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1. INTRODUCTION

1.1, In an earlier paper bearing the same title and published elsewhere
(Rudra, 1954), the author has outlined a method for discriminating on the basis of a
given time series between stationary processes belonging to the autoregressive, the
moving average, and the periodic types. For processes of the periodic type, a new
model was suggested and used in our argument. The model is characterised by the
relation

7, = m+ = A+0(p)+0(p)+ ... +6(m) 4 v (L)

P,
(t= 1,2, ... N; Z’: Op) =0, j=1,2 k)
bml

where z, is the observed value at time point ¢, and 6{p;) (¢ to be reduced mod P
j=1,2,..., k) the parametric constants; ¢, is an independent, variable with zero mean
and a constant variance 6. The model contains periodicities of lengths p,, p,, ..., 7.
P
)
The quantity O(p;) = ﬁ Z 0,}%) was termed the ‘variance’ of the periodicity
10
pli = 1,2, ... k) and was suggested as a measure of its importance. The method in
a nutshell is to draw up the observed series z;, 2,, ..., Zy into a Buys-Ballot table for
periodicity  in a chosen range (a, b) as follows :

Buys-Ballot table for Periodicity p

columns (1) (2) e {8) e (P)
z, EN .z, o Ty
Zp+1 Zpta e Ty e Ty
(1.2)
Talp—13+1  Tn(p-1p+2 o+ Talpi—ipte. -
column means Z,.(p) Zg.(p)... Z,.(p)... I j=.
where 7n(p), and s are given by N = n{p)—1p+s, s<p. (general mean)

® Based on a thoais spproved for the Ph. D. degree of the London University.
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‘From each such table, an F(p) is to be caloulated by using the following formula :

_ between column sum of squares ~N—p
Fip) = within column sum of squars X =1 e (13)

where the expressions ‘between column sum of squares’ and ‘within column sum of
squares’ mean a8 in the analysis of variance for one way table.

The F(p)'s are then to be plotted against p and the F-diagram thus obtained
used a8 the disoriminating criterion. Decisions are to be made by following elaborate
rules given in the aforementioned paper as to the.ocourrence of peaks in the three
regions defined in the (p,F(p)}- space by the curves giving for each valueof p the values

Fy(p, N—p) and Fg(p, N—p), which are the upper a9, and 5%, points of the standard
F-distribution, ‘See Diagram 1.
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1.2, In the p t paper, we end

ur to justify the-intuitive grounds on
which the rules of procedure were outlined. We also desoribe the methods of fitting
& Linear Cyolioal Model to & series and of Retesting & periodioity after the elimination
of other existing periodicities. Only the final results of applying our method to a large
number of series were given in the previous paper. In the present paper we provide
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a large number of the actual diagrams used, and more detailed tables and discussions,
80 that the actual working of the method under diverse cir

may be rendered
olear.

1.3. In order to maintain the ity of arg ts, we have thought
it fit to take out of the body of the text proofs and demonstrations of certain asser-
tions made and mathematical results used and keep them for later publication as Part
II of the paper.

2. THE DISTRIBUTION OF F(p) FOR A CYCLICAL SERIES

2.1. We shall write (1.1). as

2, = m+g . (2.

and consider the following two tabular arrangements :

columns (1) 2) ... {8) v (p)
m, My e My e My
My Mprg  ooe Mgy Mgy
M=Tpe1 e oo My e (2.2)
column means m.(p) Mq.(P) m,.(p) m,(p) | m..
general mean
and
columns (1) (2) ... (8 . (p)
& & ... 6 &
€pe1 €p4p -+ Eppa v Eap . (2.3)
Calp~1p+1 -0 w0 €N

column means ¢&,.(p) €5.{p) &,.(p) (P} | €.
general mean
These are Buys-Ballot tables constructed out of the series (m,) and (¢)
(t=1,2, ..., N). For the sake of convenience we shall use the symbols y,(p), my(p) and
€4(p) to denote the elements belonging to the jth row and the ith columns of {1.2),
(2.2) and (2.3) respectively. In other words, we shall rewrite (1.2) as :

columns (1) (2) s {8) e (D)
yulp) YalP) . Yuld) o Yn(P)
Y1:(P) YoolP) oo YD) oo YplD)
YD) Yeun)(D) oo YrainP)-or oo o (24)
column means  §,.(p)  Falp) ¢ GD)  Fp®) | ¥-
general mean

1,
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_and similarly for (2.2) and (2.8). Then, as & result of (2.1),

yy(p) = my(p)+ey(pd),
§u(p) = mu(p)+6(P)
§.. = m..+6.. e (2.5)

2.2. We sball refer to (1.2), (2.2) and (2.8) as the ¥-table, the M-table and the
E-table respectively. For each of these the 'between column sum of squares’ and the
‘within column sum of squares’ and their interrelations are shown in the following
where n{p) = n(p) if § < sand =n(p)—1, if > a.

d.f. M-table E-table Y -table
between » » »
column 88. p—1 El(m‘.(p)—mu)‘m(p) El(§~(7)—€--)’7'¢(1’) El(("k-(P)—'m--)
+e(p)—e..)}n(p)
within ¥ N ¥
column 88. N—p B (my(p)—m¢(p))* 5(6«(?)—6«-(1:))’ z {(my(p)—mi(2))
Hey(p)—e )}
4 » bt
total 88. N—1 ‘; (my(p)—m.. )2 '):’ (ey(p)—6. )8 'z’((m‘,(p)—mu)
i 3 i
Heglp)—e. )P
- (2.8)
The three sums of aquares from the Y-table, divided by o® (which is the variance of
the random component &y(p))

N
S TGl X G —gn)
e and 2 — 27

are therefore distributed as noncentral chi-squares with N—1, N—p, and p—1 degrees
of freed and noncentrality parameters

N
W-np= S flplom )t
[X]

~
(N—piio) = " (rul)—melel? . 28)
[X]
and (—1)A(p) = E’: (mi~(P)—a’:‘--}""c(P)
=

respectively, provided ¢, is assumed to be normal.
We ahall denote these three noncentral chi-zquares by
X5-1[8), xk-,[P)], and x3[A(p)] respeotively.
12
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(This notation does not agree with that used by ‘Tang (1938), Patnaik (1949), etc, who

would write the aame as xy_[((N—1)B]. X*x_, (N —p)n(p)] and x%,_,{{p—1)A(p)] res-
pectively). F(p) therefore can be regarded as the ratio of two noncentral chi;aquares,
multiplied by a constant faotor :

Fip) =Xo-1lA(P)l N—p, Y
e = Xk @) p=1 @9

2.3. It will be shown in Part II by an easy extension of Cochran’s theorem
thet the two noncentral chi-squares y*,_,[A(p)] and x*s_,(7(p)} are independent. The
distribution of F(p) therefore can be obtained from that of the ratio of two independent
noncentral chi-squares given by Tang (1938), and it is as follows :

S SAGY M) (2 LILE eI L
_ p) P — - —
P[F(P)]-‘g T2 1o B( i+ p—l —p) e 3 X

=1
1+ o f@

}N—p+j+l (2.10)

x{_ll_
1+ §=2Fe)

For constant p and large N—p, F(p) is asymptotically distributed as

xs-1 [A(p))

_ X1 MP)) (2.11)
(149(p)(p—1)

80 that its first four asymptotic cumulants are

w(F(p)] = ii;f";

Fio < 21+2A(p)]
e =

8[l+3/\(p)]
«[F(p)] = (o
AF(p)] = —1DH1+49(p)P’

wiFp) = AL
AFP) = (IR ape

(2.12)

3. F-DIAGRAM POR A SBRIES HAVING A SINGLE PERIODIOITY

8.1. Though we have found the distribution of a single F(p), it is difficult
to obtain the distribution of a collection of F(p)’s which is the F-diagram, especially
80 a3 they are mutually dependent. We shall however show in Part IT that arguments

13
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as to the behaviour of the P-diagram under different hypotheses can be carried ount in
terms of the firat moment of F(p) only. If n(p) be the first moment of F(p), and if
n{p) regarded &8s & function of p between a and b be called the 7-diagram, the latter
oan be regarded as an indicator of the probable behaviour of the F-diagram as to
‘pointa of ocourrence of peaks, and their relative magnitud In the p t secti
we shall study in terms of the m-diagram the probable behaviour of the F-diagram
for a Linear Cyclioal series having & single periodioity.

3.2, The nature of the m-diagram depends on the relative magnitudes of
A(p) and 7(p). When the series has only one periodicity p,,

my = afpy) = A+6(p,).

As a(po) = t4.p,(Po) for any integral s, the M-table for trial period p, has the
following appearance :

columns (1) 2 ... (9 (Po)
(Po) 2g(Pe) - 2{Po) .- a,(Do)
(o) ag(Po) - a(Po) .o (Do)
; : ; : 3.1)
%(po) @fPo) .. DY)
column meens  a,(p) ag(Po) -0 afPo) ... og(Dy)
It will be noticed thas,
2po) =
and Alpo) = =1 ﬂ
80 that (n(po)—1) 2 (po) < Alpy) < 2{py) 0 ().
Hence () = 1+ A(pp) = l+ i ﬂt= 14-7(o)p,). . (3.2)
The only other values of the trial period p for which 7{p) is zero are the multi-
ples of p,. Thus for any positive integer s,
7(spo) = 0,
Alspy) = —— ﬂ:
n(spy) = 1 + 1+(pc2—1)k(lz;o) -1+ Epu l))n(po)n(po)- - (33)

14
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It should be noted that m(sp,) < m(a—1p,) for all .

3.3. For all other values of p, it is reasonable to suppose that the variations
within columns and between columns are more or less the same (as a result of remaining
unaffected by the arbitrary grouping in columns whioh have no phase-relation with
the periodicity of the data).

If it is so,

Alp)=n(p) =f  for p+#po#4ps;
(3.4)

n(p) = 1+A(p) =3 1 ﬂ= 1.

+
1+9(p) LB

Thus. for a series having only one periodicity p,, the 7-diagram will more or less follow
the line m(p) = | at all points except p = p,, 2p,. 3p, ete.. where there will be sharp
peaks. ‘The sharpness would depend on the magnitude of 2, which would depend
on Q (p,). the ‘variance’ of the periodicity, as well as the number of rows n(p,), which
increases with the length of the series N; further, the peaks at py, 2py, 3p,, ete., will
be of progressively diminishing magnitude.

3.4. It is however quite possible for the relation (3.4) not to hold. 7(p) may in
certain cases be much smaller than A(p) making

greater than unity. There is therefore the possibility of observing peaks at points that
do not correspond to any real periodicity. Hence it is of importance to study the
factors that affect #(p). This will be done in detail in Part II. It is sufficient to note
here that, as was mentioned in the previous papers, the value of n(p) depends on, ()
the actual nature of oscillation of the periodic series 6,(py), Oy(Po), ---» 9,0 (P} O(Do):
0s(py), <o Bg (Do), O(o), ... 3 (i%) the number of rows n(pg) ; and (ii) the relative

values of p and p, . There is a smaller chance of having a spurious peak at p = sp,
if p and p, are relatively prime than if they are not.

Though it is possible to have peaks in the 77-diagram at points not corresponding
to the true periodicity, it can be proved that as long as p > p,, m(p) cannot be

greater than m(p,).
4. F-DIAGRAM FOR A SERIES HAVING SEVERAL PERIODICITIES

4.1. The F-diagram for a series having more than one periodicity is more com-
plicated to study under different bypotheses than that for one with a single periodioity.

16
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Suppose that there are k periodicities py, Py ..., Ps- When p=p(i=1, 2, ..., k), the
M-toble can be written as

columns. (1) (2) L e »
m (@) F0i(p) MBI +H0(D) ... m;“(p()-{-o,‘(p,)

m(p) 0P me(P)HOP) .. m;‘.(p‘) +9,‘(p‘)

(&)

column means my(p)+60y(P)  my{D)+04p) ”‘;‘(F()+5,‘(P()

where mu(p,) = my(P)—6i(py),
m(pi) = mdp)—6{py),
t=12.,p; =12 .., np)

Thus, even when p=p;,, 7(p,) does not vanish. But because there is in the t-th column
an element 6,(p;) common to each row, we may reasonably expect the variation within
column to be less than when there are no elements common to the different rows
in the same column, The same observations might be made for the case when
p=sp;. On the other hand, we may reasonably expect that when p ssp,
A(p)e=7(p)==p. In other words, we may expeot the following relations to hold :

=) , 148 _
O = T < g " “3
when pFepy (=1,2,..k 8=01,..);
and 7(p) < B Asp) > B,
80 that p) = ;i;‘g) >1 o (43)
when. P =16p,

4.2.  Of course these relations may not always be satisfied. It can be imagined
that in certain cases even for p#sp;, A(p) will be considerably larger than 7(p), and then
we shall have a peak at a point which does not correspond to a real periodicity. It
is however reasonable to assume that this peak will be of leas magnitude than those at
the more important of the peaks at p‘($‘= 1,2,..., k). Itocan also be imagined that
only the more importantof the periodicities p,(i=1, 2, ..., k) will be marked by promi-
nent peaks and that some of the less important ones may fail to produce any peaks
at all. In exactly the same way as for the case of a single period, the F-diagram is
also likely to have peaks at the multiples ap; of the actual periods p,. The peaks at
these points should in the ordinary case be less pronounced than those at the actual
period p;, but if the same point happens to be & multiple of two periodicities p; and

16
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py(i#7), then tho pesk at sp; = rp, may be more pronounced than either of the peaks
at p, and p;.  Further references to the case when there is more than one periodicity
in the series will be made in Part II. Our conjectures as to the occurrence and
relative magnitudes of peaks for series having gencral periodioities will be found on
the whale correct regarding quite a fow artificinl series discussed in section 8.

5. F-DIAORAM FOR A LINEAR RECRESSIVE SERIES

5.1, The distribution of F(p) for a linear regressive series has not been studied,
but it will be shown in Part II that the first two moments are asymptotically given by

m{F(p)} = 1—n(p)?,
retFey = J1 = P nie) (14521 sito),

where py, p,, ..., py_, are the auto-correlations of the process, and

N-1

e .
P= ww=if, W-ie }
= o (5.2)
—_ 2. 2
end Pi(p) = 2p—1) 0 Aip)
%]

where p(p) is the correlation between (7,.(p)—¥) and (F.(p)—7F.. ). (i, j=1, 2, ..., p).

It will also be shown that & can never be less than — Nl_ , and this, for large N, is

1
very near to zero. (The upper bound for 7 in the case of & moving average model is
also very near to zero). The first moment of F(p) will therefore be for all values of

p at or below the level of unity; and the second moment will be of the order of p—i—l

which is the second moment for a random series.

5.2. It is reasonable to expect on the basis of these results that the F-diagram
for o linear regressive series will not in general have prominent peaks and will on the
whole lie at a lower level than that for a random series. There can of course be chance
peaks, but they will not generally be as prominent as those for a oyclical series. That
our intuitive reasoning is not incorrect will be clear from a comparison of diagrams
6 to 13 with diagrams 1 to 4. This is one point where our method is cledrly superior
to that of Schuster. It is well known that Schuster’s Periodogram gives for linear
regressive series apurious peaks of the same order of magnitude as for oyclical series.

17
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8. F-DIAGRAM AS A DISORIMINATOR

8.1, The analysis of the last few sections, we believe justify the methed of
discrimination we have outlined in our previous paper. We have found that, for oy-
olical series, there are likely to be peaks at the true periodicities, their sharpness de-
pending on the atrength of the periodicities. We have also found that there are likely
to be spurioua peaks at the multiples of true periodicities, and that it is possible for both
oyolical and linear regressive series to produce spurious peaks of comparatively smaller
prominence at any point whatsoever. It can also be surmised that in a F-diagram
for a series having several periodicities, peaks due to less important periodicities may
get damped or even guite obliterated due to the influence of the other periodicities.
It is to take care of all these disturbing factors that the devioe for a cautionary zone
and the technigne of Retest have been introduced.

6.2. The justification for using probability points of the standard F-distri-
bution to define the regions in {p, F(p)} space lies in the fact that departures from ran-
domness (for which hypothesis the use of these points is valid) towards linear cyeclical
processes and towards linear regressive processes have exacty opposite effects on the
F-diagram.

The choice of & and £ has of course got to be arbitrary: they cannot possibly
have any precise meaning as to the chance of correct decision with regard to any apeci-
fio hypothesis. But then, a little reflection will show that, for the very large number
of hypotheses we have chosen for our field of discrimination it is impossible to have
any method whatsoever that will give correct decisions in a specified proportion of
cases,

8.3. We shall like to mention here two points which are of some technical
interest in the F-analysis of & given seriea by our method.

(1) " If & series is linearly cyolical, then, comparison between the linear regres-
sive and the linear cyclical models when all the peaks in the F-diagram are in Region
B.may not be possible owing to there being not any optimum linear regressive fit.
Henoe if we find that the-serial correlations over more than & reasonable number of
stages are being significant, we may abandon the sequence and decide in favour of the
oyolical model

(2) The methed of obtaining residuals from a moving average fit is to express

the moving average as an autoregressive, and to obain the residual from the fit in
the usual way.

7. FITTING A LINEAR OYOLIOAL MODEL TO DATA AND THE TECHNIQUE OF
RE-TESTING
7.1. When it has been finally decided that a series is oyclical with certain
definite periodicities, the next step is to fit & linear oyolical model to the data. Suppose
we have decided on a model M(p,, Dy, ..., ;). The problem now is of estimating the
parameters A, 8(p,), Oy(p;), ..., 0,‘(p‘) (# =1, 2,..., k) in the equation

% = A+0(p))+0(pa)+.. +0{m) +6 e (1)
18
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The least squares approach requirps the solution of the following set of
equations :

~

F) N

5 7—A—0(py)—0{ps) —... —O(p)} =0,

aAZl{ t nF n\Fa 3 k}

s \ (1.2)
MTP’)Z{xl—A_ol(pl)_.Ut(pz)_--'—' t(Pk)} =0

! =1

(=12,...p; j=12,...,k). j

If we write s; for the remainder when N is divided by p(i=1, 2,..., k), the first equation
is equivalent to

& = A+‘\17 [{01(P1)+02(P1)+-~-+0.,(P1)}

+ {6:(P2) +04{pa)+-.. 46, (p)} e (1.3)
+

+ (01(1’1»)+02(Pk)+m+0.‘ (Pk)}]

v
since TOP)=0 (,=12,..,k).
<)

The typical equation of the remaining set reduces to

T(p;) = A+0(py)+8,.(p) o (1.9)
(=12 ..,p:j=12..k

where 8i(py) = m(py)—0i(p)—A.

The above set of equations contain too many constants to be solved by any
direct means, and it is suggested that the method of iteration be used, taking Z..
as the first approximation to A, and Z;(p;) as the first approximation to A4-0(p;).
This first approximation %,(p;) will of course be the actual solution for A+6,(p;) when
Py is the only periodicity present in the series. Another situation, when the first approxi-
mations in the iterative procedure happen to be the actualsolutions, is when py, ps, ..., p;
ere all relatively prime to each other and N is & common multiple of each of them.
Under these circumstances, Sp)=0i=1,2 .. p;j=1,2,... k). EvenifN isnot
& common multiple of p,, p,, ..., py, 8;(p;)—0 a8 N is increased, provided p,, p,, ..., By
are relatively prime (Proof given in Part II). But only in rare circumstances
shall we have such an ideally suitable collection of p,, pg, ..., pr. and N. If p,, pg, ... D&
are mutually prime, but ¥ is not a common multiple of them, nor is it very large, it

19
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is possible to achieve the simplicity of the solution by adjusting thelength N such that
Nisa Itiple of the periodicities, adjustment being done by rejecting some
initial er end observations, The utility of this device would of course depend on the
number of observations that would be lost in the process. Estimation would be less
acourate if based on a smaller number of observations, but saving in computational
labour would be enormouns.

7.2. The idea of re-testing is as follows:
8 that we ditionally accept the periodicity 7, and want to test whether

PP

the periodicity p, can aleo be considered as significant.
The teet criterion yielded by the Likelihood Ratio method is

y " .4
Z - M-8 -2 m-A—8p)—8ip)

{7.5)
]
E {ZK_A_ol(pl)_al(PI».

1

where A'8)(p,) (t=1, 2, ..., p,) are the maximum likelihood estimates of the paramet

in themodel M(p,) and A, 8(p,) (t=1,2, ..., p,)and §(p,) (¢=1, 2, ..., p,) the maximum
likelihood estimates of the parameters in the model M(p,, py). There are two situations
when the oriterion (7.5) takes particularly simple forms.

(8) If p, and p, are relatively prime, and if N ig a common maultiple of p,

and p,, the least squares eatimates A, 8(p,), 8(z,), and A, §/(p,) are given by

A=A =2,
al(?x) = 0;(?1) = &(p)—E..; ¢=1,2,...,p),
8ipy) = 2Dy —E.; (t=1,2, ..., 1), e (1.8)

Bo that (7.5) reducea to

’. -
Ex (Bu(py)—Z..}'n(ps)

(1.7)
P, P,

£ (25, = X (8.(pr) B )1dp,)— T (Fu(pa)—E- ) m(pa)

t=l te] t=)

— Pl ynder the null hypothesis.
Nop—p 1 vee

The result holds approximately true even if N is not & common multiple of p, and py
provided it is large.

which we may treat as F,._m,_,l_,.ﬂx

20
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(b) The second situation is when p, is a multiple of p,. Let py=2p, It
will be seen that only 2p, outof the 3p, parameters involved in the ‘modal can be esti-
mated, as the lesst aquare equations (7.2) are not all independent, (7.5) will be found
to reduce to

29, Py
Ex {E.-(?Pl)—’--)‘m(%)—i {&(p1)— 2. Y1) (1.8)

v " _
¥ 0B )— T {z2p)—E.Yn(2p))
Ll lml

which we may treat 83 & Fy , y_g, X ¥ _f 121,1 under null hypothesis. For all other

values of p; and p,, it is.suggested that 6(p,), (¢=1,2,...,p,) be estimated by {z,(p,)—2..)

{t=1,2,...,p,). Then, let this estimate 8(p,) (t=1,2, ...,N) (¢t reduced mod p) be.
subtracted from 2, (t=1, 2, ..., N), and let the residual series be subjeoted to & fresh

F-analysis. If the recalonlated F at py; which we may denots by F(p,/p,) be significant,

we accept p, 88 & réal periodicity; if not, we reject the peak at p, as a spurions effect.

The significance of & Retest F can'be judged by comparing it with the lower signi-

ficance line; that is what we have done in our illustrative examples.

8. ILLDBTB.ATION_S: ARTIFICLIAL, SERIES

8.1. In the present section we shall disouss in detail the application of our
method of disorimination to some artificially constructed Linear Cyclical and Linear
Regressive series, and also illustrate the.methods of fitting and that of retesting.
The final results were provided without cormmentary in our previous paper. In all
the examples we have chosen @ and f to be 0.01 and 0.0001 respeoctively. " The choi
was made on our finding that cyclical series in general produce extremely sharp peaks,
while there is considerable danger. of choosing as significant peaks due to series that
are purely rendom if the levels are lowered much further. We have chosen these figures

after obtaining and studying our F-diagrams, and therefore, the arbitrary nature of
the classifications needs no emphasis.

8.2. There are in all sixteen series. The first is a cyolical series given in
Kendall (1946). The next six are artificial series constrnoted by the author, the first
three. being oyclical and the next three being moving averagés. The remaining are
all autoregressive series givgnbykendall (1949). Diagrams 1 to.16 are the F-diagrams
for these series. Table 1 summarises the actions and decigions teken on the basis of
the diagrams in & self explanatory way.

8.3. Diagram 1 faithfully bears out everything we have said in seotion 3.
The series is oyolical with a single periodicity. The diagram has only two peaks, one
at the true value of the periodicity 10, and another at ita mulfiple 20, the second
peak being smaller in magnitude than the first.
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8.4. The series for diagrams 2 to 4 have been built up in the following way.
First, g random series with & rectangular distribution was taken; to it was added a
oycle of length 8; this gave our seriea 3 (diagram 4). 'To this was then added a cycle
of length 12 to give our seriea 2 (diagram 3). Lastly, series 1 (diagram 2) waa obtained
from series 2 by adding to the latter a oyole of length 5. Thus the three series have
the same random part, and are well auited for studying the effect on the diagram of
the simultaneous existence of several periodioities of different strengths. It will
be observed that F(8) in diagram 3 is leas prominent than in diagram 4 due to the in-
fluence of eyole 12, and still more'so in diagram 2 due to the added influence of the more
powerful oyole 5. Also interesting is the fact thatthe cycle 12 fails to produce a peak
in any of the diagrams. This cycle has the least variance of all, and ita effeot is com-
pletely obscured. Again i diagram 2, the more important cycle 8 produces a
sharper peak than 5, as we expect.

8.5. Diagram 2 shows three peaks inregion 4, at 5, 8 and 18, and two in region
B, at 10 and 25. Acoording to our rules, we decide that the series is periodic. We
unconditionally acoept the values 5 and 8 and treat the peaks at 10, 16,and 25, with
caution as they are multiples of 5 and 8. In order to reteat these oycles,
we should eliminate 5 and 8 simultaneously. But the fact that the peaka at the multi-
ple points are smaller in sharpness than those at 5 and 8, suggest that the former are
merely reflections of the latter. If that ia so, the peak at 18 would vanish if we eli-
minate 8 only’ whether we eliminate 5 or not. Similarly, in retesting 10, we may
eliminate § only. By this meana we cin save computational labour and use the
convenient formula (7.8).

Re-test for oycle 16:

total sum of squares : 96713.2

aum of squares due to period 8 : 47958.5

sum of squares due to period 16 1 487126

sum of squares due to 16 when 8 is eliminated : 48712.6—47958.5

=1764.0

residual sum of squares 95713.2—48712.5

=47000.7
e - it
= 0.2088

(Note should be made of the fact that the error sum of squares is the same as the within
column sum of squares in the Buys-Ballot Table for trial period 18. This is due to the
fact that we cannot construot a model having two distinot periodicities 8 and 16,
and having 24 parameters in all: we can fit at most 18 parameters and the fit is the same
aa if we were fitting a model involving one period of length 18 only.)
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Re-test for oyole 10 :

total sum of squares 1 DB713.2
sum of squares due to 10 1 16410.3
sum of squares due to 5 : 20010.7

sum of aquares due to 10 when 5 is eliminated ‘' : 3600.4

error sum of squares : 15702.6

F(10/5) = 7223‘2"; x % = 1.0463

Both the re-tests give nonsignificant results. Similar result is obtained
for 25. Hence we decide that the series contains only two periodicities, 5 and 8.

8.6. Diagram 3 is extremely interesting in that while we know that the series
contains only two periodioities 8 and 12, there are in the diagram three peaks at 8, 16
and 24 ; the one at 16 is smaller than that at 8, but the one at 24 is larger than that
at 8. Judging by the diagram, we would suspect that the peak at 8 is genuine and the
one at 18 is a reflection of that at 8. But we cannot say that the peak at 24 is also
a reflection of the one at 8, for if it were 80, it would very probably be less than that
at 8. We suspeot that there are some genuine periodic elements at 24 and this is what
the re-test establishes. Hence we conclude that the series is periodic with two periods,
8 and 24. Thus, the genuine period 12 is obscured by the period 8; but 24, being a
nultiple of both 8 and 12, becomes more pronounced than either of the actual ounes.

8.7. The Linear Regressive series also on the whole behave according to our
expectations. All but Kendall’s 4, 12, 14, 16 and the artificial M4 (2) (that is, moving
average of order 2) series (author’s 5) have diagrams lying entirely in region C. Series
12 and 14 produce peaks in the region 4, and our method therefore gives wrong deci-
sions regarding them. The others have peaks in region B. According to our method,
we should first of all see which of the peaks may be considered significant, if the series
is at all periodic. Then we have to compare the fit of the periodic model with the opti-
mum linear regressive fit. This is done in Table 3. Series 18 has peaks at 7, 14 and
21, in region B, and the peak at 14 is found nonsignificant. Series 4 has two peaks
in region B, at 13 and 15, the one at 15 being smaller. We subjeot the period 15 to
are-test. As 15 is not & multiple of 13, as suggested in the section 7 we carry out
an approximate re-test by estimating the periodic elements of period 13 by the column
means for period 13, subtracting them from the series, rearranging the residual seriea
in & Buys-Ballot table for period 15, and caloulating & fresh F-ratio for this table.
There is, however, no need of actually obtaining the residual series. The total
sum of squares for the residual series is just the residual sum of squares for period 13.
8,(13) (which is the estimated (-th periodio element of the periodicity 13, ¢ being
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reduced mod 13, (¢=1, 2, ..., N)) is arranged in a Buys-Ballot table for periodicity
15, 8,(15/13) being ite t-th column mean and £..(15/13) its geveral mean. If

*5,=3,(16)—0,(15/13) and z..=z.—B..(15)13), t=1,2, ..., 16),
then the between group sum of squares for the residual series is
15
T (2.—3..)* n{16).
[

The results are as follows :

total sum of squares 1 131212.40
between group sum of squares T 46414.84
F(5/13) = 4841484 L T2 _ ) hoes.

84797.60 14

This is not significant at the 0.01 point.

Henoe if series 4 is at all periodio, it has one period, viz. 13. The Moving
Average seriea (author’s 5) hes got only one period 11, and hence the problem of res
-testing does not arise.

8.8. Table 3 carries out the comparison between the.optimum periodio and
the optimum linear regressive fits. Let p be the periodicity of the cyclical fit and k
the order of the optimum autoregressive fit, Then, we have to compare

within column sum of squares for period p % N—-1

—_— 8.1
total sum of squares p—1 1)

itk 1= e 1
N—k
where r8 ., 11 1)-..,1 i8 the multiple correlation coefficient of z, and 2,_,, %y --. %3+

(Note that the abbreviation L. R. is used in the table to denote Linear Regressive —
Model.)

9, ILLUSTBATIONS : NATURAL SERIES

9.1. Rulés of action having been decided upon on the basis of analysis of the
artificial series, we proceeded to apply our method to & number of observed series.
The final results were published in the previous paper. The most noteworthy feature
in them js that our method does not seem to be biased in favour of any one of the types
of processes: & fair number of series were obtained for each of them. Due to lack of
space, we have not been able to provide for examination by the reader all the diagrams;

+only a fow, representing all the different types, are presented. The most interesting
feature of all these diagrams is that, except for a few (of which an example is diagram
17), the peaks of even those whioh have the most prominent peaks are hardly as large
ag those in the artificial oyolicel series. The obvious conolusion is that natural series
ere hatdly ever periodic in the same olear-out way aa the artifioial series are. This is
quile in line with the idea in vogue that a natural series is less likely to have either
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a purely conti or & purely disconti speotrum than to have a mixture of the
both.

0.2. Table 2 summarises in a self explanatory way the actions and descisions
taken regarding the series on the basis of their F-diagrams. It is seen that the firat
four series are decidedly accepted as cyclical at the F-diagram stage. Of the rest, the
next six have their diagrams entirely in region C, and are therefore decidedly accepted
as linear regressive. The remaining twelve series have peaks in region B but not in
region A. For these latter twelve series comparison has to be carried out between
the Optimum Linear Regressive fit and the Optimum Linear Cyclical fit. This is
done in Table 4. Those series which, on the basis of Tables 2 and 4, were thought
to be Linear Regressive. were finally subjected to the test method of Rudra (1952)
and the decisions a8 to their scheme are summarised in Table 5. A few series which
should have been included in the Tables 4 and 5 are not there, aa their serial correla-
tions were not available to us,

9.3. An especially interesting case is Wolfer's Sunspota series (diagram 18).
It is found by our method to be cyclical with periodicity 23. It is however well known
that this data has a periodicity of length 11.5. As our method applies only to integral
periodicities, we notice a peak at 23, and a minor one at 11, which latter vanishes on
elimination of 23. It should be recalled that the series has lately been thought to
follow an autoregressive scheme of order 2. In faot, we find that if the Sun-Spots
series be subjeoted to the discriminatory test of Rudra (1952) we do decide on 4 R(2),
and the 4R fit accounts for 819, of the variability while the periodic fit accounts for
ouly 32%. Thus our present decision is wrong quite definitely. The reason why our
method fuilg is that, the series, regarded as autoregresive, has » ‘mean distance between
uperosses’ of about 11.5.  Thus, the series may also be regarded as genninely periodio.
Hence our decision, which agrees with that of Sohuster, is understandable.

In conclusion I have to acknowledge my indebtedness to Dr. F. N. David
of University College, London who helped me with preparation of this paper.
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TABLE L SUMMARY OF THE ACTIONS AND DECISIONS TAKEN ON THE BASIS OF THE
DIAGRAMS 1 TO 18

coriod.. which
length ave paoks in poriods result of
diagram refarence description of region subjocted retosting decision
no. serion to
. B rotesting
i} 2 ® # (6) (O] (U] (8)
!  Kondall M(10)* 10 L signi-
(1848) oiey a4 % g0 weme 30 TR MO0)
M(5,8,12) not aigni-
2 author o) 132.50  1u0 T H foant s
) 0(8) 600.00 16 26 as " (5.8)
a(12) 34.02 “
3 " M(8,12) 8 18 not sigoi-
(2 o(8) 600.00 120 16 noms 2 ficont M(8,24)
a(12) 34.02 24 significant
) “ M(8) ] 4 signi-
& o(8) 600.00 120 6 nons 1 TReant MB)
§ 1-‘) MA(LN 100 none nons L.R.t
8 » MA(2) M(i1)
) ) 100 none 1 or LR,
y i MA() 100 nons  muone LR.
8  Kondal AR(2)}
(1949) 240 none nons L.R.
()
] & ) AR(2) 240 nons  noms LR,
10 & AR(2) 240 nons  nons LR.
1 " AR(2) 13 not signi- LR.
% 100 mome g 15 Boent MQLY)
12 FB) AR{3) 200 nons  nome L.R.
13 (ib) AR(3) 100 necus  nons LR.
14 " AR(3
i (8) 100 31 nome M(21)
15 » AR(8) b signi-
0 ( 100 1 22 28 "4 c:n%‘“ M(11)
18 ” AR{8) 7 not signi-
dey 100 mome 14 u fean Ma2h
21 significant,  OF LN

*M(a, b): Periodic Model involving two periods, o end b.
1 L.R.: Linear Rogressive Model.

§ MA(0): Moving Averago of older a.

3 AR(}) : Aatoregressive of older (b).
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TABLE 2. SUMMARY OF ACTIONS TAKEN AND DECISIONS REACHED ON THE BASIS OF
F.DIAGRAMS FOR NATURAL SERIES NUMBERED 1 TO 22

poriods which
have poak in periods
sories  diagram reforonoo length region subjoot reault of decision
no. 0o, to retesting
A B retosting
weather 2
1 17 Whittekor and 800 20 M(24,20)
Robinson {1840)
2 Kendgl (1948) 36 12 M(12)
Wolfor'es sun spote Bot signi-
3 18 yile (1927) 178 23 n 1n fcant, M(23)
oata acres P
4 19 Kendall (1043) (1] 24 12 24 significant M(12,24)
coat of living index
s 20 Wold (1838) " LR.
Beveridge's wheat
(] 21 ricos 870 L.R.
) Kendan (1948)
ks 22 cows 65 L.R.
8 horees 61 L.R.
] potato acreage 66 L.R.
10 23 wheot yiolds 48 L.R.
11 oats priocss 64 ] M(9) or L.R.
12 barley prices 64 13 M(13) or L.R,
13 oats yield 48 18 M(18) or L.R,
14 potato yield 48 24 M{24) or L.R.
15 barley acros 85 17 M(17) or L.R,
8 18 not signi
ficant
16 sheep 85 é‘ﬂ o not aigni M(8) orL.R.
floant
17 wheat prices 64 lg 19 ng:;:rigm M(8) or L.R.
18 24 wheat acres 65 9 M(9) orL.R.
19 pigs 65 18 M(15) or L.R,
20 barley yield 48 15 M(15) or L.R.
marriage
2 Kendsll (1046) &4 20 M(20) or L.R.
2 25 froight car loading 168 12 M(12) or L.R,

Davis {1941)

1 Roferoncea to the sories numbered 7 to 20 are the same aa that of series 4.
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TABLE 8. COMPARISON BETWEEN THE OPTIMUM CYCLICAL FIT AND THE OPTIMUM
LINEAR REGRESSIVE FIT WITH REGARD TO THOSE ARTIFICIAL SERIES THAT
HAVE PEAKS IN REGION B AND NOT IN REGION 4

optimum auto-

and tho rosidual 8t and tho e mld\nl

diagram po. true modsl p variance deocision
a8 a proportion of 84 & proportion of
the total variance the tol ariance

L] MA(2) AR(3) M(11) L.R.
(sutbor’s 5) 0.57 0.82

11 AR(2) AR{(3) M(13) L.R.
(Kendall's 0.37 0.80
sorios 4)

16 AR(8) AR(3) M(7,21) L.R.
(Knndol)ll ‘s 0.27 0.68

1

TABLE 4. COMPARISON BETWEEN THE OPTIMUM CYCLICAL FIT AND THE OPTIMUM
LINEAR REGRESSIVE FIT FOR THOSE NATURAL SERIES THAT HAVE PEAKS
IN REGION B BUT NOT IN 4

proportion of ruLd‘ud proportion of residual

seriea . variance to tot variance to total .
no. sories wvariance of & oyolical variance of a linear decision
fiv regroasive fit

12. barley prioes 0.88 0.61 L.R.
14. potato yield 0.53 1.00 M(24)
15. barley aare 0.80 1.00 M(17)
18. shoep 0.75 0.28 L.R.
17. whsat prices 0.78 0.585 L.R.
10. pige 0.78 0.65 L.R.
21. marriage 0.62 0.39 LR.

Beriu 11 and 18 are lbson!- in the above table as it was not possiblo to find for them an optimum
of small order. Verdiot should be in favour of the oyclical type in pursuance

of the ‘prinoiple laid down in 6.3.

‘The aerial correlations for series 13, 20 and 22 being ilat linsar ion fit for
thom counld not be obtained, and hence they have aleo been excluded from the above tabie.

TABLE 8. DISCRIMINATORY METHOD OF RUDRA (1952) APPLIED TO THOSE SERIES
WHICH LIE ENTIRELY IN REGION O AND THOSE SERIES WHICH ON THE BASIS
OF TABLE 4 ARE DECIDED TO BE LINEAR REGRESSIVE

soriea

no. series deoision
5 ooat of living AR (2)
[} Bevoridge'a wheat pricea MA (1)
T  oows MA (4)
[} potato acreage MA (2)
10 wheat yielde random
12 barley pricea MA (1)
18 sheep AR (2;
17 wheat prices MA (1
19 pigs MA (2) [or AR (2)
21 marriages AR (4) [or MA (4)
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[

Diagram 2. Artificial oyclical series. Three
periodioities : 5,8 and 12, {author)
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®
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-4
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3 .
Diagraro 4. Artificial oyolionl sories. One
periodicity : 8. (author)

SR R T
Diagram 3. Artificial cyclical series. _ng
poriodiaitios : 8 and 12, (author)

L
\/\/Wv

2.00

Dingramn 5, . Artifidial moving uvorage
aories. (nuthor)
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200

- - 3 )

Diagrarn 8. Artificial moving average
soriea. (author)

N

2.00]

wo

Diagram 8. Artifioial autoregrosaive
soriea, (Kondall’s. 1),

Diagram 7. Artificial moving average
eoriea. (authar)

ragram 9. Artipicial antoregressive
sories. (Kendall's 2),



A METHOD OF DISCRIMINATION IN TIME SERIES ANALYSIS

N

Diagram 10. Artificial autoregreasivc
sories. (Kendall's 3).
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Diagram 12. Artificial sutoregressiv
sories. (Kendall's 8).
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Diagram 11. Artificial autoregressive
series. {Kendall's 4).
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3 Y LY 20 »

Diagram 13. Artifisial autoregressive
series, (Kendall's 10).
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i
Diagram 4. Artificial autoregressive
sories. (Kendall’s 12).

Diagram 16. Artificial autorogreasivg .. .

series. (Kandall's 18).

R

[

—_— .
b

© 0 [
lisgram 18. Artificial autaregressive
sefles, (Kendall's 14).

Diagram 17. Weather (Whittaker).
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.00 a00

a0 w00

100 200

2.00 roo

100 100
Y o n ) [

D
Diegram 18. Wolfer s sun spots. (Yule). Dingram 19. Onte acres. (Kondall).
200 >.00]
a0 w00
- K - \\
e roo
wos “oo /\/\/\/\/\/\/\
e e e 0w s w " . n
Diagrem 20. Coet of Living. (Wold) Diagram-21. Beveridge's wheat

prices (Kendall)
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=l
14

» o - 0 ~ - 0 o o »
Diagram 22. Cows. (Kendall), Diagram 23, Wheat ylold. (Kendali},
ao0
3.00 : 8.00
«00 as0
no0 o0
oo 200
00 / a0

D e P . o n

Diagram 24. Whoat aores. (Kandall), Diagram £5. Freight carloading. (Davis),
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