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Abstract

Migratory grazing of zooplankton between non-toxic phytoplankton (NTP) and toxic phytoplankton (TPP) is a real-
istic phenomena unexplored so far. The present article is a first step in this direction. A mathematical model of NTP-TPP-
zooplankton with constant and variable zooplankton migration is proposed and analyzed. The asymptotic dynamics of the
model system around the biologically feasible equilibria is explored through local stability analysis. The dynamics of the
proposed system is explored and displayed for different combination of migmtory parameters and toxin inhibition para-
meters. Our analysis suggests that the migratory grazing of zooplankton has a significant role in determining the dynamic
stability and oscillation of phytoplankton zooplankton systems.

Kevwords: Toxin-producing phytoplankion: Limit evele; Equilibria; Non-equilibria; Stability: Density-dependent migrations; Apggrega-
tion method

1. Introduc ion

Toxin-producing phytoplankton ( TPP) are a group of phytoplankion that have the capabhility of producing
some toxic chemicals [1]. The dynamics of phytoplankton and zooplankton is significantly affected due to the
presence of these TPP species [2,3]. In recent years, a number of studies have been conducted to investigate the
effects of TPP species on the overall dynamics of phytoplankton and zooplankton [1,4-6]. In particular, to
explore the dynamics of overall plankton population, Roy et al. [5] proposed and analyzed a three component
mathematical model consisting of the group of non-toxic phytoplankton (NTP), toxic phytoplankton {TPP)
and zooplankton. Roy et al. [3]compared their model with field data and estimated the model parameters. The
analysis of their model proposed a new hypothesis for the maintenance of non-equilibrium dynamics of
plankton.

A number of works have been carried out to explore the effect of dispersion or migration of species on the
ecosystem dynamics [7.8]. Zooplankton species are well known for exhibiting vertical movement and other
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Fig. I. Schematic diagram of zooplankion (£, i= [, 2] dispersal between NTF and TPP.

migratory movement in natural waters [9,10]. Although the model of [5] considered the effects of toxin inhi-
bition on zooplankton, it lacked a realistic migratory behaviour of zooplankton species in natural waters [8].
The non-toxic and toxic phytoplankton exhibit weak interspecific competition in a common habitat [3]. On the
other hand, due to their ability to move in water, zooplankton species are vary likely to change their grazing
activity from TPP species to NTP species or vice versa. This process would be possible by the migratory graz-
ing of zooplankion from the TPP-dense portion to the NTP-dense portion of the common habitat and vice-
versa. In our present article we incorporate these effects of zooplankton dispersal on the dynamics of a NTP-
TPP-zooplankion system.

According to their activities of grazing on NTP and TPP population, we divide the entire zooplankton pop-
ulation into two subgroups. Let the part of zooplankton, which due to its presence in an NTP dense place
graze mainly on NTP species, be denoted by Z,. Similarly the part of zooplankton, which due to its physical
presence in a TPP dense place graze on mainly the TPP species is denoted by 25 Now, due to the physical
movement, the species of zooplankton which at any time belong to 2, category, turn to 5 category and
vise-versa. We consider such movement at a constant rate first and then a density dependent rate. We study
the behaviour of the model system taking into account the effect of the entire zooplankton species aggregated
as £ =7+ 7 The schematic diagram of the species interaction is given in Fig. 1.

To analyze the system we use the method of aggregation based on the central manifold theorem [11,12] To
apply the central manifold theorem we need to have: (i) a system with two time scale one is slow and the other
is fast, (ii) the fast equilibrium point must be asymptotically stable, (iii) the aggregated system is uniformly
bounded [13].

In the first section we consider the migration parameter to be constant and in the subsequent section we
consider a variable migration. We analyze the system around the biologically feasible equilibria and discuss
the overall results.

2. Formulation of the mathematical model

Extending the three-component model of [5], we formulate the model of above system (Fig. 1) mathemat-
ically under the following assumptions:

(i) The NTP and TPP populations follow Lotka—Volterra model with intrinsic growth rates | and r», com-
petition coefficients ) and %» and carrying capacity of phytoplankton K which is shared by NTP and
TPP in the ahsence of the zooplankton.

(i) Zooplankton predate the NTP, TPP with Holling type-I1 functional response [14] in the rate wy, and ws
with half saturation constant Iy and Ds, respectively.

(i) Zooplankton are divided into two subpopulation according to there activities. At an instant the zoo-
plankton grazing on P are named Z; and the rest of the individuals grazing on Ps are named Z.. Again
an individual of 2, which predates P will be a member of 25 immediately when it consumes P» and this
rate of change from £, to Z, is denoted by K, and the reverse rate by K ..
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{iv) The growth rate, competition effects as well as the predation and conversion effects are much slow com-
pared with the zooplankton migration parameter. To accommodate these difference we analyze our
maodel using a slow-fast variable method, where the migration parameters are considered as fast variables
and other demographic parameters as slow ones.

{v) When £, predates on NTP, the maximum rate of gain in 2, growth is £, due to predation of NTP at the
rate wy, but when > predates TPP, the rate of inhibition in Z> growth is £» due to predation of TPP at
the rate ws.

{vi) Zooplankton are diminishing at a constant rate ¢.

Based on these assumptions the dynamics of NTP (P), TPP { P;), NTP consuming zooplankion (£), TPP
consuming zooplankion (£,) can be written as the following system of differential equations:

W a2 )
e nfofi- 23 2
% = (K1aZs — KnZ)) +Df‘f’ﬁ Z, — 2y, (3)
dj; — (KnZy — KnnZs) _szf]}E 21— ¢fa, (4]

with the initial conditions

Pi(0) 20, Py(0) 20, Z,(0) 20, Z(0) = 0. (3)

3. Model 1: constant migration

The physical movement of zooplankton are much faster than their growth and interaction process. (In dif-
ferent context a similar phenomena has been considered [7].) Therefore the value of the parameters K)» and
K-, are set much higher than the other parameters.

With this assumption we write,

K=, RKyj==2 (6)

where ¢ is a small dimensionless number and ks, &) are positive constants of same order of magnitude as the
other parameters.
Mow substituting (6) in (3) and (4) we obtain system (A) as

dF] P] +D!'|.P3 1-1"121
m S lasedafy - i
(B) e =e :{r:( K ) D1+P1}' v
ot ) "
di K Dy + Py
'LJE.Z] ;i . é'IP'l - - [
EE—H]zﬁz—ﬂzlz1j+E{D]+P1£1—C£1 : (9)
aZ; oo L ;i ¢l %
€ —{53131—513533—*‘-{5,3_,_1;353_‘[3}' (10)

Let us now change the time scale in order to obtain a new model with a fast time scale 7" =*. To do this we
write the following relations
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dz; - dZ; dp; _ dp; oy
dr —dr’ “dr —adarr 7%
Substituting (11} in system (B) we get

3; (11]

(R “
% = (kpZ: —knZ;)) + E{fo}] 2, — &2, } (14)
% = (knZi — kinZs) — E{sz_f}}_ T c-zg}_ (15)

31 Formation of aggregated one

As we see, the dynamics in system (C) are driven by two parts one of which is small perturbation. We are
now interested in the fast dynamics and therefore we neglect the small terms putting £ = (0. Now the quantities
Z(T), PUT), P+(T) are invariant for the fast dynamics. So,

Z\(T)+ Z:(T) = Z(T). (16)

The fast equilibrium is thus the solution of (16) and

dZ,

— =kpds—knZ; =0 17

dT 12432 214&] I: :I
From 16 and 17 we get,

Zi=wZ and Zj=v,Z (18)
where v =ﬁ'ﬂ and v, =F*;Jﬁ are intra-population frequencies. Obviously the fast equilibrium point is
hyperbolically stable, i.e. asymptotically stable. Aggregating Eqgs. (14) and (15) we get

dz &P EaFavy -

E_{D]+P]_D3+P3_c}£' (19)

Therefore the aggregated model system in original time scale becomes

'I:[P] P]+D'.'|P3 W]Z 2
S wee s g

® Eonfa(1-fan) oy
dPg _ _P_{r_ (1 _ .Pg + D'.EP]) _ w;[ }1 {21)
dr K Dy 4+ P

&

I

Iy
P —

! s a2 p
i+ D+ Pl

where 1, = v &), B = vals, Wy = 1wy, Wh = vawa.
3.2, Analysis and result
3.2 1 Boundedness of the aggregaied system with constant migration

All solutions of (D) which originate in R are evidently confined in the region B = {(P,P5,Z) e R :
P+ P4+ 2= ':—*_* + ¢ for all € = 0}. (The proof is placed in the Appendix.)
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3.22 Eguilibria
The system (D) possesses the following equilibria:

(i) The plankton-free equilibrium £, = (0,0,0), always exist.
{ii) TPP- and zooplankton-free equilibrium £, = (K,0,0), always exist.
(iii) NTP- and zooplankton-free equilibrium £, = (0,K.0), always exist.
{iv) Zooplankton-free equilibrium £5 = (P, P2,0), where
E:K{.}I_”‘ E_K{Jg—1j1
511513—1 -1]5'.3—1
exists if either oy = 1, a2 1 or oy <1, a2 << 1.
{v) TPP-free equilibrium £, = (P,,0,z;), where
ol e Ky, —clK + D))
m—c wiKin — ‘:':'3

P =

exists if i, > c(1 +21).
(vi) The interior equilibrium £* = (P}, P3,Z*), where

D525 +eDs + ePy)

1= 2
) '?'IDE I '?]-PE i F?J-P;: = ('Dg — ('.P;: 2 {—Ej
7+ _12(D2 + P) (K — P} — oY) v
fovirs
and P; is given by,
01(P3)' + 02(P3)" + 0sP5 + 04 = 0 (25)

with,

2

th = wira(m —m —¢)7,
th = =, —H2 — e —roin (K 4+ Dhota)ys + (—2rvin s + ron K+ rpviaDyan )y — rovine(Dhas + K — 2040 1,
il; = {rg“j]Di + (—2rvin K — rpvinDyog 105 + 1 1173D]K}rﬁ + [—riviale + 12 ]Df

+ {{ =K + rowyDhan g, — rwaKe + 2 s ey + vy Doe YDy 4 2raw DK (R, + 2c)

— 2rin el — rowi Daed (2aa0 + 230, Dy — eDs + K(2, + 2¢) }, and
ly = Do {K (—ravinnD: + 1y 'rﬁgD]:Irﬁ — el 'rﬁng — 2w LK — rwyaah D,

+ rvinD K g, — rvineDa(K + D)}
Therefore the condition for the existence of the unique interior equilibrium point is <0, 0, << 0, 0, << (-
s + P =Py —eD —eP =0, K—F —oP) =10
MNow to find a interior equilibrium point we consider the following parameter set [3]:
ry = 04632/ day, r = 04425/day, w, =0.6625/day, w. = 0435/day,

Dy =45 nos./lit, Dy =30 nos./lit, o =0002, 2 =0001, & =0.516,
E=06, c=0.108/day, K =505 nos./lit (26)

For kia=4, ks =2, the above parameter set gives an interior equilibrium point
ET(281 4288624, 453.0032273,150.9466031).

3.2.3. Stability analysis

(i) The plankton-free equilibrium £, = (0,0,0) is unstable saddle.
(i1} TPP and zooplankton-free equilibrium £, = (K,0,0) is unstable saddle.
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(iii) NTP and zooplankton-free equilibrium E> = (0,K0) is unstable saddle.
(iv) The zooplankton-free equilibrium E; = (£, FP;.0) is an unstable saddle under the conditions,
(i) m >m+e (i :|P1:-"mﬂ R (oo, EL}

H—m—e g -
(v) The TPP-free equilibrium E; = (Fy,0,Z) is locally unstable if 2P, + h'};‘- < 1.
{vi) The interior equilibrium E*{ P}, P, Z*) is locally asymptotically stable with respect to the parameter set
(26), which gives the eigenvalues i) = —0.372215, i, = —0.032139 — 1 988551, and iy = —0032139 +
1.988551. The real part of the eigenvalues are negative, thus the interior equilibrium is locally asymptot-

ically stahle.

3.2.4 Bifurcation diagrams and interpreiation

To explore how zooplankton migration affects the dynamics around the positive equilibrium we draw bifur-
cation diagram, with respect to k- and k.

In the Fig. 2 we observe that when £; = 0.6 and & = 2, the system settles to the stable zooplankton free
equilibrium point £, for ki, < 3.7, all plankton co-exist for 3.7 <<k > <4.15 and the system oscillates for
k12> 4.15. In this case the critical point, i.e. the point of Hopf-bifurcation is &, = 4.15. If we decrease the
value of &5, then the critical value of &k, decreases. Similarly, if we decrease the value of £, then the critical
value of &, » decreases (Table 1).

In the Fig. 3 we observe that when £» = 0.6 and ks = 6, the system oscillates for ks < 3, all plankton co-
exist for 3 < &y < 3.4 and setiles to the stable zooplankton-free equilibrium £, for ks = 3.4 In this case the
critical point, i.e. the point of Hopf-bifurcation is £5, = 3. Further simulations suggest that, for a fixed value of
&4, the critical value &5, increases with increase of &k, (Table 2). However, for a fixed value of & ., the critical
value k5, decreases with increase of ¢a
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Table |

Critical values of the migration parameter K- corresponding to different values of £ and K5,

£z kz T
0.6 2 4.15
0.4 2 2405
0.6 | 207
0.4 1 1.48
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Fig. 3. Biluration disgram of the aggregated svstem (20)-(22) with constant migration has drawn taking &y =6, £ =06 and
= koy = 6.

Table 2

Critical values of the migration parameter Kz corresponding to different values of & and Kz

£z kiz 5
0.6 [ 300
0.4 i 4.05
0.6 4 1.93
0.4 4 270

4. Model 2: Variable migration

An individual of zooplankton £ prefers to move from P, to P, when P, is more vulnerable and from P to
Py when Py is in the opposite case. Thus their migration rates are not simply constant but proportional to the
density of the preferable patch. So we take

k2P K _ kP
. 2= .

£

Ki= (27
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where ¢ is a small dimensionless number and k1, k+) are positive constant of same order of magnitude as the

other parameters.
With this assumption system (A) becomes

{E:I dP] =E_P]{r-|(1—P1+D:1P3) .w121. }1

dr K I EY
sz—fF & 1_P3+D!3P] _ 1-1.r'323

de 7 K Dy + P’

dz, ” &8 ;
— = (k2 Py — ko PiZ ) e ———F —cZ b,
dT {]_ 1= 242 'I:I {D'|+.P] 1 1
dZ; A - E'JPE .
-d—r={.ﬁ.’g]PgJ{]—.ﬁ.'u.P]zgj—E{—z:'_i_—PEJfg—('zg}.

Fast equilibrium is thus solution of

(29)

(30)

(31)

(34)

(35)

dz
57 = knPiZa— knPaZ =0
and
Z)(T) + 4(T) = Z(T),
which gives
Z‘ - 'k:IE-P'I 7 e 'kll-P]
' kizPy + knPs =S kP + ko Py’
= AE'IPE 7 o ﬂg]Pg
S YR N Y %
where v and v are equilibrium frequencies of zooplankton are no longer constant. The associated aggregated
model is
{fP] P] + D!]Pg w;.’r.;P]Z
F — =P 1 - = i
) di 1{?’]( K ) (D1 + P1)(ki2Py +-’f31P3:|}

dPg e g Pg + JgP]) o Wg.kg]sz
e K (D2 + Pa)(k12Py + ki Pa) |

dz £ {If]ffuP]j ﬁuz-’sz} .
- = —f.

dr k2P + kP D+ Py D+ P

4.1 Analysis and result

4 1.1 Boundedness of the aggregated system with variable migration
All solution of (D) which originate in R are evidently confined in the region
Ri_ P P+ £ =§+f. for all e = 0}. (The proof is placed in the Appendix.)

4.1.2 Eguilibria
The system (D) possesses the following equilibria:

(i) The plankton-free equilibrium, £, = (0,0,0), always exist.

{(ii) TPP- and zooplankton-free equilibrium, £, = (K,0,0), always exist.
{(iii) NTP- and zooplankton-free equilibrium, E» = (0,K,0), always exist.
(iv) Zooplankton-free equilibrium, E; = (P, P1,0), where

B=1{(P,P..7) €
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5 _Km-1) o K-l
! Df|13—1 ! B 11513—1 :

exists if either o) = 1, 22> 1 or oy <1, a2 << 1.
{v) TPP-free equilibrium, £; = (P,,0,5), where

_JT— ('D] __|=_=-|I'|D'|{K|.EJ —('{K+D|:|:|
| =—, E= . g
c1—C wik(E, —el

exists if &, > ¢(1 +21).
{vi) The interior equilibrium £* = (P}, P3, Z*), where P}, P;, 2" are the solution of the system of equations:

= (1 _Eh lez) " Wik P — 0 (39)
K (Dh 4+ Pl kP + ks
-PJ + 5'-3-P'| 1-1’3.‘.'31.sz
2 ]. = —— = {}1 4{}
: ( K ) (D 4 Pa) 2Py + ke Ps) (40)
Ekia? Ekn P )
cpnadty ot — e(ky2Py + kuP2) = 0. (41)

Dy + Py _Dz +

We solve the above system taking the set of parameters (26) and get a interior equilibrium point E*
(455.5279779,487.2934701, 51.58329453).

413 Stability analysis

(i) The plankton-free equilibrium £, = (0,0,0) is unstable saddle.
(i) TPP and zooplankton-free equilibrium £, = (K,0,0) is unstable saddle.

a b
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™ lrm—
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. .
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k

Fig. 4. Bifurcation disgram of the aggregmied svsiem (36)-(38) with variable migration has drawn taking &y = 2, 5 = 0198 and
2 kns 6.
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(iii) NTP and zooplankton-free equilibrivm E2 = (0,K0) is unstable saddle.
{iv) The zooplankton-free equilibrium £5 = {F;,E,{}j is an unstable saddle under the conditions,

Ekia Py (Ds + P) > Gk PYDy + Pr) + elkiaPy + kn Pa)(Dy + P )(Dy + Py ).
{(v) The TPP-free equilibrium £, = (P;,0,Z) is locally unstable if K > E-fT“:L

(vi) The interior equilibrium E£°(F], P35, 2*) is locally asymptotically stable with respect to the parameter
set (26).

4 1.4 Bifurcation diagrams and interpretation

In the case of variable migration i.e. when the migration parameter are proportional to the density of the
phytoplankton we see in Figs. 4 and 5 that the model dynamics around the interior equilibrium at the esti-
mated ¢» =0.198 depends on the migration parameters k2 and ki, Fixing the value of k2 = 2.0, if we
increase the migration parameter &> the dynamics passes from stability to oscillation through a point of
Hopf-bifurcation (Fig. 4). This results suggest that if the migration parameter ks is increased, the model sys-
tems moves towards high amplitude oscillation. On the other hand, if we fix the value of k2 = 6.0, and
increase the value of ks the dynamics around the interior equilibrium passes from oscillation to stability
through a point of Hopf-bifurcation (Fig. 5). This result suggests that the model system moves towards sta-
bility if the migration parameter k-, is high. However, given a fixed pair of values of k- =5 and k3 = 1, there
exist a small interval of the toxin inhibition parameter 036 << &5 < 0.37 for which the system coexist in stable
equilibrium (Fig. 6).
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Fig. 5. Bifuraations diagrams of the ageregated system (36)-(38) with variable migration has drawn aking &= 6, £ = 0198 and
| = koy = 6.
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Fig. 6. Time series solution of {36)-(38) lor &z =5, by = 1, & = 0037,
5. Discussion

Migratory grazing of zooplankton between NTP and TPP is a realistic phenomena unexplored so far.
Through their mathematical model Roy et al. [5] have demonstrated how the toxin inhibition parameter
due to TPP determines the dynamics of NTP-TPP-zooplankton systems. Extending their model, we consider
the migratory grazing of zooplankton between NTP and TPP. Our analysis concentrates mainly on exploring
the effects of three parameters, namely, rate at which zooplankton are migrating from NTP dense population
place to TPP dense population (ks ), rate at which zooplankton are migrating from TPP dense population to
NTP dense population (k1) and the toxin inhibition parameter .

Zooplankton migration has been considered firstly as a constant and then as dependent on phytoplankton
density. For both the cases, we have demonstrated the asymptotic dynamics of the model system around the
interior equilibrium. However, this dynamics changes significantly for different combination of the migration
parameters and toxin inhibition parameter. In the case of constant migration, the values of any of the migra-
tion parameters (k2 or k2;) at which point of Hopf-bifurcation occurs varies with the values of other migra-
tion parameter (k2 or &) and that of the toxin inhibition parameter ( £s). Our analysis demonstrates that for
a fixed value of &, if the migration parameter k- increases, a higher value of the migration parameter &.; is
needed for the stability of the dynamics around the coexisting equilibrium. Similarly, in the case of density-
dependent migration, we find that, higher the migration rate &, more likely to get dynamic oscillation, and
ereater the migration rate k»; more likely to get dynamic stability.

Biologically these results mean that, if the toxin inhibition parameter £: remains constant and the zoo-
plankton consumes NTP more than TPP, the system is likely to exhibit oscillation, whereas, if zooplankton
consumes TPP more than NTP, the system is likely to exhibit stability. These results are comparable with
the study of Roy et al. [5]. They [5] demonstrated that for higher toxin inhibition parameter dynamic sta-
bility is desirable, and we find that for a constant toxin inhibition more inclination towards TPP (through
migratory behaviour) leads to stability. Thus, our results establishes that along with the inhibition effects of
TPP, the migratory effects of zooplankton have a great impact in determining the stahility of the phyto-
plankton-zooplankton dynamics. We suggest that while addressing the question of plankton dynamics,
the migratory grazing of zooplankton might be considered as a significant factor along with the rate
parameters.
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Appendix A. The proof of boundedness of model 1

We define a function:

H"r=ﬂ'|.P'|+ﬂgP3+z. ':.42:|
The time derivative of (24) along the solution of (D) is

dw i d’.P] fin dz P | P] +13P3 W]Z

T O TR T TR T e LT R

F ol 2L F 2P
+ﬂ3P3 Fa I — 2 1% = i + 7 e == 272 —
K Da+ Py D+ P D+ P

.P‘E L .P.P'.‘ ar T.P .P'.‘
=H1P1r1(1—%)+ﬂ31}3rz(1——)—mr]:] b

K K K
4 F]___E]ﬂj:r]z _Ma o gawy PZ — 7,
D] +.P'| Dg + Fa
dw ) ¥y ¥ by PPy baraaaP P,
= ar +£'H’=D!3.P'|(r'|+('—EP])+D!1P3(!’3 +('—E.P3)— K m K
aw — Ny o v N, ; M
- P Z— Pz rovided gy > — =10
D] +.P'| ! Dg +P3 P p o W =
< P( - r’P)+ P( - rEP)
5T I B & K 1 a T K 24
dw (rn+c) (ra+c)’
= + oW < as - —— =M.
dr 43 4(3)

Applying the theory of differential inequality [15] we get,
M M
0= WP, P2 = ?{1 —e )+ W(P(0L, P, Z(0e™ =20« W< 5 as f — oo,
Hence all solution of (D) which originate in £ are evidently confined in the region

M
B={(P,P,2)ER :2,P +;Ps+Z=—+¢ forall e >0} O
"

Appendix B. The proof of boundedness of model 2

We define a function
W =a P +aP+Z. (43)
The time derivative of (24) along the solution of (D) is
w_ AP Ay dZ

a e T e T

-P] + J]PJ W].k]gP]Z
=a Pyl - == = -
K (Dh + PPy + kPl

-PJ + D:JP] 1-1’3.‘.'31.’:32
+ﬂ3.P3 Fa 1 - =
K (D2 + P k2P + ka1 Pa)
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" £ EihaP;  Eak21P3 P
kP + kP 1D+ Py D4 P 8

— ot

2 K K &
(& —ﬂ1'rb'1:|P]jz-k13 _ (£ +ﬂ3W3:|P§erf31
(D1 + P){kiaPy+ kaP2) (Da+ Po){kaPy +kaPs)
) arnfi Py aaraaP Py

PE ") PP sttt P
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Applying the theory of differential inequality we get

0< WP, P 7) QE{I —e ™+ WP (0P, ZIMe ™ =0< W< d as f — oo,
o M

Hence all solution of (D) which originate in R are evidently confined in the region
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