %fpr [ET{H{\‘-IIII?- -:;{52:' g{u{fjj]

where

av dvooav av

avoav av PV (tu) >V
du ~ U\ uy Bug ) 0 i)y ns’

and 7" means transposition.
We can prove the following:

Theorem 5.2, Assume that for some positive real value ws and wy the following
ineguality holds true

bai* | ko'p*

hsti* — 2I¥+-¥22 ¥—|:|74'J"2,}(
[2bs™i" — @ (s™ 4+ 8" )7]|(2rp 5 — i

) (s*+i*)%k.  (19)
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Then if

2hi*? 2hs*i* 2rp*
2 ® 2 2
g e+ Ayp" + 2, oy ———— oy~
{S* .ix:l? 1 2 {S* .ix:lﬂ" A k

; (20)

T
=2 w gy awd - =
where, wo = Im—p_‘rf—';""—] { where, T%F = f) and wy = ?f?l:r_ the zero solutions
of system (11) exponentially 2-stable.

Proof. See Appendix C. O

Thus the nternal parameters of the model system and the intensities of envi-
ronmental fluctuation have the ability to maintain the stability of the stochastic
model system and exhibit a balanced dynamics at any future time within a bounded
domain of the parametric space. Here it is difficult to compare between the deter-
ministic system (2) and the stochastic system (11) in terms of the system param-
eters becanse the conditions obtained for the stability of the two systems are very
complicated. So, in order to compare these two systems we shall adopt the wse of
mumerical simulation.

6. Numerical Analysis

The following set of parameter values A = 10 individuals ha™! day~!, v = 0.01
day™!, k= 1 individuals ha=', k" = 0.6 x & ha per individual day ™, k" = 0.6 x ks
ha per individual day™!, d = 008 day™!, f = 0.7day ™, e = 016 day™ !, b= 1.7
day™!, k; = 0.03 ha per individual day™, and ks = 0.03 ha per individual day—!
are chosen for the pumerical experiments of the models described in (2) and (11).
For these walues, Eq. (6) has only one positive root, ie. p* = 19.41. Substituting
this value in the expressions of s* and %, we get E* = (12.45,2.22,19.41). The
eigenvalues associated with the characteristic Eq. (21) is given by —0.5247 £ 0.331 74,
and —0.0747. Thus, from our analytical result we can say that for the above set
of hypothetical parameter valies, system (2) possesses an unique positive steady
state E* which is locally asymptotically stable (see Fig. 1). We shall observe the
dynamical behavior of system (2) around this positive steady state E*

Presence of infection in an ecological system plays a vital role in determining
the dynamical behavior of the system. Anderson and May®! showed that invasion
of a resident predator-prey system by a new strain of parasites could cause desta-
hilization and exhibit limit cycle oscillation. Hadeler and Freedman® ohserved a
similar type of phenomenon. Beltrami and Carroll® observed the role of viral dis-
ease in recurrent phytoplankton blooms and showed that introduction of virus-
contaminated cells, even in very small numbers, has the effect of destabilization.
Another important parameter in our model system is the recovery rate f. Chatterjee
et al.*" already showed that by increasing the recovery rate f it i possible to control
the outbreak of the disease caused by migratory birds. So, we begin our analysis
with these two parameters, i.e. the contact rate b and the recovery rate f.
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Fig. 1. Solution of ODEs for the above hypothetical set of parameter values, showing that E* is
(locally ) asymptotically stable.

W shall discuss the role of band f in the stability of the system around the pos-
itive steady state with the help of the bifurcation diagram produced by XPPAUT.
It pives the values for variables (s, i, p) at different points on the bifurcation dia-
gram, so that one can identify the particular steady states by grabbing the points.
It also helps in identifying the position in the hifurcation diapram, where the sta-
bility switches from one steady state to the other (bifurcation point or BP) and
the possibility for the co-existence of the steady states (limit points or LP).** From
Fig. 2, we observe that the first bifurcation point (BP1) ocour at b = 1.567 (= by,
the second bifurcation point (BP2) ocour at b = 1.732 (= by,) and the LP occur
at b = 1893 (= ). At BP1 the stability switches from the steady state Eg to
the positive steady state E*. At BP2 the positive steady state E¥ and the steady
state Es are both stable. Finally, after crossing the LP the steady state Es is only
stahle steady state. Similarly Fig. 3 ako has two BPs and an LP. The LP is at
f =059 (= fi) and the first BP is at f = 0.684 (= fi1). From the LP to the
first BP (BP1), both the positive steady state and the steady state Es are stable.
At BP1. the stability switches from the steady state Es to the co-exitence steady
state £* Then at the second BP (BP2), which & at f =0.833 (= fi), the stability
switches from the positive steady state E* to the steady state Eg.

Thus, biologically we may conclude that if b is below by, or f is above fis then
the disease is washed away from the system. But if b is above Iy or f is below f;
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then there i a chance for the outbreak of the disease that leads to the extinetion of
the predator population. Thus, decrease in the value of b and incresse in the wloe
of f, prevents the outbreak of the disease and helps in the co-existence of all the
species.

We have already seen that rate of infection and the recovery rate play vital
roles in determining the dynamical behavior of our system (2). But, in an eco-
epidemiological system along with infection rate, predation rate also plays an impor-
tant role in controlling the dynamical behavior of the system.* % Packer et al.™
sugpested that predation actually helps to reduce the infection load in the prey
population. According to them, it may be possible to control infection among the
prey population by predation. They cited several experimental ohservations ako
in support of their claim, e.g. Sih et al? reviewed predator-removal experiments,
where they removed the predator population from the system and observed its
effect on the prey population that are infected by some transmissible disease. They
found 54 of 135 systems in which prey populations subsequently declined. The same
result was obtained by Hudson'" when they examined the interaction between red
grous, the parasite nematode, Trichostrongylus tenuis, and their predators. In the
above two experiments the author showed that the predator population actually
helps in the existence of the prey population that are infected by some transmis-
sible disease. So, next we shall study the role of the predation rate on both the
susceptible and the infective prey. Keeping all other parameters fixed, if the pre-
dation rate on both the susceptible and infective prey is slightly increased from
0.03 to (.04, it & observed that the system becomes disease free (see Fig. 4a). But,
the predation rate must be monitor carefully, otherwise excessive predation on the
infective population may result in the extinction of the predator population itself
(see Fig. 4h).

All the above results were obtained for the system (2), which is under con-
stant environment. Next we shall observe the dynamical behavior of the system
in the presence of the environmental disturbances. For the numerical simulation
of the stochastic differential Eq. (11) we use the EulerMaruyama (EM) and Mil-
stein methods with the help of MATLAB software, for the numerical scheme see
Carletti. 4!

For the stochastic version of the model system (2), we have obtained the condi-
tion for asymptotic stability of equilibrinm point E* in mean square sense by using
a suitable Lyapunov function (22). These conditions depend upon o, 72, o3 and
the parameters nvolved with the model system. Now substituting the above set of
parameter values, in the inequality (20) we get o < 1.19, g3 < 0.66 and o3 < 062,
Moreover, for the above set of parameter values one can see that relation (19) is ako
satisfied. With the above set of parameter values and taking the values of oy = 0.5,
gz = 0.2 and o3 = (.1, we observe that 90% or more of the population distribu-
tion will lie within a said neighborhood (see Fig. 5). Hence we conclude that for
the above set of parameter values, the system (11) is stochastically stable around
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equilibrivm point.

the positive steady state E*. For the definition of stochastic stability in terms of
probahilistic cloud, we refer to Bandyopadhyay and Chattopadhyay.*

Next, we have fived the values of the environmental fluctuations at o = (0.7,
a3 = 0.4 and 73 = 04, which & much below the respective threshold values. To
observe the behavior of the system under the variable environment, we wvary the
three key parameters, namely the contact rate. the recovery rate and the predation
rate.

We have already seen in the deterministic situation that for certain values of the
contact rate b and the recovery rate f there is an outhreak of the disease resulting
in the extinction of the predator population (see Figs. 2 and 3). But it is interesting
to observe that under stochastic perturbation all the three species co-exists for the
same vales of b and f (see Fig. 6). A similar result s obtain for the predation rate
also. For example, keeping all other parameters fixed and increasing the value of ko
from 0.03 to 0.1, we observe that it & possible to control the epidemic caused by the
migratory bird by increasing the predation rate even under a variable environment
just by monitoring intensity of the environmental fluctuation (see Fig. Th), which
seems to be impossible under constant environment (see Fig. Ta).

7. Discussion
This article attempts to establish the effect of environmental stochasticity in an eco-
epidemiological system, where the disease dynamic is controlled by some migratory

birds. In this paper, we compare the situation for deterministic observation with
stochastic perturbation around the positive equilibrinm point.
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First we have analyzed the system in the absence of the environmental fluctu-
ation. In the deterministic case we have obtained a restriction on the contact rate
b [see relations (8) and (9)] for which the positive steady state E* exists. From the
bifurcation diagram shown in Fig. 2, we observe that the steady state E¥ is stable
within a certain range (b, b). Outside this range E* may exist but is unstable
and Fs or Ey is stable depending on the parameter value. We observe that careful
monitoring of the contact rate can make the system disease free (see Fig. 2). We
observe the same role for recovery rate f (see Fig. 3). We also observe that by
increasing the predation rate one can make the system disease free, but the preda-
tion rate on the infective prey must not be high, otherwise the predator population
will wash out from the system.

Further, to study the effect of environmental variability on this system, we have
stochastically perturbed the system with respect to white noise around its positive
equilibrium point. We observe that if the intensity of the environmental fluctua-
tion is kept under a certain threshold value [see relation (20)], the system remains
stochastically stable around the positive equilibrivm . Numerical simulation estab-
lishes the fact that the steady state of the stochastic version is not absolutely fived
but a *fuzzy” value around which the population fluctuates. We observe that by
monitoring the intensity of the environmental fluctuation we can make the system
stable around the co-existence steady state, which was unstable for those walues
in the deterministic situation and so the deterministic model becomes more robust
under stochastic fluctuation. Moreover, we observe from our numerical simulation
that even in the presence of the environmental fluctuation we can control the out-
break of the disease caused by the migratory hirds by monitoring the predation
rate. Thus, we may conclude that if we can control the artificial entrophication (or
intensity of white noise), then the control method proposed in the deterministic
situation remains valid under variable environment.

Finally, we would like to mention that the stochastic model (11) is built as an
analogous counterpart of the deterministic model (2) by incorporating the stochas-
tic perturbation in the growth equation of the populations. One can alo incorporate
the uncertainty in the parameter values to observe the effect of environmental fluc-
tuation in the parameters. We have ignored this in our model formulation becanse
our model is a one-season model’ and we mainly want to observe the changes in the
growth rate of different populations due to variation in the environmental condi-
tions. The introduction of the uncertainty in the parameter values are more nseful
where the prowth rate or the death rate of a population B very sensitive to the
daily change in the climatic conditions like in the case of mosquitoes.? Moreover,
the stochastic model built by incorporating the uncertainty in the parameter values
makes the analytical study a formidable task. Although the model (11) represents
a simple stochastic analogue of the deterministic model (2), but it reveals the effect
of environmental Auctuation on the spread of the disease due to migratory bhird
population.
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Appendix A
Proof of the Lemma 2.3.3.
Lemma 2.3.2 implies that for any (s(#g), (), plta)) such that s(fy)+iy) = ﬁ._ then
either a time #; = 0 exdsts for which s(t) +d(t) < % for all ¢ = g, or lim, . §{f) =
i:r, lim, ... i(t) = 0. Furthermaore, if s{f;) + i(ty) < i:r then s(t) +i(t) < “—:} for
all # = 1. Hence in any case a non-negative time, say %, exists such that i(t) <
ﬁ, s(t) < f + ¢, for all = #*.

Let

L]

W = s(t) +i(t) +p(t).

Caleulating the derivative of W along the solution of system (2, we find for ¢ > #*

W< A—d(s(t) +i(t)) + p{ﬂm (k" < k)

k
< A—dW + M
= T
where ﬂﬁ_{;—]ﬂ is the maximum value of the function M
AW dW+E,
where,
E= A+ M.

4k
Thus, there exist a positive constant M, such that W{t) < M for all large ¢. O

Appendix B

Proof of the Theorem 3.2.
The variational matrix J* of the system (2) around E*{s* %, p*) is given by:

~( e thpt +d) —pEEp 4 —hst

* b2 bs" " B |
o EE T ke

kljp“ _kﬁrp¥ = rk'
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The characteristic equation of J* is given by
G+ +Qs =0, (21)
where
Qy=L+M

Qs = ML+ (ﬂr—”?) [Ms* — fi*] + p*[kr 5" — kai¥]
Qs = [( s*:a:)“) “]L+(%+'{)

2

= * &l _k H*Q“ kblx'xx
><|:( )+klkgp7.]+hs"|: - _;i? =+ 1??-.]?‘2]\

s 442 (s +i%)2 (5% +i*)
with
hxﬁ be*i* 1,p¥
L=—"—+kp*+d=10, 1l M=— 0.
P R e e GriE Kk

By the Ronth-Hurwitz criterion, we observe that if the conditions stated in the the-
orem hold true, then the positive steady state E* (5%, %, p*) &8 locally ssymptotically
stable. O

Appendix C
Proof of the Theorem 5.2,
Let us consider the Lyapunov function

V(u(t)) = =

= 111,1‘2 + s + L:.lg'u.g‘z] ; (22}

where .y are real positive constants to be chosen later.
It is easy to check that inequalities (16) are true for p = 2. Furthermore

bs*i* g TP*
(& +im)2 22 T g

bi*?
LV{ﬂL{fjj - (m +k1p¥ +d) 'l.lf-]_2 w Ld;g'l!;ig

bs*? bi*%we
- ({ P ) wytts — (Roi*we + ke'p* ) uouey

L C S e ET,. T HE_V 2!
(k15 n'p W lugug + 2 g (u(t)) Ful glu(f))| . (23)

Using (15), we get

%Tr [gr{ﬂr,{f:l:l{-&i;ﬁ- _g{u{t:l:l] = %[Utﬁulﬁ + wama®ua® + wyrs®ug?). (24
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If in {23) we choose

bs*? — fs* +i%)2 bs*? kys
L b = Mz
- bir? (s e >9) - i
from (24) it is easy to check that
b|?¥'i¥ ‘2 td

bi*?
LV (u(t)) = — (—2 + kyp* + d) up? —

(s + i) (s +i*

1
— (Reai*wa + ka'p*ws)uzug + : [01%u1 2 + wagsPus® + waos®ug?]
= —ulQu. (25
where
W b d "_Ji
PRI + Rt +ad— = 0 ]
e 2 )
= 0 Wi — ) hlkaitwn + k'pruws)
0 Slkaitwr +ha'ptwn)  ws(F — )

The relations (19) and (20) imply that € is a real symmetric positive definite matric
and therefore all its eigenvalues A (@), ¢ = 1,2, 3, are positive real numbers. Let
A =min{ (), i =1,2,3}, Ay = 0. From (25) we get

LV {u(t)) < —Au|u(®) 2.
According to Theorem 5.2 the proof is completed. O
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