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1 Introduction

Given a matrix A & A7 wvectors be B, ¢, de B and o 8 € R, the linear
fractional programming problem (LFPFP) s the following:

cdr+o

minimize fix) = Py (1.1)
subject to
Ar=bh —x =1, (1.2)

whered'x + f = 0% x € § and § denotes the feasible region defined by the constraint
{1.2}.

The above form of LFPP iscalled general form [4, p. 46]. For recent book on LFPP
and its algorithms see Bajalinov [4]. See also [3] and [12].

Neural networks in optimization were introduced in early 1980s (see [1, 2]). The
neural network approach in optimization 1$ basically to establish a nonnegative
energy function and a dynamic system that represents an arfificial neural network.
Normally, the dynamic system 15 in the form of first order diferential equation.
The concept behind the neural network based optimeation technigues i that the
objective function and constraints are mapped into a closed-loop network so that
when a constraint violation oceurs, the magnitude and direction of the violation are
fed back to adjust the states of the neurons in the network. The energy function of
the network decreases until it attains a minimum and the states of the neurons of the
network are taken to be the minimizer of the original problem. The neural network
approach scems to be promsing for constrained optimization problems. On the other
hand, classical methods for solving such problems involve an iterative procedure but
large computational tme himits their usage.

The organation of the paper 1s as follows. In Section 2, we present the required
definitions, the notations, and some results used in this paper. A complementarity
formulation of hinear fractional programming problem using Karush-Kuhn-Tucker
(KKT) conditions of optimality is considered in Section 3 and a sufficient condition
for uniqueness of solutions of linear fractional programming problem 13 oblained.
The solution set of LEPP is also shown convex. In Section 4, we propose a neural
network model for solving LFPP desenbed by the nonlinear dynamic system. We
prove the sufficient condition of the dynamics for convergence to the global optimal
point of LFPP. In Section 5, simulated results are presented for solving LFPP to
show the effectiveness of the proposed dynamics. Finally, the proposed dynamics is
compared with the dynamics of Xia and Wang [7] in Section 6.

2 Preliminaries

We denote the n-dimensional real space by R". We consider matrices and vectors
with real entries. Any vector x € B is a column vector unless otherwise specified
and ¥ denotes the row transpose of x. For any two vectors x. y € R", we define
max(x, vb as the vector whose ith coordinate s maxix;, ). By writing A € R™", we
denote that A 1s a matrnix of real entries with m rows and 1 columns. For any matrix
A e R"™M_ ay denotes its ith row and jth column entry. A & said to be a skew
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symmetric il oy = —ag Vi, janda; = 0¥i A s a merely positive sermidefinite matrix
(MPSD)if it s a positive semidefinite matrix bul not a positive definite matrix.
We require the following theorems and lemma in the next sections.

Lemma 2.1 ([3, Lemma 11.4.1]) Let fix) =ic'x + a)/(d'x + @), and let § be a convex
set in R such thatd'x + B Z 0 over 8. Then, [ is both pseudoconvex and psendocon-
cave aver S,

Theorem 2.1 ([3, Theorem 3.5.11]) Let 8 be a nonempty open convex set in R", and
fet :8 — R be adifferentiable psevdoconvex function on 8. Then, { is both strictly
quasiconvex and quasiconver.

Theorem 2.2 ([3, Theorem 35.6]) Ler f: 8 — R be strictly guasiconvex. Consider
the problem to minimize fix) subject to x € 8, where § is a nonempty convex set in
R I x is a local optimal solution, then X is also a global optimal solution.

3 Complementarity and Linear Fractional Programming Problem

In this section, we deseribe complementary principles of mathematical programming
problems.

3.1 Complementary Slackness Principle

An important aspect of the primal-dual relationship in linear programming (LF) is
explained using complementary slackness principle. However, the complementary
slackness principle holds not only for the linear programming problem: it also holds
for more general programming problems. In particular, this principle s useful for
minimizing a linear fractional function, in which the denominator does not vanish
for any feasible x. and the constraints are linear. The complementary slackness
principle for a programming problem s based on the KKT condition of optimality. A
statement of this condition for a lincar fractional programming problem with linear
constraints in nonnegative variables is as follows:

Let f: R — R beapscudoconvex and pseudoconcave function. Let A & 7
bea matrix and & & B™ be a vector. Consider the problem

minmimize f{x)
subject to
Ax = b

x=10
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Let S={xx =0, Ax = b}. The KKT condition of optimality states that x is an
optimal solution to the above problem if and only if there exist vectors i & R™, v e
R such that

Vi@ +Ad—i =0
Ax =54

=0 a=010=0, i'x=0
and i'(p — Ax) =10

MNote that the complementary slackness property @'(h — A¥) =0, v'x = 0holds. For
details see [3, Theorem 4.3.8].

3.2 Linear Complementarity Problem

The lincar complementarity problem (LCP) is a combination of inear and nonlinear
system of inequalities and equations. It i3 an important problem in mathematical
programming and in other ficlds. The problem may be stated as follows:

Griven a matnix Me R and a vector g R, find z & R such that Mz +g4= 0,
z =0and Z{Mz + g) = 0 {or prove that such a 7 does not exist).

Alternatively, the problem may be restated as follows:

Given a square matrix M of order n with real entries and an »n dimensional vector
g. find n dimensional vectors w and z satisfying

w— Mz =g w=0 z=0, (3.1}
ulazz ﬂ {3'2.]

or show that no solution exists.

This problem & denoted as LCP{g, M). If a pair of vectors (w, £) satisfics Eq.
3.1, then the problem LCPi{g. M) 15 said to have a feasible solution. The Eq. 32 is
known as complementarity condition. A pair of vectors (w, £) satisfying Eqgs. 3.1 and
3.2 15 called a solution to the LCP{g. M). LCP is normally identified as a part of
optimization theory and equilibrium problems. The problems which can be posed as
an LCP include linear programming, convex quadratic programming and bimatrix
game. For recent books on this problem and applications see Cottle et al. [6] and
Murty [11].

3.3 Linear Fractional Programming Problem

Consider the inear fractional programming problem given in Section 1. Suppose § =
{x|Ax = b x =0} denotes the set of feasible solution of LFPP and 8° denotes the set
of optimal solution. We say that an LFPP & sofvable if § # ¥, An LFPP 15 saud to be
unbounded if the problem has no finite lower bound. In what follows we assume that
d'x + A2 0% x e 8 Without loss of generality, we assume that d'x+ g = 0¥ x e 5.
With this assumption the function f{x) i both pseudoconvex and pseudoconcave.
See [3] It is casy to see that the problem of minimizing a linear fractional function
subject to linear ineg uality conditions leads to a incar complementarity problem via
the KKT conditions. See also [10].
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Theorem 3.1 Suppose D) is an n = n mawrix whose ith row and jth column ele-
mentisgivenby cid; —cgl; fori=1... . .nij=1,..., n. Then x is anoptimal solution

[
ta Egs. 1.1 and 12 §ff z = [;] sofves LOP(g, M)y where M = [_DA ﬁ ] and g =

fe— od
b ,
Proof Note that f(x) s both pseudoconvex and pseudoconcave. Henee, the KKT
optimality conditions are both necessary and sufficient for a point X to be a solution

to Egs. 1.1 and 1.2, Thus ¥ & a solution to Eqgs. 1.1 and 1.2 if there exist vectors
v, v = 0(where v, r & ™, and v & R")such that

VAD+Ai—i =0
A +§ =b
i+ ia =0
0.4 =0

X

I

1>0,7 =0
MNow for the LEPP we can casily caleulate V fix). This is given by
VAR = (d'x+ ) d' % + Pre — (¢X +o)d]
This can be further written as
Vf(E) = (d% + A [ D+ fe—ad]

where D & an i » n matrix whose ith row and jth column element & given by cd ; —
cdifori=1,..., # j=1..., n. We see that ¥ i asolution to Egs. 1.1 and 1.2
there exist vectors ¥ € R™, u e R™and v € R" such that

Di+fc—wd+Ai—1 =10

Now it is easy Lo see that the above leads to the LCP

BT HE R B

and the complementarity condition

=

] =0

i'E+ia=0

Hence the result. n]

Remark 3.1 We note that the diagonal elements of M are 0 and M = —M'. Such a
maltrix is PSD and it is processable by Lemke’s algorithm. The algorithm presents
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by Lemke and Howson [9] to compute an equilibrium pair of strategies to a bimatrix
pame was extended later by Lemke [8] to solve an LCP{g. M). For a description on
Lemke's alporithm see [6]. Note that the matrix M obtained from LFPP s a MPSD
mi irix.

Given a matrix M and a vector g we define the feasible set of LCPi{g. M)
as Fig. M) = [z 20| Mz +g =0} and the solution set S5{g. M) = [z € Fig, M) |

= [}
fiMz+g)=0}where z = |i:l[:| and M = [_DA g ] CAcsolution z € Sig. M) issaid

to be nondegenerate if z 4+ (g + Mz) = 0.

Note that fis both pscudoconvex and pseudoconcave (see Lemma 2.1 ). There fore
I is strictly quasiconvex and quasiconcave (see Theorem 2.1). However, if f s
strongly quasiconvex then LFPP has a unique global optimal solution. Sec [3, Theo-
rem 3.5.9]. The following theorem presents an alternative characterization regarding
the unigqueness of the solution which is new in the literaure.

Theorem 3.2 Consider the LFEPP given by Egs. 1.1 and 1.2, Suppose LCPig. M) is
the corresponding linear complementarity problem. Let 7 be nondegenerate and 7 =
|;:_:| e Sig. M). Further assume that M, is nonsingular where @ £ o = {i| Z; = 0}.

Then ¥ is a unigue solution of LFPP.

Proof We look at the LCP(g. M) corresponding to LFPP. Let 7 = [;] be any

solution to LCP{g, M). S0, 7 and Z solve LCPig, M). Note that M is a MPSD matrix.
By the positive semidefiniteness of M, it follows that

0= (Z-8'MEZ-2=(I-2D'g+ M- g+ Mz2)]
=-Zig+ M) -g+ M =0
Therefore,
Z'g+ M2 =Zi(g+ MDD =0 (3.3)

Note that e = {i | Z; = 0}. So, by Eq. 3.3 we have (g + MzZ);, =0 fori € o. Since £ 1s
nondegenerate, (g + MZ); = O fori ¢ . Using Eq. 33, it followsthat 7; = O for i ¢ .
Therefore.,

Go + MaaZa =0 (3.4)

The uniqueness of the solution of LCP{g, M) follows [rom Eq. 3.4 and the nonsingu-
larity sssumpiion of M,,. Now by Theorem 3.1, it follows that the solution of LFPP
1% Umigue. o

Theorem L3 5 is aconvex set where 8 is the set of optimal solution of LFPP.

Proof Consider the LFPP given by Egs. 1.1 and 12 and let LCPig, M) be the
corresponding lincar complementarity problem. Suppose 2, 7 € S(g, M). To show
that the solution sel is convex we show that the vector z =82 + (1 — 812 s ako a
solution which belongs to Sig, M) for any & € (0, 1). From Eq. 3.3, it is easy o see
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that [82 + ({1 — &2V [Flg+ M2+ (1 — &g + M2 =81 —[Zig+ M2+ Fig +
Mz)] = 0. Therefore S{g, M) is a convex set. By Theorem 3.1, it follows that 5* is
also a convex sel. n]

In 1962, Charnes and Cooper [5] showed that by a simple transformation, an
LFPP can be reduced to an LP that can be solved using a simplex method. Swarup
[14] instead of converting the LFPP into an equivalent linear program, attacked
the problem directly and gave a very efficient Simplex type algorithm under the
assumption that the denominator of the objective funclion & positive. In [13],
Swarup derived certain characteristics of LFPP and developed an algorithm for LFPP
(under certain imitations). Now we mtroduce another equivalent LP formulation
of the LFPP under the assumption that the denominator of the objective function
15 positive.

Lemma 3.1 The LFPP (Egs. 1.1 and 1.2) considered in Section 1, can be written as
the following LP

minimize fix) = (fc—aedix+b'u (35)

subject Lo

Dx+ Au+pe—od=0 (3.6)
b—Ax =0, —x=0, —u=10 (3.7)

Proaf Consider the following LCPi{g. M) where

G DA _ [P —wd
M_[_Aﬂ]andq_[ b ]

It is casy lo see that LCPig. M) & equivalent to the following quadratic prog-
ram (QP).

1
minimize fix) = (fc — od)x+ b'u+ ;.\.‘ Dx (3.8)
subject o
Di+ A'u+ fc—ad= 0 (3.9)

b—Ax =0, —x =0, —u=0 (3.10)

MNote that I + D' = (. Therefore the above QP is equivalent to the LP as stated
in Eqs. 3.5, 3.6 and 3.7. o
4 Proposed Neural Network Maodel

We propose a recurrent neural network model which is described by the fol-
lowing nonlinear dynamic system. From Theorem 3.1, we observe that x i sn
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optimal solution to Egs. 1.1 and 1.2 iff there exst vectors x € R" and uw e R™
such that

ad — fle— Dx— A'u =0 i4.1)

Ax=b (4.2)

¥(ed— pc— Dx— A'u)=0 (4.3)

Widx—b1=10 (4.4)

r=0u=0 i4.5)

where D s an 1 > 1 matrix whose ith row and jih column element is given by cd; —
cd;fori=1,..., wy =105 .

The proposed neural network model can now be described by the following
nonlmear dynamic system.

dx ) _ dx ; duy
E_ad—ﬂ-:—ﬂ(.-.+km)—fl(u+ kﬁ)‘ x=0 (4.6)
d il

f:—b+A@+kf)u3n (4.7)
ot ot

In the above neural network dynamics the coeflicient & 15 some positive constant.
Theorem 4.1 [f the newral network whose dynamics is described by the differential
Egs. 46 and 4.7 converges to a stable state then the convergence state is the optimal

seldution for LEPP

Proof Equation 4.6 can be writlen as

.rh dx du
. l—fc—Dlx+k— |- A fk— . il =10 4.4
[ﬂ( e (r + dr) (u + = ):|‘ if x 4.8)

dt

dx; dx y du ;
o I[ﬁ'd— He— D(I +km) — A (u+ kﬁ)l,ﬂ] ifx; =0 (49)

MNote that Eq. 4.9 ensures that x will be bounded from below by 0. Let Iim xit) =x*

and Ilm ity = u*. By stability of convergence, we have "'T =0 and "'" = ﬂ S0, Egs.
4.8 and4 9 become,
[ed — fc— Dx* — A'u*]; =10, if xf = 0. (4.10)
max{[ed — fc— Dx* — A'u*];, 0}, ifx =0 (4.11)
In other words:
[ed — fc— Dx* — A'w*i <0, Vi (4.12)

xf[wd — fe— Dx* — A'W*]; =0, Vi (4.13)
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Therefore,
[ed — fc — Dx* — A'u*] =0 i(4.14)

x'[ad — fe— Dx* — A'ut] =0 (4.15)

Similarly, by taking the limitin Eq. 4.7 we get
[-b +Ax*] =0 (4.1a)
w'—b + Ax*']1 =0 (4.17)

Henee we get the inequalities (4.1), (4.2), (4.3), (4.4), and (4.5). Therefore, (x*.u*)is
a solution to LCP{g, M). By Theorem 3.1, x* is an optimal solution of LFPP. o

Theorem 4.2 Suppose xy is any seed point and the proposed dynamics converges to
a stable state with a sufficiently small positive € and d'x + f £ 0. Then the proposed
dynamics always converges to the global optimal.

Proaf Suppose x; 15 a seed point and dynamics converges to a point x; with
sufficiently small positive € which is local optimal. Note that pseudoconvexity of fix)
implics strict quasiconvexity by Theorem 2.1, Now by Theorem 2.2 it follows that Xy
15 & global optimal. o

Theorem 4.3 Assume the proposed newral network dyvnamics for LEPP converges to
a stable state. Suppose 8 @ set of equiibrivem points of the proposed dynamics, 5; =
Sig. M) @ solution set of equivalent LCPlg. M) and 5; = §8* © optimal solution set of
LFPP are the three seis. Then §) = 5. = 55

Proof From Theorem 3.1, it follows that §; = 85, We now prove §) = 5. As the
proposed dynamics converges then we get the system of inequalities given by Egs.
4.1.4.2,43. 44, and 4.5. This implies that the solution set of inequalities is same as
the equilibrivm points of the proposed dynamics with sufficiently small positive €. So
&, = &.. Hence &) = §- = §;. o

Remark 4.1 In order to solve the differential equations 4.6 and 4.7, the Euler’s meth-
od may be used. The following Matlab code deseribes the dserete mplementation
of our neural network. Coefficient & 15 set to equal the tme step dt o simplify the
caloulations.
Fori =1:n;
du =dt+(—b+ A (x+dx));
dy = max{u + du, 0) — n; % (to make u = 0)
wo=u+du

dy =dr#(od— fc— Dwi(x+dx) — A % (u+du));
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dx = maxix+dx, ) — x; %(tomake x = ()

X =x+dx;
I =i+ 1:
end:
5 Simulation Results

Numerical experiments are conducted to demonstrate the effectiveness and effi-
ciecncy of the proposed neural network dynamics. The simulation is carried out on
Matlub to solve the diferential equations using Euler’s method. To start with, we
mitialize x, n, and dx at ¢+ = 0. We take small posiive values for step length dt
and €. We run the dynamics and compute |dx| and ||du]. The dynamics stops if
|ldx]|l = € and ||du]| = €. The simulation runs on 4 Compag PC with intel pentium 4
processor 1.99 GHz 248 MB of RAM. Following examples are used for experimental
PUrpOSLE.

Example 5.1 Consider the following LFPP:

Y g —1!'|+.T3+2
minmmee —————
Xn+3n+4
subject o
—x tx =< 4
=6
2.1'| +x = 14
X, xx =10

In this case the solution (6.9926,0) is very close to the optimal solution (7,0) with
only 127 iterations agamst the upper bound of the norm as 0.01.

Example 5.2 Consider the following LFPP:

R —51'| + 3.1'3 +6
MINITIEE  —
n+xe+3
subject to
X+ 2 =10
2x +xa =10
. x=0

The neural network dynamics for this LFPP penerates solution (5.0412,0) with
a step of 0.1 and € as 0.01 after 137 iterations. The optimal solution of this problem

15 (5.0).
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Example 5.3 Consider the followmg LFPP:

—3.1'| + 5.!?3 = ﬁl.'l'j +24
X +xa2+ 2.!.'3 +7

MinimiEe

subject o
— X1+ xat+x; =4
1T| +xt+x =< 14
Xa+x3=6
X1, X2, X3 = 0

In this case, the dynamics conver ges to the optimal solution (3.995, 0, 6.0082) after
T5T iterations with € equal to0.01.

Example 5.4 Consider the following LFPP:

Ix; +5x: — 3x3

MAXIMEe -
Xy —4.!.'3+ 1\?3 +:.'|'
subject to
4o+ bhx; =3
—S5xy 44 —x3=5
X, X2, x3 =0
Here fix) 1s both pseudoconvex and pseudoconcave. The dynamics converges Lo
optimal solution (0, 3, 0). The solution (0, 3.0058.0) s obtained here just after 378
iterations with a step of 0.1 and € as 0.01.

Example 5.5 Consider the [ollowing LFPF:

—2.!.'| = ﬁ.l’g = 2\?3 = ﬁ.fq = 5.1'5 — 10

Ay + 20 + 203+ 2xg + 515+ 5

minimiEe

subject to
X = 10
=01
3= 0.2
Xy =< 20
Xs = 0.05

Xy, X3, X3, X3, X5 =

In this example, the dynamics converges o the pomt (0, 0.10072,0, 19998, 0) alter
5352 iterations with astep of 0.04 and € equal to 0.0001. The optimal solution for this
problem is (0, 0.1, 0, 20, 0).

6 Comparison of the Method of Xia and Wang with the Proposed Method

Mauany optimization problems can be modeled as linear projection equations. Xia and
Wang [7] proposed a recurrent neural network to solve linear projection equations
in real time. In [7], it is claimed that if the matrix involved in the model is PSD. the
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model can converge globally to the solution set of the problem. As an application, it
15 shown that this model can be used directly to solve the linear and convex quadratic
programming problems and linear complementarity problems with PSD matrices.
We use Xia and Wang's model for comparison with our proposed model for linear
fractional programming problem. The model of Xia and Wang can be deseribed as
follows.

dne
= = W{Polu— 8iMu+q)) — ul (6.1)
where # is a positive constant and Wis a PD matrix.

Xiaand Wang proved the following result in case of PSD matrices.

Theorem 6.1 ([7. Theorem 3]) Suppose W = B(d + A M") where B is a symmetric
PD.If M is PSD the dynamic system (6.1) is stable in the sense of Lyapunov and
globally converges to the solution subset of the fnear projection equation.

Here, for the purpose of comparison, we use the examples considered earlier.
Imitially, we set the step dr and the norm same for both the dynamics. Also, the
seed point o operate the dynamics 15 chosen as null vector. Now, while comparing
the rate of convergence lowards meeting the requirements of stipulated norm, we
note that the proposed dynamics takes uniformly less number of iterations for all the
examples and reaches very close to global optimal solution than the dynamics of Xia
and Wang. Computational experience on the performance of Xia and Wang model
and the proposed model is reported in the following tables and figures (Tables 1, 2
and Figs. 1,2, 3and 4).

Table 1 Performance of Xia and Wang model

Example  dr Morm  Deration  Solution cpu ime  Oplimal

nir. solution

51 01 RN 802 (74327, 0.0080) 1.7813 (7.0)

52 a1 aim 991 (53055, -0.0406) 22050 (5.0

53 01 i 4,504 (34286, -0.0003, 68584 ) 109531 (4.0.6)

54 01 0im 275 (00342, 35188, -0.0105) 5734 (0.3.0)

55 004 00001 2646 (00008, 01015, 0, 199999, () 885313 (0,0.1,0.20,0)

Table 2 Performance of the proposed model

Example no. Morm  Deration  Solution cpu time  Oplimal solution
51 01 127 (6.9926,0) 0.1094 (7.0

5.2 01 o 137 (5.0412,0) 0.1250 (507

e 0l 0 757 (3.995,0,6.0082 ) (.7031 (411,6)

54 0o 378 (0.3.0958,0) (.35 (03,0

55 0.4 00001 5352 (LOI00720.19998.0) 180938 (00, 1,0,20.0)
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From the above tables and figures, we observe that the proposed model computes

a global optimal point. In fact, for the examples considered here, we see that the
proposed neural network model has the faster convergence to reach the global
optimal point which s very encouraging,
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