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Prototype reduction using an artificial immune model

Utpal Garain

Abstract
classification approach is relatively new in the field of
pattern recognition. The study explores the potentality of
this paradigm in the context of prototype selection task that
is primarily effective in improving the classification per-

Artificial immune system (AlS)-based pattern

formance of nearest-neighbor (NN) classifier and also
partally i redvcing s sworage and computing  lime
requirement. The clonal selection model of immunology
has been meorporated o condense the onginal prototype
set, and performance is verified by employing the proposed
technigue in a practucal optical chameter recognition
(OCR) system as well as for training and testing of a set of
benchmark databases available in the public domam. The
effect of control parameters is analyzed and the efficiency
of the method 1s compared with another existing technigues
often used for prototype selection. In the case of the OCR
system, empirical study shows that the proposed approach
exhibits very good generalization ability in generting a
smaller prototype hibrary from a larger one and at the same
tme giving a substantial improvement m the classification
accuracy of the underlying NN classifier. The improvement
in performance has been statistically verified. Consider-
ation of both OCR data and public domain datasets
demonstrate that the proposed method gives mesulls betler
than or at least comparable o that of some existing
Lechnigues.
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1 Intreduction

The nearest-neighbor (NN) classification [ 1] scheme is one
of the most popular supervised classification methods in
pattern recognition (PR) tasks. It provides a simple and
intuitive method for solving a great variety of real-world
applications. In general, it pedforms well but suffers from
two  major drawbacks. (1) Swrage and  computational
requirements:  storage of the entre prototype  dataset
{library) requires large space. Moreover, comparison of each
targel (lest) pattern with every protolype in the stored library
makes the method computationally kess attractive. (1) Sen-
sitivity: the NN classification scheme is guite sensitive Lo
noise objects and outher samples. To overcome these
drawbacks researchers have proposed a prototype selection
scheme that is a process by which a smaller set of prototypes
is selected and used for classification. The resultant set may
contain either members of the original prototype library or
new pattemns formed by using the original patterns. Such a
method reduces storage and compuling Ume mequirement
and if designed propedy, it uwsually provides some
improvement in classification accuracy.

Research in this area staned immediately following the
origmal NN scheme [8] was proposed. Hant [2] proposed
the condensed nearest-neighbor (CNN) algonthm that mi-
tially puts a smgle prototype in the condensed set and then
the remaining prototypes  are considered one by one.
Inclusion of a prototype nto the condensed set s decided
by finding its NN in the new set. If their labels match then
the prowtype 15 ignored. Swonger [3] considered both
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addition and deletion of original prototypes to and from the
condensed set. Gates [4] proposed an terative deletion of
redundant prototypes o form the condensed set. Following
these initial efforts, many other approaches or modifica-
tons of the onginal methods bave been reported in the
literature. To get an overall idea on the advancement in this
field, one may consults several adicles in [5-19]. These
articles meely present how the research has been advancing
in this area and at the same bme, why prototype reduction
15 sull considered as a challenging mesearch problem.

This article proposes a biologically mspired approach
for prototype condensation. The method is based on the
artificial immune system (ALS) [20] that in the recent past
has emerged as a viable computational framework for
several engineering problems. The method has already
found is successful applications in several engineering
problems including compuler security, network ilrusion
detection, fraud detection, ete. [21]. However, applications
in PR have been investigated very mecently. The approaches
s0 far used to design ALS can broadly be classified into
three groups, namely, immune network models [22], neg-
ative  selecton  algonthms [23], and clonal  selection
algonthms (CSA) [24]. Using some of these paradigms in
both supervised [25-28] and unsupervised [29, 30] pattern
analyses have been attempted and encouraging results have
been meported. The present study endeavors o contribute
toward this on-going research effort.

This article investigates the mle of an AlS-based
framework for prototype data reduction task. Incorporation
of immunological metaphor for this sk is motivated by
the amazing adaptability and generalization ability of an
nmune  syslem in encountering pathogens. Dunng ils
lifetime a mammalian body is exposed to a thousand of
external pathogens but the immune system 1s able o pro-
tect the body by fighting against these limitless varieties of
enemies. However, 1o do so an immune system need not
memonze cach and every pathogen. Rather, out of a single
encounter the system adapts itself in such a way that makes
it able w0 provide rapid response o any subsequent attack
by a class of pathogens similar to the one seen earhier. The
central contnbution of the present study 1s o employ this
biological idea for designing of an efficient method for
prototype selection and for this purpose the CSA of
immunology is followed.

The clonal selection model (popularly known as clonal
selection algorithm, CSA) was first proposed by Burnet
[31] and then further developed by Jeme [32]. The algo-
rthm states that a mammal mitally possesses a relatively
small number of antibodies. The successful binding of an
antibody o an antigen triggers the antbody o produce a
large number of copies of itsell. In this way, a pre-existing
antibody is effectively selected by the antigen, which
stimulates the chosen antibody o produce a multitude of

clones. A computational model of CSA is available in [24,
30, ete. with minor varations among the implementations.

Contribution of this comespondence includes a novel
formulation of the prototype selection problem from the
immunological viewpoint so that the capability of CSA is
explored. A goal-directed evaluation strategy is formulated
to demonstrate the antocipated data redoction capability of
CSA. This demonstration at first considers one of the most
popular PR problems, namely, optical chamcter meeogmi-
tion (OCR) system. An OCR system [34] using a NN
classification-based recognition engine is involved Lo
achieve the goal-directed evaluation of the proposed
method. The improvement in character recognilion accu-
racy by employing the proposed system has been verified
by statistical tests.

In addition, comparison of the present approach with
two of the commonly vsed technigques [9, 37] 1s presented
in this context. Performance evaluation then considers
standard benchmark datasets available in public doman
and checks the efficiency of the proposed method. In
addition, performance on these benchmark datasets has
been compared with that of a recently proposed method
[19] for prototype reducton.

The rest of the paper is organized as follows. Section 2
presents a general overview of the immune system, its key
components that are essential o the development of an
artificial version of the system. The section then introduces
the clonal selection principle, which might constitute one of
the most important features of the immune response Lo an
antigenic stimulus. Section 3 describes how clonal selection
model has been used for prototype selection. An upper level
architecture of the proposed method 1s presented and then
individual components of the system are explained in
algorithmic manner. Section 4 outlines the goal-directed
evaluation scheme to judge the efficiency of the proposed
approach. The evaluation scheme considers a number of
benchmark data sets as well as a real task, namely, OCR.
Section 5 reports experimental mesults highlighting  the
achievements of CSA for prototype selection task. Statis-
tical tests are also presented wo show the significance of the
results obtained in this experniment. In addition, this section
compares the performance of the CSA-based approach with
another commonly used methods for prototype reduction.
Section 6 provides some concluding remarks.

2 Overview of the immune system

Several aspects of natural immune systems have been
productive sources of inspiration for research in ALS. The
description that follows is not comprehensive and is based
primanly on discussions presented by Castro and Zuben
[24], Carter [25], Watkins [26], and Timmis [30].
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The immune system is composed of a great variety of
cells among which two kinds of Iymphocytes play a major
role in the mmmune system: T cells (so called because they
develop o mawrity i the thymuos gland), and B cells,
which originate in bone marrow. When a pathogen invades
the body, special cells called antigen-presenting cells
(APC) process the pathogens so that their relevant features,
called antigens are available on the surfaces of the APCs.
An mdividual T cell or B cell responds hike pattern
matcher—the closer the antigen on a presenting cell 15 o
the pattern that a T cell or B cell mecogmzes, the stronger
the affinity of that T cell or B cell for the antigen. Although
the B cells are considered as the major the immune
response mechamsm that multiplies and mutates o adapt o
an invader, it is only when a T cell and B cell respond
together o an antigen that the B ocell 1s able o begin
cloning 1t and mutating o adjust o the cumrent antigen.
That is why T cells are sometmes called helper T cells.

2.1 Clonal selection algorithm

The clonal selection principle, or theory, 15 the algorithm
used by the immune system Lo describe the basic features of
an immune response W0oan antigenie stimuolus. The model
was first proposed by Bumet [31] and then further deve-
loped by Jeme [32]. Itadvocates the idea that only those cells
that recognize the antigens proliferate, thus being selected
against those that which do not. Clonal selection operates on
both T cells and B cells. When the body 1s exposed o an
antigen, some sub-population of B cells responds by pro-
ducing antibodies. Each cell secretes only one kind of
antibody, which is relatively specific for the antigen.

A B cell that is sufficienty stimulated by the presented
antigen rapidly produces clones of itself. At the same time,
it produces mutatons al particular sites noats gene that
enable the new cells o match the antigen more closely.
There is a very rapid proliferation (known as hyper-muta-
tion or proliferation-1) of immune cells. These cells
undergo successive generations of cloning (these genera-
tons are produced through proliferations known as stage-11
proliferations or simply proliferation-11) with an aim of
producing better and better matches for the antigens of the
mvading pathogen.

In fact, an antigen stimulates the B cell wo proliferate
idivide) and mature into terminal (non-dividing) antibody
secreting cells, called plasma cells. While plasma cells are
the most active antibody secretors, mitial B cells, which
divide rapidly dunng hyper-mutabon phase, also secrele
antibody, albeit at a lower e, Whle B cells secrete
antibodies, T cells do not secrele antibodies, but play a
central ole in the regulation of the B cell response and
ensure the cell-mediated immune responses.

B cells that are not stimulated propedy because they
do not match any antigens in the body eventwally die.
This implies a resource limitation technigque followed in
the body. Assuming that the number of B cells in the
body is finite, generated B cells compete for resources.
The most stumulated B cells consume resources and the
remaining cells are removed from the system. This meta-
dynamics of the immune system applies a certain amount
of evolutionary pressure o ensure that only the fittest (to
fight against an invading antigen) B cells remain in the
Syslem.

Lymphocytes, in addition to proliferating or differenti-
ating into plasma cells, can differentiate into long-lived B
memory celfs. Therefore, when a body has successfully
defended against a pathogen, a comparatively small num-
ber of memory cells remain in the body for very long
period of time. Memory cells circulate through the blood,
lymph (fluid that camies Iymphatic cells and invading
antigens) and tssoes, probably nol manufacturing anti-
bodies [33], but these memory cells rapidly mecognize
antigens similar to those that ongimally caused the immune
response that created the memory cells. Therefore, the
body’s response o a second invasion of the same pathogen
or a very similar invader is much more rapid and powerdul
than to a never-before-seen pathogen.

3 Protoiype selection using CSA

Let an NN classifier use a prototype set Poin which p;
represents an individual member of this set: P = {p,
Paseeore b Each o py has two attnbutes: class label: pic
eC = {¢) 03,0, | and feature vector: pi-f. The goal of the
prototype selection process is o find a condensed set P
from the original set P such that |P] < 1Pl The condensed
sel P' may contain either members of P or new patlerns
formed by using the elements of P.

In the proposed method, P is considered as the set of
antigens AG = {ag. ags....ag ) and CSA s employed o
obtain P which is synonymous to the immune memory,
IM = {m, ma,...m,} where m; 15 a memory cell having
two attnbutes similar o those of an individual antgen. For
any m;, mpceC = {1, 2.0} 15 the class information and
m;-f 15 the featre vector. The perfect metrics proposed in
[35] has been considered for generating feature vectors for
individual prototy pe (i.e., antigen). Three types of features,
namely, projection profile, contour and stroke directions
are considered. This produces a vector of 448 dimensions
out of which first 192 dimensions vary from 0 1o 31, next
192 values are 1o [0, 63] and last 64 valoes are in [0, 127].
All these valoes are next converted mto binary values.
Therefore, cach character 15 represented as binary string of
length 2,560 (192 x 5+ 192 x 6 + 64 x 7).
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Figure 1 outlines the intermediate stages of CSA that
Lakes an antigen set as input and produces an immune
memory as outputl. The immune memory 15 considered as
the condensed set of prototypes that 1s used during classi-
fication by the NN classifier. The algorithm used in this
study borrows the major concepts from [26, 30] and some
ideas from [25]. The algorithm involves three stages,
namely, mitalization of immune memory, clone genera-
ton, and selection of clones 1w update the immune
memory. These stages are briefly discussed below.

Initialization. This stage deals with choosing some
antigens as initial memory cells o nitalize the immune
memory. In the present study, only one antigen from each
class 15 randomly chosen o mitialize the immune memory
(IM). It is to be noted that the number of inital cells has
certain effect on system’s performance as illustrated in [26].

Clone generation. For a given antigen agy, s closest
match (say, my) is, at first, chosen from the existing M as
follows:

stim{aghk, mi) = stimiagh, mj), .
for all j #iand mj - ¢ = agi - ¢ (1)
The stmulation function stmi-) 15 wsed 0 measure the
response of a B cell o an antigen or to another B cell. For
the present implementation of CSA, the stimulation func-
ton retums a value in [0, 1] and 15 inversely proportonal o
the Hamming distance' between the feature vectors of the
argument elements. The function stimi-) retwrn *1° for the
minimum hamming distance (i.e.. 0) and 07 for the maxi-
mum distance (1.e., 2,560 for this expenmentation ).

Aflter amemory cell m; (renamed asmyg,gen) 15 selected for
the current antigen ag,, m, 4 2oes through a proliferation
process (Proliferation-1), known as somatic fiyper-mutation
that generales o number of clones of myq,. The exact
number of clonesis determined by three parameters, namely,
(1) hyper-mutation mite, (1) clonal rate and () stimiag,.
Mygen). Note that the first two parameters are user-defined.

Each clone 15 produced through mutation (controlled by
MUTATION_RATE, a user defined parameter) at selected
sites of myen's feature vector. No clone is an exact copy
of M0 The algorthms for proliferation-1 and the gen-
eration of mutated clones are outlined in Algorithms 1 and
I, respectively. These algonthms are similar 1o the ones
described in [26]. On completion of hyper-mutation, a

! Instend of Hamming distance, the present e xperiment also considers
the use of Euclidean distance in measuring stimulation valoe. In this
case, 448-dimensional festures need not be converted into hinary.
Since the minimum and maximum values that can occur in each
dimension are known, distance between a pair of patterns is
normalized © give a stimulation measure in [0, 1], However, by
using Evclidean distance instead of Hamming distance no significant
change was observed in the experimental results. All the results
presented here are oblained when Hamming distance was used (o
measure stimuolation.
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Fig. 1 A high-level architecture of the C5A used in the proposed
approach

stimulation value is computed for each element b € B as
sum(by, ag). Here by denotes an individoal B cell clone and
B represents the entire cloned population.

To minimize the computational cosl o generating
clones, a mesource limitation policy [22] 15 incorporated.
The algonthm is described in Algorithm LI The algonthm
follows an ad hoc scheme where half of the resources are
given Lo the clones having same class of the current anti-
gen. The other hall 1s equally divided among clones of
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other classes. In other words, the algorithm makes more
resources available to the in-class (with respect o the
current antigen) B cells than out-of- class cells.

Stopping criterion defined in Eg. 2 is used to terminate
the iteration on an antigen ag,. Say, 8, is the collection of
the in-class B cells, ie. cells having class label ¢ = k and
B 15 the set of the rest of the out-of-class cells. The cri-
terion in (2) then considers cells (in-class) in B, differently
from the others, ie. those {out-of-class) in B2, This gives a
discriminative nature of the proposed algorithm making the
learning criterion relevant to classification accuracy.

If this criterion in (2) is not met then further prolifera-
tion of existing (ie., survived afler resource limitation) B
cells is invoked. In this stage (ic., proliferation-11), each
survived B cell, ie., b; is proliferated to produce a number
of clones determined by the resources allocated 1o it
Proliferation-11 process is similar 1o one for proliferation-1
outlined in Algorithm 1 except the calculation of the
number of clones to be generated from each surviving B
cell (b;). This number is determined only by the CLO-
NAL RATE and simiagg, by as used in Algorithm 1 to
compute resources claimed by an individual B cell.

E]‘:',' b, - stim
1B
ZJ-E,' by - stim
— T = STIMULATION_THRESHOLD

(2)
Clone selection and wpdate of immune memory. Once
the stopping criteron in Eq. 2 is met for an antigen, the
most stimulated (w.r.t. the current antigen undergoing the
proliferation stage) B cell among the survived ones is
selected as a candidate (let bepgigne denote this cell) to be
mserted o immune memory. This process 15 outlined in
Algorithm IV that is similar to one in [26]. This algorithm
makes use of two parameters AS (average stimulation) and
@ {a scalar value). The parameter » is a user-defined one,
whereas AS is measured from the input antigen set (i.e., the
orginal prowtype) as the average stimulation between all
pairs of the mean values of the antigen classes.
Algorithm L Hyper-mutation/proliferation-1

Let Bis the set of Boell dones to be created afler somatic hyper-mutation
Inifialy B={Mnes}.
Let M, denoie the number of dones and calculated as,
NA HYPER_MUTATION_RATE * CLONAL_RATE * stim{agy, mj

While (181 = N
Do

mut & false (mutis a Boolean varnable

Call mutate{m,, ..., mut)

Let b denote a mutated done of M.

If {muty Then B8 by
Done

Algorithm 1L Production of mutated clones

mutate|x, fiagh]
For each dement in 1.1 4 nola that the faiur vadar v is basimaly a lnany sidngarl lngth 2550
Do
Ganerale a random number, rin [0, 1]
If {r< MUTATIKON_RATE]} Then
xi 6 togghedxf
fagé trus
Endit
i { fag)
Generale a random number, rin [0, 1]
Generale a random number, ciass in (1, n]
7 < MUTATION_RATE]
¢ =class
Daone
}

Algorithm 1L Resource allocation

Foreach b, = B
bstim= stim|ag, bl
End lor
Firtel rranimuen {minSten | and measinuen (e St trom all b, simvaues,

Fareach b= B
0 {b.c == ag.c) hatim = {b.s¥m -minSim{maxSem-minSem),;
Else bustm = 1 - {bBustim -min Stm] 4 maxSSm-minStm]);
boresources = Batim® CLONAL _RATE,
End lor
ciass = 1
‘While {class < n} 0 & he 1olal number of dillerent dlasses
resAlivcaled = E.'JI.I?L'.IEII.':LJ.IIJ. = chass
H {ciass = age)
numResAliowed = (loalNumResoures )2
Elze numResAllowad = (vlalNumBescures)2%n-1)
‘While {msAllocaled > numBesAlowad)
numResRemove = s Alocaled — numPasAlios ed
Fild Brprme PAWING 1he kowest stimulation among 8l b's 2.1 bue= dass
Wb, .. ESOURCES < numFes Ramove)
Remawve bremawve from B
resAlocated = resAlocaled — Barovs. MESOLITES
Else Danow. FESOUNCES = Do, FESOURCES — NUTA ES REmMove

End whibe
Class = class + 1
End while

Algorithm 1V. Update of immune memory

Cand5tim & simag, b.ee)
MatchStim & stim (ag, M)
CollAF & siim{Maces, Do)
If {CandStim = MatchStim)
M M B
b (Calldff = « AS)
M= M- M

' ingertion into the immune memaory

& memaory replacement

4 Performance evaluation

The main objective of prototype selection is Lo improve the
efficiency of the NN classifier in terms of storage and
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computing time requirement, and the recognition accuracy.
The amount of reduction i protolype data has direct
reflection on the amount of improvement in storage and
computing tme but this may nol goarantes the improve-
ment in classification accuracy. Therefore, to conduct an
objective evaluation, one needs to investigate how well the
NN-classifier will perform the ultimate classification task.
The proposed evaluation of prototype selection methods is
in the context of character recognition, so the performance
of the character recognizer is defined as the objective
MIEASUTE.

A practical OCR system 15 involved for this purpose.
The report in [34] describes the development of an Indian
language OCR (ILOCR) system, which was later produc-
tized as the first ILOCR package for commercialization.
The system 15 a bi-lingual one in 4 sense that it can recog-
mize (in either manner) two most popular Indic scripts,
namely, Devanagari (Hindi) and Bengali (Bangla). The
recognition  engine  implements  an  NN-classification
scheme to classify more than 400 different shapes in both
the scripts. Two different prototype libraries were used one
for each of the two scnpts. The feawres and distance
measure used for classification are same for both the scripts
and described in details in [36].

The mtal prototype hibrary used by the recognition
engine was not developed by following a very judicious
method. Prototypes were added to increase accuracy for a
particular font face and then to tackle variations in font
faces and styles other prototypes were added on need basis.
This finally generates a large prototype library affecting the
average recognition performance of the system. Although
as far as computing time is considered the perdformance is
quite acceptable (about 45 characters per second on a
machine with average configuration; details can be found
in [34]). Degradation in classification performance there-
fore calls for a prototype selecuon phase. The proposed
method is then employed and its performance is evaluated
against the performance of the original OCR system. The
improvement in performance is then statistically verfied.
We call this as approach goal-directed evaluation, and it
can be used o evalvate other prototype selection methods
as well.

A comparative study makes use of this evaluation
scheme o compare the proposed method with two of the
mmportant existng techmgues for prototype selection. Al
first, a modified version of the original Hart’s CNN method
[2] 15 considered. The modification (named as MCNN) 1s
proposed by Devi and Murty [9]. In the modified approach,
the set of prototypes is built in an incremental manner. The
process starts with a basic set of protolypes comprising one
pattern from each class. The training set is classified using
these prototypes. On the basis of the misclassified samples,
a representative prototype for each class 15 determined and

added to the set of basic prototypes. Prototypes that do not
participate in the recent classification process are deleted.
The training set is then classified again with the augmented
sel of prototypes. Representative prototypes for each class
are again determined on the basis of the misclassified
samples. This process of addition and deletion is repeated
till all patterns in the training set are classified comrectly.

Choice of the MCNN for comparing the efficiency of the
present method 1s somewhat intentional, as MCNN has
been experimentally verified o perform better than some
other prototype selection methods that are designed based
on genetie algorithm (GA), simulated annealing (SA), tabu
search (TS), ete. The expenment m [Y] considers different
datasets 1o show the superiority of MCNN over CNN, GA,
SA, and TS-based techniques. Success of MCNN for effi-
cient prototype selection has motivated us to consider it for
comparing performance of the present approach with
MCNN.

MNext, another popular prototype learning algorithm,
namely self-organizing map (SOM) [37] is considered. The
source code for SOM was downloaded from hitp:/feww.
cis.hut fifresearchfsom_lvg_pak shiml and installed under
windows platform. The companson between the proposed
CSA-based approach and SOM is made by first executing
CSA and then number of prototypes in the reduced set is
noted. This number s used o set the x- and y-dimensions
of the map while applying SOM. A rectangular latlice is
chosen as the wpology of the map. With this experimental
set-up, SOM is executed. The prototypes (called nodes in
the rectangular grid) retumed by the SOM form the
reduced set of prototypes. Note that SOM is configured to
retum no. of nodes/prototypes nearly similar to the number
obtained from CSA-based algorithm. Recognition perfor-
mance using this set of prototypes selected by SOM
dictates its ability of choosing right set of reference
patlerns.

4.1 Performance evaluation using benchmark datasets

The second part of performance evaluation scheme con-
siders datasets that are publicly avatlable. For this purpose,
UCI repository of machine leaming databases [38] and the
Statlog Project [39] are consulted. Eight datasets as shown
in Table 3 are selected for evaluating the performance of
the proposed CSA-based approach. These datasets mostly
involve both numeric and categorical features that are first
converted into binary features. Therefore, the algorithms as
presented i Sect. 3 are apphed without doing any change.
MNote that they assume binary fealure veclors.

Choice of these datasets is somewhal intentional, as
many prototype reduction methods have already vsed these
datasets w report their performance. For example, o very
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recent study [19] has used several datasets from [38] and
[39], meported their resuls, and compared with two other
commonly used methods. This stody [19] abbreviated as
LPD (learning prototypes and distances) starts with an
initial selection of a small number of randomly selected
prototypes from the training set. Then it iteratively adjusts
both the position (features) of the prototypes themselves
and the corresponding local-metic weights, so that the
resulling combination of prototypes and metric minimizes
a suitable estimation of the probability of classification
error. Gradient descent 15 used to solve the minimization
problem o derive the adjustment rules.

As LPD is well tested with many datasets and found to
be producing good results, in the present experiment, it has
been selected as a reference study 1o compare our proposed
CSA-based method. Following section presents the details
of the CSA pedommance on both the OCR problem and the
public domain datasets. I also compares these results with
those obtained by some other methods.

5 Experimental resulis

The ILOCR described in [34] is used for the first phase of
evaluation of the proposed method. The OCR deals with
two magor Indian seripts, namely, Devanagan (Hindi) and
Bengali (Bangla), Our experiment considers both  the
scripts and nearly similar observations are noted. There-
fore, instead of meporting results on both the scripts
outcomes on Hindil dataset are presented here.

The Himdi datasel contains about 75000 chamcler
samples that were ground-truthed o assist the design of the
OCR. Character samples were collected from 50 document
pages selected from five books printed in four different font

Fig. 2 Effect of different

faces. The NN classifier used by the OCR engine deals with
427 distinet classes. The number of samples for each
character class in the dataset vanes from one class o
another. This number varies from a minimum of 37 w0 a
maximum of 262, The initial prowtype library is con-
structed  following an incremental manner. The new
prototypes were added to maximize the recognition accu-
racy on a document page in hand without considering its
effects on recognition of other pages. This process gene-
rates prootype library of 12,823 patems. In this library,
number of prototypes for each character class varies from a
minimum of 6 o 43,

Experiment shows that although the effort was 1o maxi-
mize the recognition accuracy of individual pages but the
average accuracy comes down o an alamming level. For
few pages high recognition accuracy such as 98-99% (in
such cases errors are mostly attributed 1o segmentation
method and therefore further addition of prototypes does
not help) were obtained when they were considered in
1solation but the average accuracy computed on all the
pages becomes quite low as 91.2%. Analysis of this deg-
radation in accuracy shows that many prototypes are used
for correet classification of one or few symbols but they
largely contrbute 1o misclassification of many other sym-
bols. The CSA-based prototype selection method described
i Sect. 3 s employed at this stage 1o improve the situation.

Since performance of the proposed method depends on
some parameters, the effects of parameters are first studied
for two different measures: (1) size of the immune memory,
i.e., size of the condensed prototype set and (i) recognition
accuracy. Results on Hindi dataset are shown in Fig, 2.
Afer studying behavior of individual parameters, experi-
mental set-up does fix the parameter values as follows:
stimulation threshold = 0,89, number of resources = 400,

96.0 3000

parameters on size of the

condensed prototvpe set and
TECOENILion MoCuracy: a
stimulation threshold (refer
Eq. 21, b number of esources

used for resowrce limilation, ©
mutation rate (refer Algorithm

Iy, and o affinity threshold
scalar, ® as used in Algorithm
v
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mutation rate = 0L.008, affinity threshold scalar, 2 = 0.4,
hyper-mutation rate = 2 and clonal e = 10 (the last two
parameters are used in Algorithm [ of Sect. 2).

With this parmmeter set-up, CSA-based protolype
selection method generates o protolype library of 2,544
patterns. This gives mome than 80% condensation of the
onginal prototype data, thereby reducing the stomge and
computing time requirement by a large margin, The num-
ber of samples for each of the 427 classes varies from 3 o
15 in the new protolype sel. An accuracy of 93.7% is
achieved when recognition of the whole dataset is
attempted wsing this condensed prototype library. This
improves the recognition efficiency by more than 4%.
Table 1 outlines the improvement in efficiency of the ori-
ginal NMN-classifier achieved by the proposed prototype
selection method.

5.1 Significance lesting

The results reported in Table 1 are then verified statisti-
cally. The significant test consists a typical null hypothesis
is that there is no difference in the two syslems cormes-
ponding o the two rows in Table 1. Let system A and B
denotes these two systems. For a test sel consisting of
samples for 427 classes, system A (old system) had an
average recognition score of 0912 and system B (proposed
system) had an average recognition accuracy of 0957, As
measured by average recognilion accuracy, system B per-
formed 4.7% better than A, but is this a statistically
significant improvement? To answer this question, signifi-
cance of the results is tested statistically.

Each system produces a score for each class and on a
per-class basis matched pairs of scores are obtained (since
there are more than one sample for a class, all samples with
the same class label are considered for computing per-class
recognition score). Significance in light of this paired
design is then evaluated. Two significance tests, namely, (i)
randomization test and (ii) Student’s paired r test are fol-
lowed in the present experiment. Details of many
significance tests including the two that have been used
here can be found in [40]. Each method has s own

Tahle 1 Performance improvement through prowtype selection

#Prototypes  Storage Required Classification
requirement  milliseconds  accuracy (%)
(MB) o classify
104 patterns
Original 12,823 i3 2,200 91.2
svslem
[24]
Proposed 2,544 0.7 550 957

criterion and null hypothesis. While there are fundamental
differences in the null hypotheses, all the three tests aim to
measure the probability (also known as P ovalue) that the
experimental results would have occured by chance if
systems A and B were actoally the same system.

3.1 Randomization test

For Fisher' s randomization test [40], the null hypothesis 1s
that systems A and B are identical and thus system A has
no effect compared to system B on the average recognition
accuracy for the given test samples.

Thus, if systems A and B are identical, then the decision
to label one score for a test class as produced by system A
or B is arbitrary. In fact, since there are 427 classes, there
are 27 ways 1o label the results under the null hypothesis.
One of these labeling is exactly the labeling of the example
that produced average accuracy of 0L912 for system A and
0.957 for system B.

Under the null hypothesis, any permutation of the labels
is an equally likely output. We can measure the difference
between A and B for cach permutation. Smee generating
piidd permutations are computationally difficult o manage,
an alternative is to sample and produce a limited number of
random permutations. The more samples, the more accu-
rate will our estimate of P value be.

In the present experiment, we created 10,000 random
permutations of systems A and B and measured the dif-
ference in  average recognition accuracy for  each
arrangement. Table 1 shows difference in these two accu-
racies is 0.045. OF the 10,000 measured differences, 71 are
=-0.045 and 68 are =0.045. This gives us a two-sided P
value of (71 + 68 10,000 = 0.0139. This shows that the
difference of 0.045 is unlikely and thus we should reject
the null hypothesis and report that system B has achieved a
statistically significant improvement over system A.

5.01.2 Student’s paired | test

The ¢ test’s null hypothesis 1s that systems A and B oare
random samples from the same normal distribution. To est
this hypothesis, samples are paired as explamed earlier.
Differences between all pairs are then computed. Let X,
and s denote the average and standard deviation of those
differences. The following equation is then used to com-
pute P value: J—fﬁyﬁ where N is the number of paired
samples (e, 427 in the present experiment). Following
this experimental set-up, the two-sided P value of the ¢ est
15 L0117, which 15 in agreement with the randomization
(00139 test.
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5.2 Comparison with MCNN and 50M

Perdformance of MCNN [9] is then investigaled on this
dataset. MCNN with delete operation 15 implemented. It
generates a condensed library of 3305 prototypes when
executed on the orginal prowtype set of 12,823 patterns.
This achieves about 74% reduction in protolype data.
When classification is attempted using this condensed set
(denoted as MCNN, in Table 2}, an accuracy of aboul
95.6% 15 observed, which 1s almost same as the accuracy
obtained by CS5A-based  algonthm, although  this s
achieved using a larger set of prototypes (3,305 of MCNN
vs. 2,544 of CSA).

However, if MCNN is restricted 10 generate nearly the
same number of prottypes as given by CSA then it s
found that the classification accuracy using MCNN-gen-
erated prototype set 15 somewhat lower than the one
achieved by CSA. MCNN was forcefully stopped at the
end of an intermediate ieration when it has already gene-
rated 2,543 {almost same as the number of prototypes given
by CSA). Using this MCNN generated prototype library
idenoted as MCNN; in Table 2), a classification accuracy
of 94.8% is obtained which is somewhat lower than 95.7%
given by CSA. This shows CSA 15 able o provide better
representative prototypes than MCNN. Table 2 summa-
nzes the comparative mesults between MCNN and  the
proposed approach.

As far as computing time is concerned, MCNN takes
much longer time 0 generate the condensed prototype
library. The number of iterations required by MCNN
mostly dictates the tme requirement of the algornthm. Note
that each iteration involves the entire original prowolype set
to determine the misclassified patterns. Another time con-
straint originates from the fact that the condensed prototype
set under construction 15 consulted m every eration o
identify members to be deleted. Finding out the mepresen-
tative patterns for each class in every ileration results in the
third term of the tme complexity.

Let N denote the number of patterns in original proto-
type sel, n denote the number of members in condensed set,
m denote the number of ierations required, and C denote
the number of class labels. Therefore, the time complexily
of MCNN can be represented as &{mN) + G{n) + &(C)
from which it is clear that the first term dictates the overall
tme requirement. In the present experiment, MCNN takes

Table 2 Comparison between MCNN [9], SOM [36] and C5A
(proposed )

MONN, MCONN; SOM  Proposed

#Prototvpes in condensed set 3,305 2543 2550 2544
Classification accuracy (%) 956 948 953 957

518 iterations (m = 518) to produce the condensed set of
3,305 patterns (n = 3.305) for 427 classes (C = 427).

On the other hand, tme complexity of CSA-based
approach is determined by two factors: (i) finding the
memory element for proliferation and () the number of
iterations (say, &) required in the proliferation stage to find
a propedy stimulated clone. If #' denotes the size of the
immune memaory (e, size of the condensed prototype set)
then the time complexity can be represented by &(n') +
G kN, where N is the number of antigens (i.e., prolotypes
in the orginal set). Here also the second term, ie., @(kN)
dictates the overll tme complexity. Experimentally it s
verified that the average number of ilerations (maximum
and minimum are being 21 and 07) required to produce
propedy mutated clone is 8 (e, &£ = 8). Therefore, as
G (mN) = @UN) [m =518 vs. k= 8] the overall time
requirement of MCNN is quite higher than the proposed
CSA-based approach.

Recognition accuracy oblamed by CSA-based method s
nexl compared with that of Kohonen 50M [36]. As men-
tioned earlier that the size of the rectangular grid of used in
S0M 15 set by noting the number of prototypes retained by
the CSA. Since CSA gives a reduced set of 2,544 patterns,
a 51 x 30 grid of nodes is assumed while executing SOM.
The reference vectors returned by SOM are then used for
recognition of the test patterns. An accuracy of 95.4% is
achieved. The comparison among the classification accu-
racies obtained by MNCC [9], S0OM [36], and the proposed
method s given in Table 20 This shows that the reduced
prototype set given by the CSA-based method shows a
classification power comparable with those achieved by
other two existing method.

5.3 Benchmark dataset

As mentioned m the previous section, cight datasets are
taken {rom publicly available repository [38] and [39]. The
proposed method s applied o these dataset o get a set
reference pattems to be used for classification. Since the
number of patterns in the datasets used here is small (vares
from 623 o 6.4335), fivefold cross-validation technigue has
been applied to obtain the classification resulis. Each
dataset is divided into five blocks using four blocks as a
training s, and the remaining block as a test set. Reduced
set of prototypes is formed from the training set and used
for classifying the fifth block. Five mns are conducted so
that each block is wsed as a wst set. Table 3 reports the

* Mo iteration is needed if an antigen finds an exact match in the
memory. In such a case, prodocing clones won't help w find any
better B cell and that is why hyper-mutation phase is not invoked at
all.
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Tahle 3 Comparnison between

LPD and CSA (proposed) Dataset #Patterns #Provotypes in reduced set Classification accuracy (%)
LPD [19] Cs5A LPD [19] (best) C5A
Best Avempe
Anstralian 680 27 56 f6.1 B73 £6.5
Balance 625 26 41 837 gL 793
Cancer 6RA 28 48 96.6 977 a97.1
Diabetes 768 il 57 740 713 703
DNA 3186 128 192 95.1 963 95.0
German 1000 40 a7 740 755 746
Satimage 6,435 256 415 B9.4 a1 90.5
Vehicle B46 35 58 726 745 728

results averaged over these five runs as well as the best
NS,

This experiment is conducted following the set-up pro-
posed inoa recent study [19]. This helps o make a
comparison of the LPD approach proposed in [19] and the
current one. LPD is found to perform better/fcomparable
with two other commonly used methods, namely, L metne
and class-dependent Mahalanobis ({CDM) distance. In the
present experiment, when CSA results are compared with
that of LPD, it i1s observed LPD shows more data con-
densation capability than that of CSA. LPD gives about
95% condensation while CSA gives about 93-905%.
Therefore, reference pattems retained in the reduced pro-
totype set is more in CSA than that of LPD.

When classification accuracies are compared, CSA gives
accuracies comparable o or better than that of LPD. For
some datasets such as Auwstralian, Cancer. German, Sat-
mnage, Vehele the average case accuracies are shghtly
better than the best-case accuracies of LPD. However, for
many cases this improvement is found w be due o the
presence of more number of prototypes in the reference
library.

& Conclusion

This paper presents a biologically inspired method for
proLoLy pe
improving the classification performance of NN classifier
and also partially in reducing its stomge and compuling
time requirement. An immune model, namely, CSA-based
approach is implemented for the proposed prototype
selection task. A practical PR system and datasets from

selection  which 15 pramarily effective in

publicly available repositories are considered 1o evaluate
the performance of the method. Improvement of the clas-
sification accuracy is demonstrated. Comparison of the
present method with another popular prototype selection
technigques clearly brings out the potentiality of the pro-
posed 1 we-based paradigm.

The CSA presented here is one of the simplest versions
among the modifications proposed in recent times. Such a
choice was intentional o investgate the initial perfor-
mance of a CSA-based approach for prototype selection
method. The algorithm s one-pass, 1.e.. each member in
the original prototype library 15 consulted once. Multi-pass
approach [28] may results in better performance. The
future extension of this on-going study will consider such
modifications in the CSA to achieve betler efficiency.
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