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ApsTRACT  Achieving consistency of growdh patfe m for comme reial veast feementarfon ove r balohes
threig fr acleition of wate e molasses and othe v chemicals is often very conmyplex in nafure die fo ity bio-
chemical reactions inope ration. Reg ression mode (s in starf stical methods pla v a very important role in
maodeling the under!ving mechanism, provided it is known, On the contrary, anificial newral nefworks
provide a wide class of general-purpose, lexible non-linear architectures o explain any complex
industrial processes. In fhis paper an aifemps fas been mede fo find a rotust conteol system for a time
varyving veast fermentation process Sough statistical means, and in comparison to non-parametvic
nesral network lechnigues. The data wsed in this context are obtained from an industey producing
Brker s veast trough a fed-batch fermentation process. The model accnraey for predicting the growilh
pattern of commercial yeast, when compared among the varous lechnigues used, reveals the best
prerformanee capalil ity with the backpropaga tion nearal metwork. The statistical model used through
prafection pursuil regression also grows figher prediciion accuracy. The models, thus developed,
wonitlel ail e frefpe to find con opiimem combination of parameters for minimizing the variability of yeast
prranetine o,

Key Worps:  Generalized linear model (GLM). multisample bootstrapping, projection pursuit
regression, artificial neural network (ANN), veast, fed-batch fermentation

Introduction

An Artificial Neural Network (ANN) 15 an information-processing paradigm that s inspired
by the way biological nervous systems, such as the brain, process information. The key ele-
ment of this pamdigm is the novel strocture of the mformation processing system. It is
composed of a large number of highly interconnected processing elements, known as neu-
rons, working in unison o solve specific problems. An ANN is configured for a specific
problem like pattem recognition, data classification, prediction ete through a learning pro-
cess, Learning in a biological system involves adjustments to the synaptic connections that
exist between the neurons, This i true for an ANN as well. All neoral networks have some
setof processing units that receive inputs from the outside world, which can be referred 1o
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appropriately as the ‘input units” or ‘input nodes’. It does have one or more layers of ‘hidden’
processing units that receive inputs only from the other processing units. The set of pro-
cessing units that represent the final result of the neural network computation 1s de signated
as the “output units”.

In this paper, the authors are imterested in moving towards robust control of a fermentation
process using multivarate statistical technigues and neural net systems. The fermentation
process 154 biological base system. This system runs smoothly depending on effective oper-
ator supervisory and formulated rules from knowledge based systems ( Lennox et af, 2001 ).
However, maintaining the consistency of the growth pattern over the batches of commerc il
yeuast production through the addition of water, molasses and other chemicals creates prob-
lem to the manufacturer. An attempt has been made W find a robust control system for the
yeast fermentation process Lo predict future response under various process constraints. The
data used in this context are obtained from an industry producing baker’s yeast. Relevant
information on Fermenter parameters (such as Air CEM, Temp, pH, Dip (M), Vol L), Amps,
ALC %, Spin), Yeastin fermenter (kg, increment, G.M. ), Wort and other chemical addinons
are collected from a Brew sheet for consecutive batches of yeast production.

A univanate model for predicting the response from real-lhife data fails in practical situa-
tions due to deviations caused by the interaction between process parameters, the unsteady
state in batch operation ete (Lennox et al., 1999). A more ngorous approach o monitor a
fermentation process s Multvariate Process Control through Multiway pnncipal compo-
nent anilysis (PCA), Multiway partial least squanes (PLS), ANN ete. The PCA algonthm is
able o project highly correlated process data into a low dimensional space defined by the
principal component. The conditon monitonng system for fed-batch fermentation systems
and algorithms 1s presented in another paper ( Lennox et al., 2000 ). However, PCA and PLS
have their imitation in non-hnear system. Artificial Nearal Networks can handle effec-
tively and efficiently non-lincar and complex systems. The principal difference between
ANN and statistical approaches 15 that an artificial newral network makes no assumption
about the statistical distribution or properties of the data.

This paper is organized as follows. In the next section, 4 brief desenption of the fer-
mentation process of yeast 15 desenbed. The third section gives a general discussion on
the prediction tools, such as Linear Regression, Stepwise Regression, Generalized Linear
Maodel (GLM), and Projection Pursuit Regression (PPR), along with the Boostrapping and
Backpropagation algorithms used by ANN for keaming. The implementations and results
are given in the fourth section followed by a comparison of esults. A brel discussion on
the results and conclusions are stated in the fifth and sixth sections respectively.

Fermentation Process

It was in the pioneering scientific work of Lows Pasteur in the late 1860s that yeast was
identified as a hving organism and the agent responsible for aleoholic fermentation and
dough leavening. Shortly following these discovenies, it became possible toisolate yeast in
pure culture form. With this new knowledge, the stage was set for commercial production of
baker’s veast that began around the tum of the 20th century. Baker's yeast is used to leaven
bread throughout the world, Baker's yeast products are made from strains of this yeast
selected for their special qualities relating to the needs of the baking indostry. The quality
of baker's yeast s often discussed in terms of microbiological purity and gas producing
activity.

The baker’s yeast production process flow can be divided mto four basic steps, namely,
molasses and other raw material preparation, culture or seed yeast preparation, fermentation
and harvesting, and filtmtion and packaging. Yeast can grow in the presence or absence of
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air. For instance, in bread dough, yeast grows very litle under anaerobic conditions; instead,
the sugar that can sustain either fermentation or growth 1s used mainly to produce aleohol
and carbon dioxide. This means that the baker who is interested in the keavening action of
the carbon dioxide works under conditions that minimize the presence of dissolved oxygen.
In contrast, under aerobic conditions, in the presence of a sufficient guantity of dissolved
oxygen, yeast grows by using most of the available sugar for growth and producing only
neglhgible quantities of alcohol. S0, a veast manufacturer that wants 1o produce more yeast
cell mass, works under aerobic conditions by bubbling air through the solution inwhich the
yeast s grown.

The problem posed to the yeast manufacturer, however, 15 not just as simple as adding air
during the fermentation process. If the concentration of sugar in the fermentaton growth
media s greater than a very small amount, the yeast will produce some alcohol even if the
supply of oxygen 1s adequate or even in abundance. Adding the sugar solution slowly to the
yeuast throughout the fermentation process can solve this problem. The rate of addition of
the sugar solution must be such that the yeast uses the sugar fast enough so that the sugar
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concentration at any one tme is practically zero. This type of fermentation 1s referred to as
fed-batch fermentation. The fowchant of the fermentation process 1s shown in Figure 1.

Materials and Methods
Bootstrapping

The bootstrap is a method of Monte Cardo simulation where ne parametric assumptions are
made about the underlying population that generated the random sample. Instead, we use
the sample as an estimate of the population. This estimate 1s called the empincal distribution
F where each x; has probability mass 1/n. Thus, each x; has the same likelihood of being
selected in a new sample taken from F.
A

When we use Fas our pseudo-population, then we resample with replacement from the
onginal sample x = (x), 2, ..., 1) We denote the B new sample obtained in this manner
by ¥ = (x/". w7, o), b=1,2,..., B. Since we are sampling with replacement
from the onginal sample, there is a possibility that some points x; will appear more than
once in v or may be not at all. The statistic is first caleulated using the observed data
and then recakeulated wsing each of the new samples, yielding a bootstrap distribution. The
resulting replicates are used w caleulate the bootstrap estimates of bias, mean, and standard
error for the statistic (Martinez & Martinez, 2002).

Basic Bootstrap Methodology

M

Step 1. Given a random sample, x = (x;, 12, ..., 1, ), caleulate statistic 8.

Step 2. Generate a sample with meplacement  from  the original  sample o get
kb #h ¥ il
=[x x5 g

Step 3. Caleulate the same statistics using the bootstrap sample in Step 2 0 get g+

Step 4. Repeat Sweps 2 thmough 3, 6 =12, ..., B umes. B 15 number of bootstrap
resamples to be drawn.

Step 5. Use this estimate of the distribution of d to obtain the desired characteristic
(standard error, bias, confidence interval).

Multisample Bootstrapping

Multisample bootstrapping is supported through the group argument. Group arguments
allow stratified sampling and bootstrapping multi-sample problems. The unigue values of
this vector determine groups. For each resample, a bootstrap sample 15 drawn separately
for each group, and the observatons are combined o give the full resample. The statistic 1s
caleulated For the resample as a whole (S-PLUS Guide, 1999).

Creneralized Linear Model

A generalized linear model (GLM) provides a way o estmate a function (called the link
function) of the mean response as a linear funcuon of the values of some set of predictors.
This s wrillen as

¥ =
g (E (;)) =g =Po+ ) _HXi=n(X)
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where g 15 the link function. The hinear function of the predictors, n( X), is the lincar
predictors. For GLM, the variance of ¥ may be a function of the mean response p like,
Var(¥) = gVar({p).

A fundamental idea 1% that there are two components o a GLM; the response distribution
(also called the error distribution) and the hink function. Another concept underlying GLM
15 the exponential family of distribution, which includes the normal, Poisson, Binomial,
Exponential and Gamma distributions as members. Since, the normal error in the linear
model 15 just a special case of the GLM, the GLM, therefore, can be thought of as a
unifying approach to many aspects of empineal modeling and data analysis.

The esumates of the regression pammeter in GLM are maximum likelibood estimates,
produced by ieratively reweighed least squares (IRLS) (Myers et al., 2002).

Stepwise Regression

Evaluating all possible regressions can be computationally burdensome; vanous methods
have been developed for evaluating only a small number of subset regression models by
either adding or deleting regressorsone ata tme. These methods are generally referred to as
slepwise-type procedures. These are forward selection, backward elimination and stepwise
regression. The lastoneisa popular combination of procedures of the first two. [Ls a process
in which at each step all regressors, entered into the model previously, are reassessed via
their partial F-statste and considered as current members in the model (Ronald, 1996).

Projection Pursuit Regression

This method computes an explortory nonlinear regression method that models ¥ (response)
as asum of non-parametne functions of projections of the X (predictor) variables. Projection
pursuil regression (PPR) construets a model of the regression surface based on projections
of the data on planes spanned by the response and linear combination of predictors. It has
the ability to pick up model interaction.

Let ¥ and X = (X, X, ..., X, ¥ denote the response and explanatory vector
respectively. Suppose you have observations ¥, and comesponding predictors X; =

tion pursuil function finds M = My, direction vectors ap, aa. ..., gy and good nonlinear
transformatons gy, @, ..., iy, such that ¥ = py + Z::L, ﬁ,,,i;‘l,,,{ﬂjr'X} + & where i, =
term weight onmthtermand uy = E(¥) =¥ = I/n Z:I=| ¥; provides a *good’ model for
thedata ¥; X;. i =1,2,.... n.

The *projection” part of the temm projection pursuit regression indicates that the camier
vector X is projected onto the direction vectors ay, @a, ... . ay, o getthe lengths a’ X, § =
0. A n of the projections and the *pursuit’ part indicates that an optimization technigue
15 used to find ‘good” direcion vectors ay, @z, ..., ay,.

¥ and X are presumed to satisfy the conditional expectation model

M,

E[ Y!.r. 1, R J:'PE =y + Zﬁur"ﬁ'ﬂr‘.ﬂ.{r‘r}

m=1
and gy, have been standardized to have mean zero and unity variance:

Elpu@™X)} =0 and E{$ @’ X)}=0 m=12

REST g TRy e
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The observations ¥; and corresponding predictors X; = (X, Xia. .. ., X”,}T, i=
| . P noare assumed to be independent and wdentically disributed random vanables
such as ¥ and X.

The true mode] parametess 8, ¢y anm =1, ..., My minimize the mean squared emror

3

My 2
E |:]/ — uy + Z Butbw (@, X) over all possible A, dh,. @,

m=]

When My = panday =(1,0,0,.. ., 0O e =1(0,1,0,.., 0, ...a8, =(0,0,0,...,1),
A5 are absorbed into the g, s,

This model builds up the smooth regression surface, which is a projection defined surface
by the smooth estimators. However it s difficult to interpret surface for m larger than 2.
When My = | assuming predictors X are independent with mean 0 and variance 1

o= 2 gity=1 and fi= \JB BB
R +BE+ b

where b are regression coefficients.

FPrajection Pursuit Model Selection Strategy

For each order m, 1 < m = M, PPR will evaluate the fraction of unexplaned variance

&im) = - SSR(m) — = i wilYs _“? B EI ?.'{'f;.l" .r.}'i:1
Limwi (Y =¥ 2 wi(¥; —¥)?

w; = Observation weights

(1) A plot of € {(m) versus m, which is decreasing in m, may suggest a good choice of
m= J‘r'f(p.

(2) Ofien, e*(m) will decrease relatively rapidly when m is smaller than a good model of
omder My and then flatien out. & (m) will decrease more slowly for m larger than M.
My will have to be chosen keeping this in mind.

This technigue is highly computer intensive and s also useful m multivariate responses
(Fricdman & Stuetzle, 1981 ; Haste et af., 2001 ).

Backpropagation Newral Network

Generalizing the Widrow-Hoff leaming ule (Widrow & Hof, 1960) o multiple-layver
networks and nonlinear differentiable transfer functions creates Backpropagation. Input
vectors and the corresponding target vectors are used to train g network until it can approxi-
mate a funcion, associate input vectors with specific output vectors, or classily input vectors
in an appropriate way as defined by vsers. Standard backpropagation is o gradient descent
algorthm in which the network weights are moved along the negative of the gradient of the
performance function. The term backpropagation refers to the manner in which the gradient
is computed for nonlinear multilayer networks. There are a number of varations on the basic
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algonthms that are based on other standard opumization technigues, but Scaled Conjugate
Gradient (Moller, MLE., 1993) and Levenberg-Marguardt algorithms (Margquardt, 1963) are
most effective and apprecable.

Scaled Conjugate Gradient

The basic backpropagation Scaled Conjugate Gradient (SCG) algorithm adjusts the weights
in the steepest descent direction (negative of the gradient). In the conjugate gradient algo-
rithms, a search is performed along conjugate directions, which produces generally faster
convergence than steepest descent directions. In case of guadratic funclions, exact answers
are obtainable without calculating second-order denvatives, as discussed next.

Given a symmetric matrix @, two vectors o and o are said o be conjugare with respect
to Qif d{ Qdy = 0. Animportant result is that when the matrix ' 1s positive-definite, a set of
non-zem conjugate vectors 15 also lincarly independent. The conjugate gradient algonthm
for a quadratic problem is defined as follows:

(1) Letdy = —V filx,) = b — Ox; ., where xy € R" 15 an arbitrary starting point.

(1) Fek=0,1,..., in — 1), define ¥V fix,) = O, — b, and do
V flx )" de
a) xp4y = X +ogd, where a; = _%

by diyy ==V flag ) + Bude i =

Commuonly used stopping critena are:

d Qdy
JFlx) —fla)<e and xppy —xp <&

Levenberg-Marguardt

The Levenberg—Mamquardt (LM algorithm was designed to approach second-order tmining
speed without having to compute the Hessian matrrix. When the pedformance function has
the form of a sum of squares (as s typical m traiming feedforward networks), then the
Hessian matnx can be approximaled as

M=J'J
and, the gradient can be computed as
E= e

where, J is the Jacobian matnx that contains first derivatives of the network emors with
respect o the weights and biases, and ¢ 15 a vector of network emors. The Jacobian
matnx can be computed through a standard backpropagation technigue that 15 much less
complex than computing the Hessian matrix. The Levenberg—Mamquardt algorithm uses this
approximation o the Hessian matrix in the following update:

xppp=x— [ T4ull™ Je
i 15 decreased after each successful step (reduction in perdformance function) and i increased

only when a tentative step would increase the performance function. In this way, the
performance function will always be reduced at each iteration of the algonthm.
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The network architecture that 1s most commonly used with the backpropagaton algonthm
15 multilayer feed-forward network (Rumelhart ef al . 1986). Here, the hidden nodes ane
arranged in a senes of layers. The only permissible connection between nodes lies in con-
secutive layers. The connection (synaptic) weights are specified for all connections. Biases
and transfer functions are proposed for cach of the hidden and output nodes.

Implemeniation and Resulis

Dara Collection

To model the commercial fermentation process, the input parameters and comesponding
output charmeteristics were selected first. There is a total of 16 time sequences (hours of
production) fora particular batch of yeast fermentation. The necessary collected mformation
on complele batch operation with selected parameters for analysis 15 given below.

(1) Time sequence: X

(2 Airflow rate at that partcular sequence: X

(3) Temperature for this interval: X4

(4y PH of the ligquid at the start of the sequence: Xy

(5) Alcohol (%) of the higquid at the start of the sequence: X5

(6) Residual sugar at the start of the sequence: Xg

(7} Percentage increase of yeast at the end of the time sequence: ¥

In omder to camry out the analysis in the next step, the dataset was thought to undergo
bootstrapping, first keeping the vadable X fixed and independent of variable Xs over the
process within a ime sequence. The remaining vanables Xy, Xy and X5 were considered for
boolstrpping since these vanables create larger deviation and have a significant influence
on the response.

Analysis Procedure

To make the model robust, the following analysis procedure was undertaken.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

The data set was divided into two parts, one for model selection and another for
maodel validation.

MNext, bootstrap methodology was used on the first partition data set obtained from
Step | wsing multisample bootstrapping supported through the group argument
{here, group argument is tme sequence vanable X ) considering the input param-
clers Xy, Xy and X« The statistic used for bootstrapping was the median valoe of
these variables.

In this stage, areplication on all other parameters X, Xo, Xy mcloding response
¥ is made to the same strength as the number of resamples generated in Step 2 for
the vanables Xy, Xy and X5,

MNexl, both the data set (e, replicate and resamples through bootstrmpping) ane
arranged with respect o bime sequence (X)),

The data sets, thus aranged in Step 4, were divided into two sets, one for raining
purpose and another for wsting purpose. Subsequently, the best model was found
through companson of all the technigues as discussed in the previous section.
The models, thus developed, were validated on the second partition dataset as
defined in Step 1.
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Results
As discussed cardier, the technigues vsed in these comparative studies are simple Linear
regression, Generalized hnear model, Stepwise regression, Projection Pursuil regression
and ANN modeling. A total of 2400 {= 16 x 150) resamples were generated where the
number of time sequences for abatch is 16 and the number of bootstrap resamples generated
for cach tme sequence is 150, For each time sequence, outof 150 resamples, 90 resamples
were used for training and 60 resamples were kept for testing purposes. Thus, for 16 time
sequences, 14440 (= 16 = 90) data were used for training purposes and a 960 (= 16 = 6{)
data set was kept for testing purposes.

The results observed on the above set of data are given below.
Linear regression model. The simple lnear regression model for the data considered 15:

¥ = 56038 — 1.6899(X ) + 0.0006(X ) + 0.6176(X4)
+0.2976{X ) — 246754 Xq) +0.0010( Xg) (1)

The comesponding ANOVA table for the above model is given in Table 1.

The MSE (train data) and Multiple-R* found for this model are 1.715 and 0.9387. The
MSE for test data and validation data are computed as 1.773 and 2.219 respectively.
Generalized linear model. The generalized linear model (considering the second order
polynomial ) s

Y = 3.09E + 02 — 3.73E + 00( X;) + 3.20E — 02(X,) — 933E + 00(X 3)
— LO3E + (2(X4) + 1L.91E 4 02(Xs) + 3.07E — 01(X4) — 2.20E — 04( X, : X2)
—5.59E — 02(X, : X3) + 8.OTE — O1(X, : X4) + 1.4TE + 00(X, : Xs)
+ 1.48E — 03(X | : Xg) + 3.66E — 04( X, : X3) — 8.89E — 03( X, : X,)
—2.09E — 02( X2 : Xs5) + 6.59E —06(X1 : Xg) + 3.24E + 00(X; : X4)
— 1.66E + O1(X3 : X35) —9.79E — 03(X; : X¢) + 8.97E + 01(X,4 : X5)
+3.27E — (X4 : Xg) — L4RE — 02(Xs : X¢) (2)

The Analysis of Deviance table for the above model is given in Table 2.
The MSE for rain data, test data and validation data are computed as 1,527, 1.612 and
2.586 mespectvely.

Downloaded by [Indian Statsucal Institute] at 22:15 03 July 2011

Table 1. ANOVA table for Response ¥

Source Df Sum of Sqr Mean Sqr F-value Povalue
Xy 1 5652940 5652940 F2T9E.68 (000
Xa 1 138.21 138.21 Bl 14 LUELLY
X 1 20087 200187 117.13 HELLL
X 1 17233 17233 ki) OO0
Xs 1 21962 212962 133.23 OLO00
Xe | .11 11 413 (0424
Residual 1433 2464 81

Total 1444 5974835
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Table 2. Analysis of Deviance { Gaussian Model)

Source Df Deviance F value PriF)
X | 565294 3644761 L]

Xa | 138.21 8011 0

X4 1 20087 130.16 L]

Xa 1 172.33 11111 L]

Xy | 22962 148.05 L]

Xe 1 T.11 459 0032418
XX 1 1631 492 0
XXy | 0.0 .06 0810827
Xi:Xa 1 56.5 55.96 ]
XXy | 4.449 29 LRSS R
XXy | 875 S.64 0.01766
XXy 1 13.63 B 0302
Xa:Xy 1 EIRIS) 20,01 B 3E-06
Xa:Xg | 12.07 7.78 0005357
Xa:Xe 1 1.87 12 0.272713
X3:X4 | 0.52 .34 0.562255
XXy 1 0.4 0.26 0610682
X3:Xe 1 2454 15.82 7.32E-05
Xi:Xg | 972 6.27 0.0124403
Xi:Xg | 0.03 .02 (843318
XXy | 0.27 .18 067518
Residual 1418 21949285

Total 14349 509748.35

{Dispersion Parameter for Gaussian family: 15509771,

Stepwize wegression. The best-fitted second order linear model found through stepwise
regression analysis is

¥ =227E+02 - 520E + O X ) +3.82E — 02{X3) — 6.66E + 00{X4)
—960E +01{X,) + 4 4E+ 02{X5) + 3 19E — 01(Xs) — 1.77E — 04X : Xa)
+ THTE —01(X, : Xy) + 1L10E —03(X, : X¢) — 84A0E — (3(X, : X4)
4+ 0325E —06{X2 - Xo) +3.03E+ 000X - Xy) — 247E + 01X - Xq)
— 103E —02{X5 : Xg) +8.40E + 01({X, : Xs) (3

The corresponding ANOVA tble for the above model i given in Table 3.

The MSE (train data) and Multiple- R* found for this model are 1.531 and 0.9631. The
MSE for test data and validation data are computed as 1587 and 2.652 respectively.
Prajection pursuit regression. The plot of & (m) versus m is drawn with respect to train
MSE and test MSE to find the optimum value of m. The graph is shown in Figure 2.

From the above plot, the value of m has been selected as 9. The estimates for A, and a,,
are obtained next. The minimum MSE for this model (where, m = 9) 15 found as 1.047.
The MSE for test data and validaton data are computed as 1175 and 1882 respectively.
The values of MSE versus m, for train data, test data and validation data are tabulated in
Table 4. The estimated values of 8, and a,are given in Table 5.

Backpropagation network. The ranges of the vanables used in the present work are listed
in Tuble 6.

Each vanable X; i1s nomalized within the range of 0 to 1 for ANN modeling by the

‘minimax normalization” technigue given below and wsed i the same form for other
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Table 3. ANOVA table for response ¥

Source Df Sum of 5q Mean Sq F Value PriF)
Xy | 565294 565294 3652285 0
X4 1 138.21 138.21 By 29 0
X3 1 200187 20087 1300.43 0
Xa 1 172.33 17233 111.34 0
Xs 1 229.62 22962 144.35 0
Xg 1 7.11 T.11 4.549 0.032239
XitXs 1 76.31 76.31 4493 0
XXy 1 5226 5226 3 A 0
XitXe 1 1644 1644 10.62 0001144
XarXy | 4405 441005 28.460 1E-U7
X2 Xs | 148 .44 (.50 03284149
XXy 1 18.65 18.65 12,05 0000534
X3 Xs 1 Q.15 415 53491 00151349
Xy Xg | 333 333 21.51 I BE-DG
XatXs 1 14.14 14.14 09.13 0.002555
Residual 1424 220404
Total 1439 SYT4R.35
0.035 -
0.034
0,032
003
E
= 0025 4
® 0.0
0.024 -
0.022 -
U.ﬂﬂ T T T T T T T 1
1 2 a 1 & G T a 9 1 11 12
m

Figure 2. Plot of ¢ (m) versus m

Tahle 4. Max imum number of terms to choose for the model (M = 12)

Min. no. of terms to Unexplained Train Data  Test Data Validation
include in the model (m) Variance [.-:.-—’I (m}] (MSE) (MSE) Drata (MSE)

1 0.0352 1.461 1.433 2.360

2 00350 1.454 1.455 2.564)

3 00298 1.237 1.251 2,687

4 00288 11495 1.227 214914

5 00277 1.148 1.221 2.6649

i 0.0279 1.157 1.245 2,464

7 00263 1.043 L1 2,241

B 0254 1.052 1.186 2.037

9 0.0252 L.047 L.175 1.882
10 00256 1.061 1.174 1.H7T8
11 2449 1.031 1.167 2,016
12 0253 1.052 1.174 1. B4
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Table 5. List of direction vectors and weight estimates (m = 1 10 9)

Direction

" veclors Xy Xa Xy X; Xs Xe B

1] Ay —A1.6246497 (. 41 0.302474 0.535657 —) ART 1 (547 64943012
|2 Aa 0. 119528 O.ODMOET =055 1978 —=1.540756 ={.623330 (L] SRS 0.55574497
[3] A3 02786249 =0.2695 0.035853 0.015936 ={.959583 0.004484 0.6%5427
|4] Ay 0.033914 O.00243 = 124856 ={.5756497 —0.807362 =0 121 04715563
|5] As —{) (42024 0001303 =53 00740 = 481792 ={.6RERUT =0.000377 (.668 56
|£] Ag =) (MIRTR2 = 00001 6% O 10918 ={.377303 = G958y (.95 1 06160745
7] Aq 0077260 =0.001288 0230818 0.26T6WH) =0.932252 O.000471 04273261
| #] Ag 0.036572 (0035 =(05681Y 0.201547 =.977143 —=(.001928 08037670
| %] g —014487 —0.N224 0.192671 =197 =894 02111 05500038

g s ¥ Indq d s
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Table &. Summary statistics of variables

Al Variable Coded Minimum  Maximum
Mo, description variahle Lnit (Xorind (Xiar)

1 Time sequence X - 1 16

2 Adrflow rate Xa CFM 20 EILLY

3 Temperature X5 W 30,750 36,420
4 pH X4 - 4.040 5235
5 Alcohol X5 g 0,087 0,150
b Residual Sugar X kg, 97.00 106400
7 % Increase of yeast ¥ T .64 24710

statistical technigues as well.
e, (4)
KXoy — X
where Xy 1% the normalized value of the vanable X;, X s the actual value and X, and
X i are the maximum and the minimum valoes of X;, respectively.

The architecture of ANN vsed here 15 4 multilayered feed-forward network, trained with
both the supervised SCG and LM algonthms. The six input vanables, namely, X, X,
Xy Xy, X5, Xg, are defined as input neurons, and the percentage growth (¥) of yeast is
considered as an output variable. In order 1o obtain the optimum network, several archi-
tectures with single hidden layer (6-N-1) and double hidden (6-N) — Na-1) layers. N
and N> being the number of neurons in the hidden lavers, are designed, trained and tested
with training data and west data respectively. The tan-sigmoid transfer function is used in
the hidden layvers while purelin transfer function s used at the output layer. The kaming
parameler and the momentum parameter are kept fixed at ther defaolt values. It s clear dur-
ing training that both the algorithms have reasonably good capability to train the network,
but the network trained by the LM algorithm has slightly better prediction ability. The best
network architecture from a total of 18 networks i selected as (6-14-10-1) on the basis of
combined performance of MSE, both for rain data and test data simultaneously. The “train
MSE" and *test MSE™ with respect to this optimum architecture are found as 0.8122 and
0.8321 respectuwvely. This architecture, when validated on a new set of data, performs with
a4 MSE level of 1OBE. A sample plot of “train mse’ performance, s shown in the Figure 3.
The parmmeters (weights and biases) of the opimum architecture are histed in Tables T(a),
T(b), Tie) and ¥ respectively.

Discussion

It s shown in an earlier section that an attempt has been made o model the growth of
yeast over hours of production with as much accurmey as feasible. The comparative study
(Tuble 9), based on various statisteal technigues for modeling and also with neural network
approach, which 1s a diswibution-free topology, reveals that the backpropagation neural
network, specifically with LM truining algonthm, exhibits the better prediction capability.
The comparative performance of the technigues used s done based on the commonly used
charactenstc, e, mse.

The ANN model gives an accurale relaionship among incremental growth of yeast and
the contribution of process parameters under the existing infrstructure. The shop-floor
people can look for necessary cormective measures through the addition of residual sugar
(i.e. the addition of wort /molasses), air circulation, chemical addition ete o achieve the
desired growth of yeast by adopting the ANN model. This model would also help to find



Downloaded by [Indian Statsucal Institute] at 22:15 03 July 2011

524 P Das & S. Bera

Perormance is 081224, Goal iz 0005
0’ : : : : :
ot .
gy
& 10y o
% 3
e 0} |
= 3
] ]
g -
=
£ 4g'l 4
s E
-2
10 1
1n'q 1 1 1 1 1
a 50 100 1£0 200 20 300

Figure 3. Training performance (6-14-10-1) using LM algorithm

Table 7. (a) Estimated layer weights (6-14-10-1 architecture) {Input layer to 1st Hidden Layer:
614 weigh estimates)

Input Laver

Xy 22X X 14Xy 5 X5 6 X
Ist 1 Ny 00161 —04403  —0.19%44% 03160 9284 00733
Hidden 2 N2 03087 0oy —04134  —0.4081 144407 00179
Laver 3 Mia 30737 00071 02172 —05412 136462 00100
4 N ~3.0684 00224 —1.1623 =2153% 241122 =0.0051
5 Mis =2.2602 00082 —0.5111 4. H2H9 32817 LXHE T
i Nig -1.5514 0one2 —0.0433  —04035 06908 —008TH
7 Niq 24654 00124 —0.1410  —O6D48 —3.0233 (LOOES

B Nig —4 2006 (L0 3 0.1653 0.2737 11.7613 (00603
9 Nig —4.4405 00592 =22176 -=-32615 -—18459%8 00467
10 Mo —03788 Oy 3 0LO0150 01155 1L.75% 00187
11 N1 —~0. 4707 0114 =272 40308 155528 04139
12 Nz =06100 (1389 1.77494 26152 =1502% 00159

13 Niaa 43891 —00196  —0.0445 07051 —11.1431 00338
14 N4 39308 —00284 083421 —Lhd48 187700 0.2355

an optimum combination of parmmeters for minimizing the varwbility of yeast production
around its average level of production. This would ease the following planning activities at
strategic, tactical and operational levels respectively to the management.

e planning of the requircments of molasses, the major and costhiest mw material for yeast
production, while adding in commercial phase of fermentation;

e scheduling the post processes for dry yeast production in an effective way; and

e long-termm inventory planning through accumle estimaton of productivity.



Table 7. (b} Estimates of layer weights (6-14-10- 1 architecture) (15t Hidden Layer to 2nd Hidden Layer: 14:x 10 weigh estimates)

2nd Hidden Layer

1 Nay 2 Nas INn 4 Ny 5 Nag 6 Nag T Naq B Nayg 9 Nag 10 V3

st Ny =1.7730 1.1827 —2.6408 —=1.6259 2. 1408 =23020 =0.9617 — {06056 —=1.1665 =), 1661
Hidden Nia =2.2074 —=0.1652 1.8238 2. 1665 =0 8718 =0.9353 —{.8124 =0.0168 2.5769 =), 161
Laver Ny —0.0566 20458 =0.0937 = 194 0.0703 =3.3095 =3.3476 =1.9355 =1.1129 01595
N =1.0052 08783 —={.3360 1.2638 1.0252 02084 3.6583 1.1694 =1.1228 =3.3614

Nis —4.0598 0.0078 43316 34302 0.0882 02857 22372 27073 20860 56749

Nis =0.4334 =092 57 —2.5604 06502 =0.2154 -1.5372 =2.1552 25125 1.5950 42979

Nia =1.7532 =00558 — 63008 =0.9917 0.4632 - 18161 03118 =2.0565 04667 1.74495

Nig ={.3013 =1.5068 =3, T066 — 8. 3049 4. 1703 =1.6502 —2.45354 = 1.8761 1 498 05241

Nig 0.43%) 0.0145 =0.2012 10027 5.5353 0.1 106 =1.1497 =0.9206 3.7640 033348

N0 0.1425 (0463 68955 =55(41 3.0353 =1.8027 =549 — 606086 02195 —6.2542

N 0.5668 05918 L0127 28113 =), 4921 42171 =2.1523 =2 0875 0.8241 1.8550

N2 0.7405 =0.3555 1.7076 0.7216 =1.3004 1.1292 07906 10997 1.2513 1.1029

N 08810 20427 44021 0.2131 =3.1736 24230 —4.49451 — {0 BlEG —2.6820 —3.3038

Nia =5.5617 0.6463 0.1540 —=3.2563 32555 1.3425 —=3.5465 —2.6568 0.6489 0.0360
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Table 7. (c) Estimates of Liver weights (6-14-10-1 architecture ) (2nd Hidden Laver to Output Layer:

10 1 weight estimates)

2nd Hidden Layer

Nay Nn Ny Ny Nag Nag Ny Nag  Nag  Nay
Output 1 2 3 4 3 i 7 B G 1t
Laver
Y 33003 —1.4984 05416 02515 13638 22483 14231 24565 194 31634
Table 8. Bias estimates
Bias Values
i Ist Hidden  2nd Hidden — Outpur
= Laver Laver Laver
&
= 16.2578 29046 436449
= ~3.491 ~1.8661
= —16.6832 3.5901
e 1346449 L7119
= —16.511 =2.240%
e 12.1356 1.4557
= 206148 —0.2378
Ty —21.0586 —={).7141
3 16. 7583 249524
‘= = 115416 2.1367
£ 204581
o -6.2372
3 ~6.5882
ho 40316
g =
|
:.r:
g
| Table 9. Comparative Performance of MSEs
1=
Ea Technigues Train Data  Test Data  Validation Data
E Linear regression L1715 1.773 2219
E Generalized Linear Model 1.527 1612 2586
E Stepwise regression 1.531 1.587 2652
= Projection Pursuit Regression 1.047 1.175 1.882
) Backpropagation (NN} 0.E122 0.5321 1. 0s

Conclusions

This paper has shown a
conclusions, both specific

robust model with higher predictive accuracy. The following
and in general, are drawn from this work.

Among the statistical methods the Projection Pursuit Regression model is found to have

a better capacity for predicting the growth pattern of yeast.

The feedforward neural

network with supervised learning exhibits muoch better prediction

capability than the statistical methods. This is due to the ability of ANN o tackle system

non-linearnty.

Among the newral networks, the network using the LM algorithm for ermor oplimization

wits found o be superior to the other most common (SCG) algonthm.
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¢ The approach can easily be converted for the purpose of any other complicated process
modeling that involves large numbers of mdependent variables, including more than one
output {response) variable.

e ANN can be applied effectively and efficiently with a significant prediction capability
in the non-manufacturmg business sector, smee it does not make any assumption on the
distribution and the properties of the data. However, sitations with noisy data would
definitely create problems in building a *good” model through this approach.
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