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ABSTRACT

Aims. To find an objective classification of the globular clusters in our Galaxy, M 31, and LMC,

Methods. A new method of Cluster Analysis (CA)was carried out and the set of parameters for this methed was selected through an
objective process, Principal Component Analysis (PCA). Robustness of the classification was established using bootstrap samples.
Results. In every case they exhibit multi-population structure instead of bimodality as is found in many spirals and giant elliptical
galaxies. The kinematics of MW and M 31 GCs are examined in support of these sub-populations in the cluster system. It is found
that for MW and M 31 GCs a disc, inner halo, and outer halo populations of GCs are more likely to exist than only the disc and halo
populations of GCs in MW as concluded by Zinn (1985, Apl, 293, 424). This supports the existence of three populations more firmly
explained by Zinn (1993, Globular Cluster-Galaxy Connection, 38) and Mackey & Gilmore (2004, MNEAS, 355, 5(4) whereas only
two populations are found for LMC GCs. The new multivariate analysis incresses the importance of the inclusion of many parameters
while at the same time it eliminates less significant parameters and helps to enunciate a unique theory of galaxy formation.

Key words. Galaxy: kinematics and dynamics — galaxy: globular clusters: general — galaxies: Local Group — methode: statistical

1. Introduction

Globular clusters have long been considered as the unigue tool
for stwdying galaxy formation and evolution, but the first step
15 to study the formation process of the globular ¢lusters (GCs)
themselves. There are variows theores regarding the formation
of GCs. Among them (1) gaseous merger, (2) in sitn GC forma-
tion, and (3) tidal stapping are important. According o merger
theory, GCs in gE and ¢D galaxies werne created by the gaseous
merger of two progenitor spiral galaxies (Ashman & Zepl 1992;
Zepl & Ashman 1993) so that there are two populations of GCs.
Omne s the metal-poor GCs of the progenitor spirals and other s
the metalrich GCs formed in the collision of high velocity gas.
One of the most notleworthy success of this model s the discoy-
ery of the protoglobular clusters in the cumrently merging galax-
s (Whitmore et al. 1993; Schweizer et al. 1996). In the merger
model the high 5y galaxies saud to be created by the merger of
several nommal 8y galaxies. But in practice the GC systems of
high &y galaxies do not have more metal-rich GCs but instead
have more metal-poor ones. This means that GC metallicity gra-
dients are steeper in high 8 5 galaxies contrary to the prediction
of Ashman & Zepl (1992). According to the most favourable
theory (Forbes et al. 1997) GCs are considered 0 be formed
in situ star formation episodes during a collapse process. In the
first episode a chaotic merging of many small gaseous subunits
(Searde & Zinn 1978; Katz 1992) occurs. During this phase a
small fraction of the gas wrns into stars and most of them reside
in GCs, Le. the mtio of stars in GCs to Gield stars s large (Forbes
et al. 1997). 5o, the GCs formed i this phase are metal-poor.
In the second phase, the stars enrich the medivm and now field

* Appendices A and B are only available in electronic form at
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stars form in large numbers (due to more efficient cooling athigh
metallicity ) and the GCs which form in this phase are metal-rich.
In the third phase the remaining gas settles as a galactic dise at
the centre of the galaxy. Spiral galaxies may be considered as an
extreme case of this process. Here there is almost no pre-galaxy
star formation. 5o the GCs which form in the second phase are
metal-poor compared to the metal-nich GCs in the second phase
for elliptical galaxies. Spirals then go on o form a prominent
dise and associated GCs in the third phase of collapse. But the
main difliculty of this process s the lack of a detailed mechanism
for creating distinet phases of GCs formaton from a single halo
collapse. Also, this analysis is intended to find the bimodality of
a single parameter which i1s colour.

In the present study we carry oul o multivariate analysis,
which is likely to be more appropriate in a multivariate set up.
Early attempts to analyse the charactenstics of the Galaxy and
GCs by statistical methods were carned out by Brosche (1973),
Peterson & King (1975), Brosche & Lentes (1984, Eigenson &
Yatsyk (1989), Djorgovski (1991), Covino & Fracassing (1993).
Some correlations of the slope of GCs present day mass function
{PDMF) with other parameters were studied by Capaceioli et al.
(1991} who found that two or at most three significant parame-
ters determine the PDMEF slope. This problem was also discussed
by Djorgovskn (1991). Several comelations among GCs metal-
licity and galaxy pammeters were studied by van den Bergh
(1975}, Brodwe & Huochra (1991), Forbes et al. (1996), Harns
(1991, Djorgovski (1995). Djorgovski (1995) uses core radius,
velocity dispersion, central surface brightness, and mass-to-light
ratio 1o define a Fundamental Plane for the GCs of elliptical
galaxies. These correlations provide rough distance indicators
for GCs. In an carlier work Covino & Fracassimi (1993) car-
ried out a Principal Component Analysis (PCA) followed by
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Cluster Analysis (CA) for more than one parameter ab g ime
w study the clustermg nature of GCs in different galaxies in
the Local Group. Their analysis suffers from several difficulties.
First in their study the parameter set 15 not same for all galaxies.
Also the number of parameters 18 very large (6 for M 31, 8 for
LMC, and 10 for Milky Way) so that it is difficult to study the
clustenng nature in finer details and ther interrelations. Finally,
the number of clusters, which they selected in an ad hoe manner,
15 the eighth hierarchy stage. Also the sample size 1s small.

In the present problem we have first used PCA to search for
the optimum set of parameters which gives the maximum vari-
ation for the globular clusters in Milky Way, M 31, and LMC.
This method reduces the number of paramelers to be selected
for CA and hence serves the purpose of PCAL Then we ook
that optimum set of parameters and applied 2 new method of
CA (Sugar & James 2003) which finds the optimum number of
groups of GCs instead of choosing group in an ad hoe manner.
Also in our case the sample size of Milky Way is almost double.
This helps w sort out the optimum number of clusters and opti-
mum set of pammeters so that a more efficient theory of galaxy
formaton can be developed on the basis of this multivariate anal-
ysis. In this connection it is also important to mention that under
the given set up a partitoning algonthm for cluster analysis is
more appropriate than a hierarchical algonthm sinee the set up
15 not nested. The new method for finding the optimum number
of clusters is based on partitioning algorithm.

In the present paper we closely follow the approach of
Covino & Fracassini (1993) in order o classify GCs. The new
aspects of our study are as follows:

l. We incorporate the recent catalogue of Milky Way GCs
(Harns 1996) which contains data on 147 GCs which 1s
almost double the sample size (74) vsed by Covino &
Fracassini (1993). Also we osed the recent catalogues of
M 31 GCs (Barmby et al. 2002) and LMC GCs {Mackey &
Gilmore 2003) which include the structuml parmmeters to-
gether with photometne parameters unlike the sample vsed
by Covino & Fracassini (1993). Also the core radn values
used for LMC GCs were measured using HST which gives
more accurate measurements than the previous values,

2. We use PCA to search for the optimum set of parameters
giving maximum variation for all the GCs in Milky Way,
M 31, and LMC instead of using the method for comparative
study between the GCs among the galaxies.

3. We used that optimum set of paramelers for CA instead of
using different sets of parameters for different galaxies in an
ad hoe manner and this process increases the consistency of
the study.

4. We vsed a method of CA (Hartigan 1975) which is based on
a partitioning algorithm and then applied a new technigue o
find the optimum number of groups, not a number selected in
an ad hoe manner as the eighth hierarchy stage is selected in
the paper by Covino & Fracassinmi (1993). We have taken dif-
ferent bootstrap samples generated from the original sample
Lo test the robustness of the resuls of the analyses.

In the following sections we discuss the methods, sample sets
and finally the results obtamed from the analysis.

2. Method

In order w0 study the underlying nature of the data under con-
sideration we have to start from the comrelation matrix because
Principal Component Analysis is based on this correlation or co-
variance matrix. Although o scatter plotis an essential first step

in studying the the association between two vanables, it is often
useful o guantify the strength of the association by caleulating
a summary index. One commonly used measure s the correla-
tion coeflicient (Pearson’s correlation coefficient) denoted by
Or 1y, which measures the strength of linear comrelation between
the values of two parmmeters xand i,

In Principal Component  Analysis  (Chattopadhyay &
Chattopadhyay 2006) we are interested in discovering which pa-
rameters inoa data set form coherent subgroups that are relatively
independent of one another. The specific aim of the analysis s 1o
reduce a large number of pammeters to a smaller number while
retaining maximum spread among experimental units. The anal-
ysis therefore helps us w determine the optimum set of parame-
ters causing the overall variations in the nature of GCs. PCA has
been discussed in detail in Appendix A

Cluster analysis 1s the art of finding groups in data. Owver the
last forty years different algorithms and computer programs have
been developed for CA. The choice of a clustering algorithm
depends both on the type of data available and on the particular
purpose. Generally clustering algonthms can be divided into two
principal types viz. partitioning and hierarchical methods.

A partitoning method constructs K clusters e it classifies
the data into K groups which together satisly the requirement of
a partition such that cach group must contain at least one object
and cach object must belong to exactly one group. So there are at
most as many groups as there are objects (K <= n). Two differ-
entclusters cannot have any object in common and the K groups
together add up o the full data set. Partitioning methods are ap-
plied if one wants to classify the objects into K clusters where K
15 fixed (which should be selected optimally ). The aim is usually
Lo uncover 4 structure that 1s already present in the data. The K-
means method of (MacQueen 1967) 15 probably the most widely
applied partitoning clustering technigue.

Hierarchical algorithms do not construct single partition with
K clusters but they deal with all values of K in the same run. The
partition with £ = 1 is a part of the output (all objects are to-
gether in the same cluster) and also the situation with K = n
(each object forms a separate cluster). In between all values of
K =23 .. n—-1are covered in a kind of gradual trmnsition.
The only difference between K = rand K = r + 1 18 that one
of the r clusters splits in order w obtain v + 1 clusters or two
of the (r + 1) clusters combined o yield » clusters. Under this
method either we stant with & = n and move hierarchically siep-
by-step, where at each step two clusters are merged, depending
on similarity until only one is left i.e. £ = | (agglomerative) or
the reverse, e, start with K = 1 and move step-by-step, where
at each step one cluster is divided into two- (depending on dis-
similarity ) until & = n (divisive). Most of the previous works
(Covino & Fracassini 1993) were done on the basis of hierarchi-
cal clustenng. But we feel that for the problem under consider-
ation the partitioning method s more applicable because (a) A
partitioning method tres o select best clustenng with K groups
which 1s not the goal of hierarchical method. (b) A hierarchi-
cal method can never repair what was done in previous steps.
() Partitioning methods are designed to group items rther than
varigbles mto a collection of K clusters. (d) Since a matrix of
distances (similarities) does not have to be determined and the
basic data do not have to be stored during the computer run par-
tittoming methods can be applied to much larger data sets. For K-
means algorithm (Hartigan 1975) the optimum vilue of K can be
obtained in different ways.

By using this algonthm we first determined the structures of
sub populations (clusters) for varying numbers of clusters tak-
mg K = 2, 3, 4 ete. For each such cluster formation we



T. Chattopadhyay and A. K. Chatto padhvay: Statistical classification to the globular clusters

computed the wvalues of a distance measure dy =
(1/pminEl{xy — cxVlxg — cx)] which is defined as the
distance of the xy vector (values of the parameters) from the
centre ox (which s estimated as the mean value) pis the order of
the xy vector. Then the algorithm for determining the oplimum
number of clusters 15 as follows (Sugar & James 2003). Let us
denote by dy the estimate of dy at the Kth point. Then d}, is the
minimum achievable distortion associated with fitting K centres
o the data. A natural way of choosing the number of clusters 1s
to plot d versus K and look for the resulting distortion curve
(Fig. 5). This curve is always monotonic decreasing. Initially
one would expect much smaller drops for K greater than the rue
number of clusters because past this point adding more centres
simply partiions within groups rather than between groups.
According w Sugar & James (2003), for a large number of
items the distortion curve when transformed to an appropriate
negative power (2], will exhibit a sharp “jump”™ (if we plot K
versus wransformed dy). Then we caleulated the jumps in the
transformed distortion as Sy = (dg L n‘;_ﬂl"z}l.

The optimum number of clusters 1 the value of K associated
with the largest jump. The largest jump can be determined by
plotting Jy against K and the highest peak will correspond to
the largest jump (Figs. 6, 7 and 17).

3. Data set

Or analysis 15 based on three samples of GCs in Milky Way,
M 31, and LMC which have appropriate photometric and strue-
tural parameter valoes.

Sample 1. This consists of 135 GCs taken from the catalogue
of Hamris (1996) which have nonzero values of all the param-
eters used for CAL The parameters vsed for PCA are distance
from the galactic centre (R, ). absolule visual magnitude (M ),
colour (B — V), concentration parameter (o), core radius (R,
central surface brightness (uy), radial velocity (V,), metallicity
([Fe/H]), and honzontal branch ratio (HBR). We are mainly con-
centrating on parameters which are imtrinsic and independent in
nature.

Sample 2. This consists of 35 GCs of the catalogue of Banmby
et al. (2002). The parameters used are Ry, My 008 - V), [Fe/H].
o, R, Vi, and gy . We have converted the visual magnitudes from
Barmby et al. (2000) to absolute visual magnitudes using a dis-
tance of 770 kpe (Sparke & Gallagher 20000 for M 31,

Sample 3. This consists of 23 GCs used in the paper by Mackey
& Gilmore (2003). The parameters used are By, My, (B- V). c,
R.. V. [Fe/H], and gy . We have converted the visual magnitudes
from Mackey & Gilmore (2003) to absolute visual magnitudes
using a distance of 49 kpe (Sparke & Gallagher 20000 for LMC.

In Tables 3, 5, and 7 we have mentoned the elements of
the correlation matrices corresponding to Samples 1. 2, and 3
respectively.

After finding the different groups by cluster analysis it is nec-
essary Lo study the properties of the groups identified in tenms of
their ages along with other parameters. Again we have used 8-V
as one of the parameters in PCA. As ages and B — V values are
subjected to measurement errors it is worthwhile to dentify the
nature of errors included in the data.

For Milky Way we considered 43 GCs and for LMC we
considered 23 GCs. Their ages and corresponding ermors can be
obtained from Chaboyer et al. (1992) and Mackey & Gilmore
(2003) respectively and are listed in Table 1. The means and
standard deviations of these emrors are listed in Table 2. The
means and standard deviations (SD) of extinctions in colour
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Table 1. Errors and extinctions in ages and colours of the GCs in Milky
Way (MW) and LMC.

MW GCs LMC GCs
1D Errors E{B-V¥) 1D Errors E{B -V}
Givr log (age) (Gvr)
104 1.3 Harris (1946 1711 +.05-.05
288 1.6 1754 +0.06-0.07
362 2.0 1755 .01
1261 1.3 1805 +.30-.10
1851 1.0 1810 .34
) 1.5 1818 +.3=1 0.25
220 22 1831 +3-3
2808 1.6 1835 +.07-08
3201 1.6 1850 +. 2= .13
4147 1.6 1854 .11
45 1.0 1856 +.3=1 0.07
5024 1.6 1 866 (.01
5053 1.5 1885 0.23
3272 1.0 1898 +.3=3
54y 20 2004 + =2 0.36
5897 2.1 20149 +.07-.049
St 1.3 2031 +.1-.1 Aty
6101 1.3 2100 + 2=
6121 20 2121 +.06-07
6171 23 2136 +.1=.1
6205 2.6 2156 + =2 -0.16
6218 1.3 2157 + =2
6254 2.0 2164 + =1
6341 1.7 2173 +.07-.049
H352 1.3 2213 +.1=12
6397 1.9 2214 e L]
6535 24 2231 +.1-.13
Table 1. continued.
MW G
1D Errors E(B-V)
Giyr
[5RE] 1.4 Harris ( 1495)
6052 1.7
6752 22
GEL 1.3
6GH3E 1.1
TG 1.3
TT8 20
T 1.8
7442 20
Ter 7 .5
Ter & 1.7
Rup 106 04
Pal5 1.6
Pall2 1.7
led4ud 1.2
Arpd 1.0

E(8 - V) for Milky Way (MW) and LMC GCs are also listed
in Table 2. It is interesting to note that most of the emor and ex-
tinction distributions are Gaussian as indicated in Table 2 and
Figs. 1—4 respectvely. These show that the ages and colours of
Milky Way and LMC GCs are consistent with respect o the mea-
surement ermors and extinetions. To study errors corresponding
to ages for MW GCs we excluded some of the outliers and the fit
15 good whichis evident from the Anderson Darling (AD) statis-
tic. In Appendix B we have discussed Quantile Quantile Plot
and Anderson Darling Statistic which have been used for fitling
of Normal Distribution.
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Table 2. Error analysis for the GCs of MW and LMC.

MName Errors in Age E(B-V)
positive error
LMC GCs Mean 0.16 0.13
sD LR 0.16
AD 1.36 0.23
Remark Ciood fit Very Good fit
negative error
Mean =015
sD LRI
AD 1.27
Remark Ciood fit
MW GCs Mean 1.59 L.95
sD (.44 .62
AD .45 .11
Remark Good fit Very good fit

Table 3. Correlation matrix for the parameters of Sample 1.

Parameter R, My C wy B-=V |FeH] K. HBERE YV,
R 1
My 0.22 1
c 032 0325 1
iy 038 072 052 1
B-Vv 429 002 005 0.16 1
[FeH] 029 0.0 010 007 0.60 1
R, 004 011 068 011 006 015 1
HBE 013 026 009 026 044 077 011 1
¥ 003 003 005 009 D02 006 017 003 1
.31
0.26 1
LRI
&
o
W 016
wd
.11 1
aos .

Marmal Distibu fon

Fig. L. Q0 Normal plot for positive errors in ages of LMC GCs,

From the above findings it may be inferred that since the
error distnbutions are Ganssian (symmetric), the errors are sup-
posed o be averaged out in final analysis and results are not
likely to be affected by them.

4. Results and discussions
4.1. Principal component analysis

We begin with a minimal number of parameters (selected by
the tnal and emror method) and search for principal compo-
nents giving the maximum percentage of wtal vanation. In
this respect we can say that we included many parameters
like central surface brightness, colour and radial velocities,
but they do not give maximum variation m PCA. Some
of the parameter sets are given for comparison in Table 4
f':'g' SlfRy.‘sMFsRu}s S‘szEu:MFsC}: S3{REL"B_ .V;V:I'::I:
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Fig 2. 0} Normal plot for extinctions of LMC GCs,
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Fig 3. Q0 Normal plot for errors in ages of MW GCs.

0.8

MWE.B.V.

0.4 9

0.2 9

[

-3 -2 -1 0 1 2
Marmal DistAbution

Fig 4. ) Normal plot for extinctions of MW GCs,

SHR, My, py). S5(Ry. My.c. R, S6({My. c,[Fe/H]),
STe.Re [Fe/H]). S8(HEBR,[Fe/H]Lc). Only the parameter
set 870c, Re. [Fe/H]) has maximum variation (85.7 percent) as
seen from last column of Table 4 with two principal components
having eigen values greater than or neardy equal o 1. PCA
analysis for Sample 2 and Sample 3 are listed in Tables 6
and & respectively. This also shows that the parameter sels 87
([Fe/H]. c, R.) and 56 {[Fe/H], c, B.) in Tables 6 and 8 respec-
tively give maximum vanation with two principal components
with eigen values greater than or nearly equal to 1 (94.4 percent
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Table 4. Results of PCA for Sample 1.

Table 6. Results of PCA for Sample 2.

Set Principal Component Eigen value Cumulative % Set Principal Component Eigen value Cuamulative %
ST(R,.. My.R.) I 16 53.1 STiR,., My. Ro) I 14 7.7
2 0.8 oG 2 1.0 LR
3 0.6 10604} 3 0.6 10000
S2(R,, My, <) 1 14 47.3 S2(Ry, My, ) 1 1.3 45
2 1.1 hER 2 1.0 782
3 0.5 HLIRY 3 0.7 T
B3Ry, B-V V) 1 1.3 437 53Ry, B - Vo) 1 1.5 485
2 0y 73.3 2 1.0 LI
3 0.7 10603 3 0.5 1.0
SHR,., My.jtv) I 15 51.5 SHBE-V.o k) ] 71 710
2 09 Bl.9 2 0.7 S
3 (0.5 100.0 3 0.2 100.0
S5(R,., My, c. R,) I 0 50.7 S5(R,. My, ¢, Re) 1 1.9 6.5
2 0.8 71.3 2 1.3 T
3 07 LR 3 0.6 903
4 0.4 L IR 4 0.2 1000
SB(M,, o, [FeH]) I 6 53.0 S6(M,.c. R.) ] I8 605
2 0.8 AR 2 1.0 Y34
3 0.6 LR 3 0.2 1000
STic. ., [Fe/H]) 1 1.6 547 S7i[Fe/H|, c. K. } 1 1.9 62.7
2 0y 837 2 1.0 944
3 0.4 HEIRY 3 0.2 T
SE(HER, [FgH], ¢} 1 15 307
i) i
3 ::: Ii:‘:i.:.! Table 7. Correlation matrix for the parameters of Sample 3.

Table 5. Correlation matrix for the parameters of Sample 2,

Parameter R, My C Ly BE-V [FeH] K.
Rg._' I
My .34 1
c 001 0058 1
Ly 024 076 033 1
B-V 025 016 039 0214 1
[FeH] 0215 066 026 048 0.68 1
R, 025 001 OH82 034 D4e 000 1

and 96.1 percent in last columns ). The group means are given in
Tablkes 9 1o 13,

Itis found that the statistical dimensionality for the GCs in
all the galaxies in the Local Group is two which involves the pa-
rameters core radins (R, concentration parameter () and metal-
licity. This s minimum butl gives a total variabon as high as
96 percent. This is maximum compared o all previous analy-
ses (Kormendy & Djorgovski 1989; Djorgovskl & de Carvalho
1994); Santiago & Djorgovski 1993; De Carvalho & Djorgovski
19492). This is the goal of PCA.

4.2 Cluster analysis

We found in the previous analysis that the maximum variation
among the GCs in the Milky Way, M3 1, and, LMC 15 due o the
parameter set ([Fe/H], ¢, R.). The metallicity values for GCs in
M 31 are available for 35 clusters. 5o the sample siee 1s shightly
reduced for M 31 in our case compared to Covino & Fracassini
(1993). The results for CA for Sample 1 are shown in Table 9
and Figs. 5 and 6 respectively. The jumps are at 4 and 6 re-
spectively. To test the robustness of the classification we wok
several bootstrap samples generated from the onginal samphe.
In most of the situations it was found both from the jumps and
from the ([Fe/H], R:) plots that the proper number of groups

Parameter &.. V, R, I Ly [Fi-'vl:lpj M.,-m
Ry 1
¥ 0.32 1
R, 00 019 |
¢ 019 D03 D88 |
v 061 013 013 038 1
|Fe/H]| 046 044 016 011 028 1
My 052 026 003 018 075 012 |

(clusters) should be 3. We took this decision because of the fol-
lowing reasons.

l. From the plots of cluster vs jumps in most of the situations
we observed that there was o maximum peak corresponding
to 3 clusters (Fig. 7).

2. From the ([Fe/H], R.) plots we also found if we choose
the optimum number as 3 then the physical classification is
quite clear whereas if we choose 4 or more clusters as opti-
murm then the classification is rather messy. These features
are presented in Figs. 13 and 8 respectively for the original
Sample 1.

3. For our conclusion that the optimum number of clusters 15 3
we have deviated shightly from the onginal algorithm (Sugar
& James 2003) becawse it 15 a well known fact that cluster
analysis is an exploratory data analyte technigque and it de-
pends heavily on proper physical explanation.

In support of the above discussion we have presented some of
our findings related to bootstrap samples in Table 10 and in
Figs. 8-12 mespectively. In the tables we have mentioned the
mean values for ([Fe/H|.c.R.) and the cluster points at which
we have found peaks. Hence we have taken the optimum num-
ber of subgroups statistically and physically as three. Cluster 1,
with high metallicities, low core radii, Cluster 2, with the lowest
metallicity, low core radii, and Cluster 3 with still low metallic-
ity, and high core radi. These are also reflected in the cluster
means listed for these groups in the above tables. S0 we have
carded out CA with & = 3 and the group means for all the
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Fig.5. xy diagram for the number of clusters (K) and corresponding
distortions (d}, ) for Sample 1.

Table 8. Results of PCA for Sample 3.

Set Principal Component Eigen value Cumulative %

SHRy, My, R.) 1 L3 509
2 Lo H4.6

3 0.5 1(W0.0

SRy, My, ) | 1o 344
2 04 #4.1

3 0.5 100.0

53R My, o, R) 1 20 50.0
2 14 B3.7
3 0.5 917

4 0.1 1000
S3c. K. B-V) 1 L7 58.3
2 1O 919

3 02 1.0
Sbic, K. [Fe/H][) 1 IR 641
2 Lo 96.1

- ) 3 0.1 1000

T STR . My ) T 23 Y
2 0.5 922

3 0.2 1.0
S8R, [Fe/H] Vo) 1 LB 6l.5
2 07 #i.3

3 0.5 1.0

Table 9. The group means for the parameters of the GCs of Sample 1.

Mo of clusters at the peaks 4.6
~ Wariables Cluster 1 Cluster 2 Cluster 3 Cluster 4
No. of members 37 41 45 1z
{[Fe/H|} 059 154 -16% -129
{ch 1.66 2.11 1.21 092
(R} pe) 266 059 386 1753

parameters are shown in Table 11, The ([Fe/H], B u[Fe/H]. o).,
and ([Fe/H], c. R:) plots are shown in Figs. 13-15 respectively.
The clustering s very prominent in Fig. 15 implying the fact
that three dimensional parametric classification is more authen-
e than the two dimensional one as the classification is not
clearly seen e.g.in ([Fe/H], ) plane.

MNow the kimematics of MW GCs are studied to examine the
physical consistency of the classification following Zinn (1985).
The basic assumption i that the rotational velocity of each sub
group in the classification s constant. For this ib 18 necessary
o know the distances of GCs from the galactic centre and the
results depend slightly on the values adopted for R, and the ve-
locity of the LSR about the galactic centre (vg) which are taken
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Fig 6. xy diagram for the number of clusters (K) and jumps for
Sample 1.
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Fig. 7. xy diagram for the number of clusters (K) and jumps for
Bootstrap Samples, dash for second, solid line for fourth and dotted
line for third Bootstrap Sample respectively.

as 8.2 kpe and 220 kms™! for the present situation. The analysis
follows the method of Frenk & White (1980). The values of ro-
tational velocities (vq) and veloeity dispersion (o) are listed
in Table 11 for cach group. Also the group means for heights
from the galactic plane (|z]), distances from the galactic centre
(R ). metallicities, concentration parameters (), core radii, and
central surface brightness (py) are listed for these sub groups. It
15 found that for [Fe/H] = —1L.8 the cluster group has substantial
rotation for Ry < 44 kpe (Cluster 1) and for [Fe/H] < -0.8
and GCs have less rotation for R, = 4.4 kpeo This supports
the analysis by Zinn (1985). The innermost group (Claster 1)
has substantial rotational velocity (~124 kms™'), highly metal
rich {~—0.64) having smaller core radii (~2.71 pe). They are
concentrated near the galactic dise (7] ~ 1.73 kpe) and close o
the Galactic centre (R, ~ 4.19 kpc). The velocity dispersion
15 comparatively smaller. But ouside the inner region there are
two groups instead of one as found by Zinn (1985). One group
(Cluster 2) has very low metallicity, far from the Galacte disc,
comparatively low rotational velocity (~5 kms™') with moder-
ate core radi. The other group (Cluster 3) has low metallicity,
high core radii, small rotation (~20 km s '), highest velocity dis-
persion (o, ~ 131 km 51y, farthest from the Galactic centre
(R ~ 31.69 kpe) and concentrated farthest from the Galactic
dise (|z] ~ 18.81 kpc). So they may be associated with GCs of
the outer halo. The ages of the MW GCs used are from Chaboyer
(1992) and the ages vs metallicities for Clusters 1, 2, and 3 are
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Table 10, The group means for the parameters of the GCs of Bootstrap samples,
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Bootstrap samples Mo of clusters Yariables Cluster 1 Cluster 2 Cluster 3
at peaks
Mo. of members 6 (it 31
1 3.5 {[Fe/H]} .59 —1.46 —1.80
{ch 142 2.0 0.93
(R.H(pc) 2,84 092 12.66
Mo. of members 41 [ 28
7 3 {|Fe/H[} 0,73 —1.61 ~1.67
i 1.50 1.86 042
(R.Mpc) 3.06 1.26 13.36
MNo. of members 43 [ 24
3 35 {[Fe/H]} -0.57 ~1.58 —1.60
{ch 1.70 14 087
(R:Mpc) 2.84 132 10.45
Mo, of members 56 65 14
4 37 {[Fe/H]} .89 -1.65 —1.01
ich 197 1.44 1.24
(R M(pc) 1.17 281 17.49
. . a - . 5 1
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Fig. 8. |FeH| vs. R (pec) diagram for Sample 1. The suffixes indicate
the cluster number,
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Fig.9. [Fe/H| vs. R, (pc) diagram for first Bootstrap Sample 1. The
suffixes indicate the cluster number,

shown in Fig. 16. The mean ages for these groups ame also listed
in Table 11. The GCs of the outer halo are younger compared Lo
those of inner halo and their age- metallicity scatter plot shows
no correlation, The GCs in the mner halo (Cluster 2) are the
oldest population (~10"* yr) and the age- metallicity diagram
shows a correlation with considerable scatter. The ages of all
the GCs in each cluster are not known. The GCs whose ages are
available from Chaboyer (1992) are used. So these diagrams suf-
fer from complicity and firm conclusion. Also the rotational ve-
locities caleulated for these groups (Clusters 2 and 3) show that
GCs in the inner and outer halo have substantially smaller rota-
tion and higher velocity dispersion. All these facts are consistent
with the work carned out by Zinn (1993) and subsequently by
many authors (van den Bergh 1993; Lynden-Bell & Lynden-Bell
1995; Silk & Wyse 1993). The present analysis ditffers from the

Fig. 1. [Fe/H| vs. R, (pc) diagram for second Bootstrap Sample 1. The
suffixes indicate the cluster number.

former work in the sense that the classification 1s done in an ob-
Jective and more scientific way on the basis of multiple param-
eters at a tme instead of taking color or metalhicity or horieon-
tal branch ratio parameter one at a tme and making revisions
every me ¢.g. i the works of Zinn (1985) and Zinn (1993)
where there are two and three sub populations respectively. So
the present analysis seleets the optimum, unique group and helps
Lo enunciate unigue theory for galaxy formation. Also the choicee
of the optimum set of parameters for CA was done in an objec-
tive way through PCA. So from the present elassification it can
be concluded that imitially there was a halo in which metal poor
GCs formed (inner halo). Then the medium got enriched from
the evolving stars and a dise of GCs formed which are compar-
atively metal rich. The GCs of the outer halo might have been
accreted from the neighbouring galaxies through tidal aceretion.
This 15 concluded from the kinematic properties, absence of age-
metallicity comrelation and metallicity gradient ete in Cluster 3.
This is also suggested by Mackey & Gilmore (2004) on the ba-
sis of HB morphology of the Galactue halo GCs and those in the
neighbouring dwarf galaxies.

The CA for M31 GCs are shown in Table 12 and Fig. 17
respectively. The optimum number in this case s also three like
those in MW, Cluster 1 has high metallicity, very low core radii
and close to the galactic centre. Cluster 2 has minimum metallic-
ity, comparatively lower core radin, and is very far from the cen-
tre. Cluster 3 has comparatively low metallicity, maximum core
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Fig.11. [Fe/H] vs. R, (pc) diagram for third Bootstrap Sample 1. The
suffixes indicate the cluster number.
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Fig.12. |[FeH| vs. K. (pc) diagram for fourth Bootstrap Sample 1. The
suffixes indicate the cluster number.
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Fig.13. [Fe/H| vs. R (pe) diagram for final cluster analysis result for
Sample 1. The suffixes indicate the cluster number.
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Fig.14. [Fe/H| vs. ¢ diagram for final cluster analysis result for
Sample 1. The suffixes indicate the cluster number.

radii. For caleulating the rotational velocities of these groups the
function

U= gy + Dy S0 ()

(Perett et al. 2002) s fitted to the radial velocities of the GCs
of M 31 where ¢ 15 the positon angle taken from Barmby et al.
(20000, vy 15 the mean velocity of the M 31 cluster system

[Feid,

- ®
o

Fig 15. |Fe/H|, R, (pc). ¢ diagram for final cluster analysis result for

Sample 1. The suffixes indicate the cluster number

Table 11. The group means for the parameters of the GCs of Sample 1

in the final analysis.

Variables Cluster 1 Cluster 2 Cluster 3

Mo, of members 41 [ 25

{|[Fe/H]} .64 -1.61 -1.58
{ch 1.60 1.52 .91

(R Hpc) 271 10.16 12,12

el Mkpc) 1.73 549 18.81

LR HEpC) 4. 190 10.16 369

Ty 18,792 1728 22,32
(et (ks ) 124 5 20
Tl B 129 131

tlog (Ageldvr) 11.81 14.83 14. 66

Table 12. The group means for the parameters of the GCs of M 31,

Variables Cluster 1 Cluster 2 Cluster 3
Mo, of members ] 149 T
{|[Fe/H]} .43 -1.51 -1.41
(B =V} 1.06 0.76 0.73
{c) 1.67 1.55 1.08
(R Hpch 0.545 0.92 1.93
R (kpeh 528 8T8 817
ey 16.28 16.01 16.56
(Wt (kms") 5287 il.16 5190

i(de Vaucouleurs et al. 1991) taken as =300 + 4 kms~!. They
are shown in Table 120 It is found that Cluster 1 and Cluster 3
have comparable motational velocities while Cluster 2 has some-
what lower rotational velocity, Also Cluster 1 is the most metal
rich component of the system and closest w the galactic centre.
So it can be assocuted with the dise part ike MW Cluster 1. On
the other hand Cluster 2 15 the most metal poor component and
farthest from the galactic centre. So it can be associated with the
outer halo like MW Cluster 3 and Cluster 3 of M 31 can be as-
sociated with the mner halo like MW Cluster 2. Also from the
([Fe/H], R} diagram (Fig. 18) it 15 clear that the groups are very
similar to those of MW GCs (Fig. 13). So il can be concluded
that formation history of MW and M 31 are more or less similar.

The CA for LMC GCs shows that there are aparantly three
groups (Table 13). The third group containing only 3 GCs has
more or less similar characteristes as first group (Cluster 1).
The GCs in these two groups are almost coeval (~ 108 yr). Also
the mean metallicities (~—037 and ~-0.34) of these groups and
mean distances (~3 kpe) from the galactic centre are similar
Only the core radii differ. Almost similar features have been
found for several other bootstmp samples. As a resull we may
consider them as a single group. The number of GCs in the sec-
ond group (Cluster 2315 also very small (4) but this may be due to
lack of data points. Since metallicity values are available only for
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Fig. 16. Scatter diagram of age in logarithmic scale (yr) vs. metallicity
with available values of ages in clusters 1, 2 and 3 respectively as a
result of cluster analysis for Sample 1.

Table 13. The group means for the parameters of the GCs of LMC,

Variables Cluster 1 Cluster 2 Cluster 3
MNo. of members 16 4 3
{|[Fe/H]} -0.37 -1.6 034
{(B-V} 0.33 .55 018
T 18.33 17.40 1849
{ch 1.39 1.26 U658
(R Mpc) 262 3.72 10.87
Ry (kpe) 318 1.5 285
tlog (Age)h (vr) 809 1020 A3

23 GCs of LMC (Mackey & Gilmore 2003) the sample size has
been reduced from that one (39) used by Covino & Fracassini
(1993, Now it i1s a well known fact that metallicity has good
correlaton with colour (B — V). So if the CA 15 carned out with
(e, K. and B — V) with the Covino & Fracassin (1993) sample as
(8 — V)is available for 39 GCs in that sample, then the classifi-
cation (Fig. 200 shows a good concentration in Cluster 2. On the
basis of the above discussion it may be inferred that the actual
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Fig. 18. [Fe/H], R, (pc) diagram in the cluster analysis for Sample 2.
The suffixes indicate the cluster number.
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Fig. 19. [Fe/H|, R.(pc) diagram in the cluster analysis for Sample 3. The
suffixes indicate the cluster number.

number of clusters in LMC s likely to be two instead of three
as in the cases of MW and M 31, But this feature is not directly
reflected through CA due w small sample size. The group means
are shown in Table 13, The metallicity vs core radin diagram is
also shown in Fig. 19, The ages of the LMC GCs used are from
Mackey & Gilmore (2003). The mean ages of the groups are
also listed o the table. It s seen that outer GCs (Cluster 1) are
younger and more metal rich than those of inner GCs (Cluster 2)
which exhibits reverse nature as compared with that of MW and
M 31 GCs. Also the outer GCs of LMC are much younger (of
the order of Myr) than those of MW GCs. These indicate that
the formation history of LMC may be different from that of MW
or M31. This will be clear if a spectroscopic study of the GCs
can be carned out and the sample size s increased.

5. Conclusions

We have applied multivariate analysis for the reclassification
of the globular clusters of our Galaxy, M31, and LMC. First
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Fig.20. B -V, R (pc) diagram in the cluster analysis for sample of
LMC GCs of Covino & Fracassini (19933 The suffixes indicate the
cluster number.

a Principal Component Analysis 6 pedformed o secarch for
the optimum set of parameters giving the maximum over all
variation among the GCs in these galaxies. It is found that
metallicity, concentration parameter and core radios are the
parameters responsible for maximum variation in the GCs of
Milky Way and M31. The statistical dimensionality s two in
every situation which 1s less than those of elliptical galaxies
(Santiago & Djorgowvski 1992) This procedure is completely
different from the method of studying two point comrelation
or studying the propertics of GCs with respect o a single
parameter like colour or HB morphology as done by previous
authors (Zinn 1985, 1993; Mackey & Gilmore 2004). As the
present set up is multivariate, it is guite likely to carry owt
the analysis by multivanate methods. Also there are various
parnmeters responsible for the variation among GCs. 1L is betler
o select the optimum set giving maximum variabon. This
reduces the difficulty in handling large number of parameters
simultancously and drawing any physical conclusions while at
the same time restores the significant parameters responsible
for maximum variaton. This is the goal of PCA. In the present
situation the optimum set does not include HB morphology
parameter which s HBR but includes chemical composition
and morphological parameters instead (Table 4, 87, and 58).
S0 it is more scientific to perform classification on the basis
of these significant parameters selected objectively mstead of
taking any parameler in a subjective way. Then Cluster Analysis
s carned oul with respect w this optimum set. Here two and
three clusters are found in case of MW, M 31, and LMC GCs.
The robustness of the classification is tested by king a few
bootstrap samples generated from the original one. The classifi-
cation differs from that by Zinn (1985) and is in agreement with
Zinn (1993) and Mackey & Gilmore (2004). For MW and M 31
three clusters, disc, inner halo, and outer halo GCs are found.
The kinematic properties, age metallicity diagram, metallicity
gradients studied for these groups also support the true nature
of the classification. The analogous behaviour of the GCs with
MW GCs in different parametric planes shows that they have a
similar nature as those of MW GCs. Perrett et al. (2002) have
caleulated the kinematic properties of some 200 GCs in M 31
and have found two groups, dise and halo GCs with metallicities
peaked at 0.5 and —1.41 respectively. In the present analysis,
three groups have been found with mean metallicities —0.43,
=141, and —1.51 respectively. The existence of the third group
with minimum metallicity s analogous in properties with in-
ner halo GCs of MW, For LMC GCs two groups have been found

T. Chattopadhyay and A. K. Chattopadhvay : Statistical classification to the globular clusters

mstead of three though the conclusion is not very firm due 1o
the small size of the sample. The evolution history 1s likely to
differ from those of MW and M31. As there is controversy in
the formation of GCs in dise (Schommer et al. 1992) or in pres-
sure supported halo (van den Bergh 2004 so more clear piclure
will come out from the spectroscopic study of GCs with a larger
sample size.
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Appendix A: Appendix on principal component
analysis

The purpose of the pnncipal component analysis is o reduce the
complexity of multivariate data by transforming the data o
the principal components space and choosing the first n princi-
pal components that explain most of the variation in the original
variables.

Let the components x; of a random wveclor x =
(X)X .. ... v, )" are measured in the same or comparible units.
Also assume that the vanances of the vanables do not vary too
much. Let £ denote the covariance matrix of the random vec-
wr x. £ s assumed o be at least positive semi definite rank
= ph All the eigen values of £ are real and non negative. Let
Ay 2 Ada o0 2 Ay = 0 be the ordered eigen value of £ Then there

exists an orthogonal matrix G™¥ = (g™ g™ . g""), GG’ =
Iysuchthat GEG = Dy, Dy = Diag(d;, A, ... A

Consider the transformation
y=G'x (A1)
Then
Coviy) = D,. (A2}

The vectors g, gz, . .., g, Of the matnx G are called eigen vec-
ors corresponding to the eigen values Ay, ... A, It can be

shown that

*‘i-l = grlzgl — DWI|:.-|-“J-:"¢|::|':|=Iﬂrzﬂ

-’i-! = g;zéﬁ = Dh1mux.'x.'r'.'r=l,'r'g| =IIFbrz'b
and so on.

From the above resultit follows that for any set of orthogonal
vectors fij, h:ﬁ, = land forany & = p

A +4; + ...+ 4, =DME;_ g;Eg; = DME_ h[Zh;

where by DM we denote a diagonal matrix.
For this reason, the component

W= gix (A.3)
15 called the first principal component.
I =ghx (Ad)

is called the second principal component and so on.

Here Var(y;) = A;, Because Ay = A2 .. A, iy has the largest
variance Ay, g2 has the second largest vanance Ad> and so on.
Since

A +d+...+d, =tE =DME oy (A.5)

the sum of the vanances of p pnncipal components s the same as
the sum of the variances of the onginal vanables v;. .. x,. Thus
the components with smaller variances could be ignored without
significantly affecting the total variance and thereby reducing the
number of vanables from p o say & < p.

Many criteria have been suggested by different authors for
deciding how many principal components o retain. Some of
these critenia are as follows :

l. Include just enough components to explain some arbitrary
amount (say 90%) of the vanance.

2. Exclude those principal components with eigen values below
the average. For principal components caleulated from the
correlation matnx, this enteria excludes components with
eigen values less than 1. This eritenion has been used in the
present paper.

3. Use of the screeplot echnigue.

Appendix B: Appendix on g-q plot and anderson
darling test

Quantile-Quantile Plot

The guantile-quantile (g-q) plot 15 a graphical technique for
determining if two data sets come from populations with a com-
mon distribution. A g-g plot s a plot of the quantiles of the first
data set against the guantiles of the second data set. By a quan-
tile, we mean the fraction (or percent) of points below the given
value. That is, the (0.3 {or 30%) quantle 15 the pomt at which
30% of the data fall below and TO% fall above that value.

A 45-degree reference line is also ploted. If the two sets
come from a population with the same distrbution, the points
should fall approximately along this reference line. The greater
the departure from this reference line, the greater the evidence
for the conclusion that the two data sets have come from popu-
lations with different distributions.

In order to fit a theoretical distribution to a data set we
take the data set as the first sample and observations from the
theoretical distribution under consideration (in our case Normal)
as the second sample.

Anderson-Darling test

The Anderson-Darling test (Stephens 1974) is used to test af
a sample of data came from a population with a specific distri-
bution. It 15 a modification of the Kolmogormw-Smimoy (K-5)
test and gives more weight o the tails than does the K-S test
The K-5 test is distnibution free in the sense that the entical val-
ues do not depend on the specific distribution being tested. The
Anderson-Darling test makes use of the specific distribution in
caleulating entical values. This has the advantage of allowing a
more sensitive test and the disadvantage that eritical values must
be caleulated for cach distnbution.

The Anderson-Darling test 15 an alternative 1o the chi-square
and Kolmogorov-Smirnov goodness-of-fit tests.

Definition: The Anderson-Daring test is defined as:
HO: The data follow a specified distribution.
Ha: The data do not follow the specified distribution.
Test Statistic: The Anderson-Darling test statistic s defined as

A'=-N-§
where
§ ==Y ((2i - 1)/NIn(F(Y) + In (1 — F(¥y21-))]

Fois the cumulative distibution function of the specified
distribution. Note that the ¥; are the ordered data.

Significance Level: Critical Region: The centical values for
the Anderson-Darling test are dependent on the specific distri-
bution that 15 being tested. Tabulated values and formulas have
been published (Stephens 1974, 1976, 1977, 1979 for a few spe-
cific distrbutions (nomal, lognormal, exponential, Weibull, lo-
gistic, extreme value type 1), The test s o one-sided est and the
hypothesis that the distnbution 1s of a specific formis rejected if
the test statistic, A, is greater than the eritical value.
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