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SVM-Based Tree-Type Neural Networks as a Critic
in Adaptive Critic Designs for Control

Alok Kantl Deb, Student Member, IEEE, Jayadeva, Senior Member, IEEE, Madan Gopal, and Suresh Chandra

Abstrace—In this paper, we use the approach of adaptive
critic design (ACD) for control, specifically, the action-depen-
dent heuristic dynamic programming (ADHDP) method. A least
squares support vector machine (SVM) regressor has been used
for generating the control actions, while an SVM-based tree-type
neural network (NN) is used as the critic. After a failure occurs,
the critic and action are retrained in tandem using the failure data.
Failure data is binary classification data, where the number of
failure states are very few as compared to the number of no-failure
states. The difficulty of conventional multilayer feedforward NNs
in learning this type of classification data has been overcome hy
using the SVM-hased tree-ty pe NN, which due to its feature to add
neurons to learn misclassified data, has the capability to learn any
hinary classification data without a priori choice of the number
of neurons or the structure of the network. The capability of the
trained controller to handle unforeseen situations is demonstrated.

Index Terms—Adaptive control, adaptive critic designs (ACDs),
intelligent control, inverted pendulum, linear programming,
neural network (NN} applications, support vector machines
(SVMs).

I. INTRODUCTION

FEN-LOOFP applications such as signal processing or
Osyslum ientification are significantly different from
closed-loop control applications. In the later sitwation, nter-
actions between the plant dynamics and controller parameters
come into play, inroducing additional complexity into the
system. Controllers should have the essential property of
function approximation, and neural networks (NNs) are known
o possess good function approximation properties [1], [2].
Recent developments in the application of nonlinear models
based on artificial neural networks (ANNs) hold much promise
in the field of model-based control, where inpul-output training
data s available, and supervised leaming schemes can be
used. However, it1s desirable to apply more advanced learning
methods and intelligent features in control applications that
may eliminate the need for analytic modeling of a plant. One
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Fig. 1. Reinforcement learning scheme.

approach i this direction 15 the vse of minforcement learning,
where the available information 1s not as direct, immediate
or informative as in supervised leaming, and serves more 1o
evaluate the system, as shown in Fig. 1. This 1s particulady
useful for control problems, which require selecting actions
whose consequences emerge over uncertain periods, for which
mput—outpul traiming data 15 not readily availlable. One class of
reinforcement learning topology is the adaptive critic [3]-[6]
methodology, which 1s based on dynamic programming.

Building the cribe requires leaming highly unbalanced data
sets. This is because relevant failure instances may be few, and in
NN-based leaming approaches, such exemplars may get treated
as outhers and be swamped by exemplars of the other class. In
the literature, difficulties have been repored with leaming bi-
nary classification data sets comprising a failure state and sev-
eral nonfailure states by a multilayer feedforward NN [7]. The
problems arose due to the sudden jump in the output value of
a fatlure state from the nonfalure state. The tree-Lype network
that we have vsed in this paper guarantees complete learning of
any binary classification data [8], and has, therefore, been used
Lo overcome this hurdhe.

As pointed out, a good entic should be able to generalize well
from a few examples, such as from a small number of failure
states. Approaches such as ANNs tmined with error backprop-
agation ry o minimize the mean squared cmor over rmming
patterns. However, the emor minimization objective does not
address maximizing generalization or the classification margin.
Therefore, we use support vector machines (SVMs) for the critic
because they are known for maximizing generahzabon while
simultaneously minimizing the classification error. The VM-
based tree-type network offers several advantages when used as
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the crite. Given any tramming set, the network will find a solu-
tion that leams the entire trining set without getting stuck ina
local minimum.

When SVMs are applied 1o nonlinearly separable problems,
a kernel function needs w be chosen. The SVM-based tree-type
network learns a precewise linear decision boundary, obviating
the need 1o choose a kemel or kemel parameters. Keeping these
points in mind, we have used $VMs as a component of the critic
inour adaptive entic design (ACD)-based approach. Finally, the
tree may be more amenable to being interpreted in the form of a
set of sequential decisions or rules, though this aspect is beyond
the scope of this paper.

Conventional SVM formulations such as [9]-{11] optimize a
quadmbe objective function subject to certain linear inequality
constraints. Another class of SVMs, termed as least squares sup-
port vector machines (LS-5VMs) has been proposed in [12] and
[ 13], where the constraints are of the equality type. In LS-5VMs,
the classifier or regressor is obtained by solving a set of linear
equations. Using a chosen kernel, this technigue gives a good
estimation by placing the kemel functions at the training points.
I this paper, an LS-SVM regressor has been rained o act as the
controller. The performance of the controller is indicated by a
“critic” in the form of a constructive network [14], developed by
using the linear programming (LP) framework, each of whose
nodes acls as a4 maximum-margin type support veclor classifier.

The rest of this paper is orgameed as follows. Section 11
brefly introduces the different ACDs. Section 11 describes
two leaming structures: the SVM-based tee-type NN, and
L5-SWMs. Section IV describes the control strategy adopted in
this work. Section V discusses experimental resulls. Section V1
contains concluding remarks.

1. ACDs

ACDs have evoked growmng interest in nonlinear control,
because of their capability o approximate optimal control over
tme in nonlinear environments [3]. Any real-hife optimization
problem can be cast as a minimizalion Or 4 maximization
task, and an optimal solution can be achieved if dynamic pro-
gramming 15 used. However, dynamic progromming methods
are computation-intensive, due to mination of the search
process from the goal, and the dependence at any stage on the
computation of the cost-lo-go 1o the next stage for different
available controls. They also need highly efficient data struc-
tures and programming capabilities o carry out the method
stage-by-stage. The “curse of dimensionality™ has limited their
use as 4 tool for finding solutions to complex oplimization
problems. Attempts have been made o overcome this curse
by using heunste strategies o approximate the cost function.
ACD offers one such approach, where it is atte mpted to build a
“eritie” by using a function approximation structure that leams
Lo approximate the cost function in dynamic progrunming.

The three basic methods of ACDs are heunstc dynamic
programming (HDFP), dual heunistic progrumming (DHP), and
globalized doal heunistic programming (GDHP). The basic
blocks of an ACD are the action element and the eritic element
(evaluation module), but n some of the stuctures a model
network is also used for system identification. If the critic
element has the actionfcontrol signals as part of its inpul, those
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Fig. 2. Differsnt ACDs. {a) Critic for HDP. {b) Critic for DHP. {¢) Critic for
GDHP.

designs are referred o as acton-dependent ACDs (ADACDs ).
Different ACDs have been illustrated with examples i [4]-[6].
In a discrete-tume nonlinear dynamical system

a4 1= FlelEl it g (1)
where «it) & B
denotes the control action, the system changes al every instant
with the application of control inputs. This change is guided
by the dynamical nature of the system, which is captured by
the function . As the system’s state changes {rom instant to
mnstant, any mstant 15 associled with a cumulative cost o drive
the system from that instant o the goal. The performance index
% for HDP at any instant is given by

denotes the system state and 4 (#) = ™

o
Fle(hd =3 70 k) K] (2)
[ 4

where I77 is the utility function or local cost function, and ~
is the discount factor, with {1 < ~ < |. The aforementioned is
the cost-to-go of the state (¢} for the infinite horzon problem.
If the control actions w[#) are also part of the utility function,
we have the action-dependent heuristic dynamie programming
{ ADHDP), whose performance index is given by

o

N AR O k) (3)
bt

Fig. 2(a) shows the crnitic for the HDF/ADHDF scheme. In HDP,
Tti ! 1is the vector of states 00 of the plant, while for ADHDP, it
is a concatenation of the states #{#} and the control vector afitl.
Minimization of Ji/] is the desired objective. Equations (2) or
(3) may be more concisely wrillen as

F|xiti. 4

TH

Yot @)
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Expanding the previous, and uwsing the teminology for the
cost-lo-go at (L | 1], we obtain

£}

AU =00 Al ]+ 8 -
=0 v 1] (5)
Al any instant “¢” the objective is o find an appropriate control

sequence ik, ko b+ 4 L. .., so that the function .J is min-
imized. The task of the critic network 15 o learn the function
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S}, In general, the entic elements are trained by minimizing a
Cerlain emor measurne over lme, say

Bl = B (6)
i

where, following [5] and [6], we have F5#) J(E) = T70E) -
~ il 4 10,

Any lunction approximating structure may be tmmed w act
as the critic, so that at any instant it can output the cost function
for the immediate future. If the critic is parameterized as V.,
the input—output relationship of the critic network in an ADHDP
may be wrillen as

At = At WL (7)

In DHP and action-dependent DHF (ADDHP). the cntic net-
work estimates the dedvatives of ./ with respect to the vector
It 0, where It is the vector of states (L) of the plant (DHP),
or a concatenation of the states #(#) and the control vector ¢
(ADDHP), as shown in Fig. 2(b). In general, the cntic element
15 trmined o mimimize a ceran time-dependent ermor measure

Foll =3 I (£ Fait] (8)
where, following [5] and [6], we have

Bl = Wy JU = oW e I = 10 = Ve U0 ()
Here, the denvatives are taken with mespect o the components
of the vector Al z‘.:: . The need for the existence of denvatves in
the error measure, and the training of the critic by minimizing a
certain nomm of such an error measure, complicates 1Ls case as
compared w HDP.

GDHP and 1ts AD forms are a fusion of HDP and DHP where
the critic network adapts in such a way that it estimaltes two com-
ponents: a scalar component f and 1ts derivatives with respect o
the components of I The vector Rif ) is a vector of the states
a(#} of the plant in the case of GDHF, or a concatenation of the
states ) 4 and the control vector wit) in the case of action-de-
pendent GDHP (ADGDHP), as shown in Fig. 2ic). Therefore,
the adaptation of a GDHP critic would involve minimizing an
error measure that is equal to the sum of the error measures of
HDP and DHPF, as given by (6) and (8), respectively. GDHF and
ADGDHP are the most comphcated ACD approaches and are
expected to be superior to other methods [5], [6].

III. LEARNING STRUCTURES

A. SVM-based Twee-Type NNs

SWVMs are known for their pattern classification capabilities
[9F-[11]. The most popular SVM, “the maximum margin clas-
sifier,” aims at minimizing an upper bound on the generalization
error through maximizing the margin between two disjoint half-
spaces. These may be in the original input space for a linear clas-
sification problem, or in a higher dimensional feature space for
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a nonlinear classification problem. Given a training set, [5 =
ettt e Myt £ 01 hd & DeardiTy AL which
15 hinearly sepamble, the hyperplane @ that solves the oplimiza-
ton problem

(QPF)  miu{w - w} (105
subject o
o' (a4 ) B L o S o

realizes the maximum margin hyperplane [9]-[11] with geo-
metric margin v = {17]|e]|2}. On the other hand, for the task of
binary classification of the set 5, the goal is to obtain the weight
vecLor [ ] such that

if it = |

= o 1
ify =0 *

ay =1

i Wk = {i :\_‘\.

A=
(12}

where i denotes the ith sample, T is the index set of the training
data set with cardinality &, and A 15 a positive quantily intmo-
duced for better separation of the data. Samples from the data set
having output 3' = 1 belong to Class 1, while samples having
output »* = {1 belong to Class (. Using S VMs, the binary classi-
fication problem can be solved by learning a tree-type NN [ 14].
This network grows by adding one neuron at a time. Given an
input—output data set, a perceptron tries o satisly all the inequal-
ities in (12) for each input. Following [15], the inequalities in
(12} can be reduced o the following equalities:

i Lt v - foh
Z ('n'.‘r'., —_— 5 .,- ity — (.45"'-' — ]| = ifie h
d=0 '

(13a)
E - - . ’ . -
Z_ (rr:;_' it _'J oy (,-:_:;ﬂ A'J_) = A if j o Iy
=

(13h)
L R T T
where w; ", w,; ", a7 L5 .=, an 51 are nonnegative

variahles; /; is the index setof data samples of Class 1 with car-
dinality +e; iy is the index set of data s.inlptht}fCluhs O with car-
dinality &:f = £ L1 I ndy = drand ), = &, = L h}llmﬂ.mh
[15], any weight iz can be represented as v = L. g J !
where 1.“;_" and Tf'r_] are nonnegative variables. Hence, oy can
Lake on LIthF a p-usllm, or negative value depending on th
1r.iluu uf w +! and 't-!" !, The surplus and slack variables 5! 2
and .'-.'1- 'are Liwd toconvert the mequalities i (12) wo equalities
[see (13a) or (13h)].
Any constraint from the training set (say, the pth one) is sat-
isfied if the corresponding slack variable
.‘;L =, for ped (14}
where 15 the index set of the tmiming data set with cardinality
& Therefore, given asetof input—output data pairs, the obvious
objective 15 1o minimize the number of inequalities that are not
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TABLE I
TvpPES OF LPP5

Type Valoe of Zamd o Case
Tepe T A=Tu=1 subsatomtial value of w amwd &
L 1
Trpe 11 A= —ip=— sulsrantial valuo of woand &
a P
1
Tope TTT A=‘V1,_,£I=E;NIE] w ok
1 .
Tvpe 1Y A= — = I"r'[ K =1 Lok
"1
TABLE Il
CLASSFICATION OF SAMPLES BASED N OUTPUT
Clays Actual Cutput Desired Dhfput Mir. of Samples
. 1 0 Ny
[ 1 1 Tg

O M 1 P
: | fl Py

satisfied, which can be formulated as the following linear pro-
gramming problem (LPP) [8]:

(LFP) min Z )u.::r

=1

(15)

&
Y
fesi
J=1

subject o the constramnts (13a) and (13b). Given a binary clas-
sification data set, one may have four types of LPPs, as shown
in Table 1. These four Lypes are obtained by changing the rela-
tive weightings of slack variables .'1'::_" and "‘j'_} in the objective
functon (15) in terms of the cocflicients A and p.

The different LPP types lead to different solutions for a bi-
nary classification problem. Type Lis a trivial choice of the co-
efficients of the objective function and Type 11 leads to quick
convergence. However, for skewed data sets, where the number
of samples of one class is much smaller than that of the other
class, using a Type 11 LPP leads to a tavial soluton. For skewed
data sets, Types HI and 1V LPPs have been proposed with, re-
spectively, higher values of A and ., 50 a8 10 merease the pos-
sibility of elimination of the corresponding slack variable from
the basis durning ecarly muns of the Simplex algorithm.

In Table L A7 represents the value of A or i that is used for
the coefficients of the slack variables "; ! and -':*_:r- J, when the
objective function (15} is used for a Type 111 or Type 1V LPP, re-
spectively. This has been necessitated o overcome the learning
problem when the number of samples of one of the two classes
15 much smaller than that of the other. Type 1T LPPs are used
when the number of samples of Class 1 is much lower than
that of Class (0. In such a case, A and j ame chosen such that
a higher value of Al M} is used, so as o assign greater im-
portance Lo the slack vanables .-sl;q corresponding o patlems
of Class 1. This increases the possibility of elimination of these
vanables from the basis set during early runs of the Simplex al-
gonthm. LPPs of Type IV also behave the same way for the case

LR

Al

Fig. 3. Parent neuron and its two child neurons, A and 5.

TABLE 11l
REQUIRED OUTPUT OF NEURDON 1 AND NEURON ¥

Clavs {hitput of A Lhtpnt of B
< 0 Drour’| e
(- THin'Lcane I
Cy 1 I
s Il I

where the traming set samples of Class () are much fewer than
the number of Class 1 samples.

A hyperplane 15 chosen from the possible LPP solutions, as
i Table I, based on the performance of the hypemplanes on the
tramnmg set and the validation set (if present). The chosen hy-
perplane classifies the SV training samples, as in Table 11, based
on the output. Here, %) | &2 Ny | N = 2%, which is the
total number of samples.

Any sample belonging o class O or Oy has an incorrect
output. Child neurons A and & are added o correct for such
samples, as shown in Fig. 3. Neuron A provides a positive input,
while neuron £ effectively provides a negative input, due to the
negative weight [ — 3. The desired outputs of the child neu-
rons are also shown in Table 1L

Denoting the outputs of neuron A and A for the dth sample

' = respectively, the constraimts that are to be simulta-
isfied by the parent neuron, and the desired outputs
of A and # together are given by

n

Z gy g, oy A, ife &8 (16a)
40

a”

Z-!r.:d:a.'l’_,- — g ot £ — A, if j = Iy, (l6b)
A D

The solution of the maximum margin classification problem ap-
plicd o the hinearly separable data set compnsing the parent
neuron augmented with the desired inputs from the child neu-

g T . g il ™ 1 [s g [s janp ] 0
rons, gives l.hL 1.’-1._Ighl viecLor [w], as 'MI,II as weights of the
interconnections from neuron 4 and B, viz. w, and 2oy, Thus,
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Fig. 4. SVM-hased tree-type MN for the synthetic data set.

the growth of the network takes place until a neuron can learn
its whole traming set without any classification emror.

The constructive nature of the SVM-based tree-type NN ac-
tually gives rise toa deep structure of the network, the final deci-
siom hyperplane bemg decided at the wpmost neuron. Individual
neurons down the tee represent arule structure that learns a part
of the traming set, while removal of acertain branch/mode would
lead w unleaming of some of the data at the wpmost node. For
a given traimng sel, 1i0is a one-shot traming of the complete data
sel, and the network gets fixed. If the raning set changes orif a
new data 15 added to an existing traming set, a new network has
Lo be traned afresh. The approach gives a pointer i the direc-
tion of developing a“entic” by constructive technigues.

Example: Consider a synthete 2-D data set with samples of

Class 1 located at {0530 GL7TL05, 300707, Tik
and  samples  belonging o Class 0 located at

for 0, O, O, (9,10, 00, 55, 1, 103}, Fig. 4 shows how
the 5VM-based tree-type NN having six perceptrons leams
the data set by hierarchically comecting the samples learned
mcomrectly at the previous layer. Fig. 5 shows the points in
2-D, along with the optimal decision boundaries composed of
precewise linear segments learned by the network.

B LS-5VMs

A class of 3VMs, called LS-SVMs [12], [13], use equality
Lype constraints in ther formulation. This allows the solution o
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X

1

Fig. 5. Classification contours genermed by 5V M-hased tree-type NN for the
synthetic data set.

be obtamed by solving a set of linear equations, instead of by
solving a quadratic programming problem (QPP) as n the case
of classical $VMs. LS-5VMs have been applied to the N -stage
optimal control problem [16].

Let 8 = {ia' iz’ « MMyt « Wi & Freand! ) = N}
be a given training data set. The nonlinear mapping o ; ®% —
it maps the input data into a high-dimensional feature space.
In SWMs, the aim is o reduce the empirical risk

EY
I : . i
Amp (w ) = A E . |3J'? L r|-‘;|~;;"' ]:" u"UL (17)
o=l

where w £ W% wn & R, and o). denotes a loss function that
penalizes a loss o depending on the parameter ©. Some com-
monly used loss functions are the s-insensitive loss function,
the gquadratic s-insensitive loss function, and Huber s loss func-
tion [9-[11].

The nsk mmimization problem given by (17) can be ex-
pressed as the following regresson problem:

A
1, . 1—
5“'_- . -w + HE ZE"‘

Minimize (18}
Ty
a—1
subject to the equality constraints
o= wealmtlh |y | & Pi= LT N (1)

Objective functions as in (18) are vsed so as to minmize both
the structural and empirical risks, thereby providing better gen-
eralization. For the previous problem, the Lagrangian is given
by

: . =
Lipgiw.wy, Sl = 5 L - w}
| N By
175 Zf? Z a (W @)} v | & ') (20)
=1L F=

where 5 are the Lagrangian multiphers that can be positive
or negative, as follows from the equality constramts of the
Karush-Kuhn-Tucker condinons. Following [12] and [13], we
have:
N
Vplpz=0=w= Z J_‘t;!;r,-‘.l::x‘::l

=1

(21a)
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TABLE IV
SOME BERNEL FUNCTIONS

Kernel Kernel Tunelion Tarsuelors
Lircar P2 A 1 S e
kernel ﬂ{l X } <',L * )
Mulilayer st [ sy :} ¥ ibias
Perceplrin Hl{x e ':I_ fanh :{:I % :} = & meale
kermel

ParLrre.er

Pabmormial I interep

K(x:’x"'}:{{x‘ ) ;}:r

kernel et
lhe pulroocoial

Clatssinm :::._1_. 4":”&" A G_: yythimer

kemel : ) e

I{(x':,x"}-— e

A
-!I'.Jur.| a2 -
=0=3% ;= 21b
f}rr-'“ %—’r ( ::I
s : :
v -I CI— Ly = "l ¢=l,2,...._;1'~' [E]L}l
e,
';j"r"]-"-" ; IR "
ey > qu gl :I.} +own + & —w i,
D y (21d)

Substituting #t and £, from (21a) and (21¢) in (21d), we can
write (21b) and (21d) compactly as

¥ ke (2] 5]

where y = [y ..o yw: T = L1, 1, 40T Ky =
Kig'zhh = (g - ') iy = 1.2, N, and x =
[{I.'l fre ., LI-_-\,-]T. Some commonly used kernel functions are
mentioned in Table IV,

As s evident from (21¢), for the least squares (LS) case, the
Lagrangian variabkes o are proportional o the errors at the data,
contrary 0o classical SVMs, where nonzero s cormespond 1o
the support vectors. Hence, sparsencss s lost in the LS case.
With some choice of the kernel matrix K and the regularization
parameter ~, (22) represents a set of hnear equations that can
easily be solved for wyy and «. Here lies the advantage of vsing
L5-SVMs, where one solves a set of linear equations, instead of
a QPP, as in classical SVMs. The resulting LS-SVM model for
function approximation becomes

(22

o
wiE) = Z e (8 ) + .

=1

(23)

IV, CONTROL STRATEGY

It 15 desired o develop a controller for a plant so as 1o mini-
mize the occurrence of failures, and also o provide a smooth op-
eration. To achieve this contmol objecuve, the ADHDP strategy
has been adopted, whereby the entic and action networks work
in tandem; the critic network tracks the perfformance of the plant
from no-failure o failure conditions, while the actual control in-
puts are generaled by the action network based on the plant state.
The quahty of contmol inputs generated by the action network 1s
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Fig. 7. Cart-pole model.

indicated by binary signals generated at the output of the entic
network. The complete scheme for an ADHDP-based controller
15 shown in Fig. 6.

A popular example of a plant where a controller of this type
may be meorporated 1s the mverted pendulum or the cart-pole
problem, as shown i Fig. 7. The objecuve here 1s o balance the
pole in an upnght position. The bottom of the pole 15 hinged on
a cart. The only control input available 1s the honeontal foree
that can be applied to the cart along the track. Using this fulure
condition, the utility function of the cart-pole systemis given by

I 0, when no failure
l I. failure condition '

L (24)
Due o the formulation of the utility function as aforementioned,
the remnforcement signal 1s obtaned only when the controller
15 unable o control the plant. This mformation regarding the
smooth operaton o a falure condition of the plant’s states
15 used for mwetrainmg the critic and action networks for an
ADHDP-based design. The plant states and the comesponding
utility value of (F] depending upon no-falure/falure constitute
the data for a binary classification problem. This data can be
used for traming a leaming machine as the cntic.

Training of an ACD is a sequential process, with the tmining
alternating between the entic and action networks. The cntic
network is first trained with the failure data. Starting with a
single node, the SYM-based ree-type NN adds up to two child
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neurons that provide comections for samples that are misclassi-
fied by the parent node. Leaming at the child neurons proceeds
in a similar fashion. However, the number of patterns that need
o be learned at the child newrons 1s less than that at the parent,
since the parent will correctly classify a finite number of training
patterns. Consequently, the number of misclassified patterns re-
duces at each step, and becomes zero after a finite depth of the
tree. The entic” s training 15 stopped when it has leamed the com-
plete tramming set compnsing the no-fallure and falure states.

Omnee the cnbic 18 tamed, action training starts. 1L is desred o
minimize S £} at the output of the critic in the immediate future,
s that it would optimize the overall cost expressed as the sum of
future I7{77%, This will necessitate training of the action element,
so that the output of the crite 1s as small as possible. ldeally,
onge would like o have the output of the critic network equal 1o
#ero, so that the pedformance index J is minimized. The desired
mapping needed for raining the action network in the present
ADHDP set up 1s given by

A st} — {0t}

where [0{#}} indicates that the target value at the output of the
critic network is zero for an input {20} at the input of the
action network. In other words, atinstant *E7 the action network
should generate appropriate control actions {wi#}} in response
to the state {01} so as to drive a certain Ji!) (o zero.

V. EXPERIMENTAL RESULTS: CONTROL BY ADHDP

A. Plant Description

To test the previouws control strategy, the chosen plant was a
single-input—multiple-output (SIMO) system, viz. the model of
a single hink mverted pendulum. The inverted pendulum case
study was chosen as it 15 a benchmark applicaton in the con-
trol literature, and its panciple underdies some mome complex
control systems like balancing the booster of a rocket during
launch, or multiple links of a robotic arm. The model and its pa-
rameters have been adopted from an actwal expenmental test bed
designed by Feedback Instruments (Crowbomugh, East Sussex,
UK., [17]. The stale vector of the system 1s given by

xr = [;.':_ WA g J;.lnj fzt‘]‘

where & is the carl position (measured from the center of the
rail); w2 18 the angle between the upward vertical and the axis
of the pole, measured counterclockwise from the can; and =, is
the cart velocity and 4 15 the pendulum angular velocily.

The pendulum can rotate in the vertcal plane, while the cart
can move on & horizontal rail lying in the plane of rotation. The
only control that can be applied is in terms of a horizontal force v
applied on the cant parallel to the rail. The dynamical equations
govemning the plant motion [17] are given by

DI ) (27a)
Loofu T palsingg]  feosmsipgsines  faeg)
i A= prlein my

(27h)
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TABLE W
PARAMETERS OF THE PENDULUM-CART SETUP [17]
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(27d)

where a = 2 + [/ me + witp i ds g0 = T+ oy M g s the
acceleration due to gravity; me, is the mass of the cant; my, is
the mass of the pendulum; [ is the distance from the axis of ro-
tation Lo the center of mass of the pendulum-cart system; .f is
the moment of inertia of the pendulum-cart system with respect
to the center of mass; T, denotes the friction in the moton of
the cart, where f. = f.ra; and {1 15 the moment of foclion
in the angular axis of the pendulum, proportonal o the angular
velocity, e, f}, = fuay. The admissible controls are bounded,
e [t <0 M. The different parameter values of the pen-
dulum-can setup are given in Table V.

B. Control Setting

Several ADHDP strategies have been attempted for control
applications. Developing such a control strategy involves de-
sigming a controller (factoon” element) and a moduke 1o eval-
uate the controlling function (Mente” element). The modules
need to have function approximation capabilities. Making use of
their function approximation capabilities, NNs have been used
to develop these functional blocks [5], [7], [18], [19]. Another
approach attempts o make vse of the knowledge used by ex-
perienced operators in approximate hinguistic terms for devel-
oping these functional blocks by fuzey NNs [20], [21]. NNs are
plagued by the need for a large number of training examples,
occurrence of local minima, oscillations, and “forgetting” prob-
lems, while Tuzzy-logic-based approaches need a detailed de-
sign methodology of comectly deciding the structure, vanables,
and its membership functions, choice of the rule base and tuning
of the parameters. The present investigation adopls a construc-
tive approach in the ADHDP-based strategy.

1) Critic Element: Leaming Problem: As discussed in
Secuon 1V, in the conwol approach vsing ADHDP-hased
design, a batch of failure datn comprsing the plant stales
and the comesponding utility values of 0/1 (depending upon
no-failure/failure of the plant) constitute a binary classification
data set. Since failure may occur after healthy running of a
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TABLE VI
MAXDMUM AND MINIMUM VALUES USED FOR NORMALIZATION OF THE STATE
WARIABLES OF THE PENDULUM-CART SYSTEM
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plant, it 1s a “rare event.” The difficulty of leaming such data
using multilayer NNs with nonlinear activation functions and
backpropagation tramming has been reported in [7], as the state
value suddenly changes from a no-failure state to o failure one.

Conventional NN learning methods employ iterative schemes
for updating the weights. In general, the incremental change in
weight connecting a yth neuron to the ¢th neuron of the next
layer 1s given by

(28)

where v is the leaming rate and I7 is the sum-squared emror be-
twien the target and actual output at the network oulpul.

The most popular backpropagation algorithm [22], [23] com-
putes the sum-squared error & at the network’s output and up-
dates the weights layerwise. Convergence of algonthms such
as “backprop” and its varnants depends on the mital weights
and the choice of vardous parameters of the algorithm. In gen-
eral, classical derivative-based weight updatng algorithms ane
plagued by the need for a large number of training samples, oc-
currence of local minima, oscillations, and “forgetting”™ prob-
lems. The problems and performance sensitivity of multlayer
feedforward networks 1o the number of hidden units, and diffi-
culties due to the occurrence of local minima have been shown
in [24].

Although 1t works well for a wide mange of problems, for
the particular case of learning binary mappings, gradient-based
training of feedforward NNs using & as the cost function with
nonlinear activation functons like the “sigmoid™ and “tanh.”
often gets stuck with some outputs wrongly leamed [25] 1f f({]
denotes the activation value of a neuron, the incremental change
in weight in a multilayer network by backpropagation raiming
follows the proportonal relanonship:

Aany, o FL (29

The tems ['[-) =

L

FOL - fi-1] for “sigmoid” and
Fio o= 017200 — {£(-1}%) for “tanh” tend to zero as the
activation value saturates o 01 and — 1/1, respectively. Thus, 1t
15 theoretically possible for the network wo get stuck with some
welghts nol gettng updated. When using multilayer NNs with
nonlimear activation functions like “tanh™ or “sigmod.” il most
of the samples of a particular class are learned, then the network
tends not o leam samples of the other class [25] I such a
network 18 wsed as the eritie, 1t tends not o leam the falure
state that 15 a “rare evenl” [7]. In error backpropagation-based
ANNs, such exemplars may get treated as outhers and may

Inicialize: 1) Chengrats randam srate data ot the: Plant, Aszign Of wahies e
-Gl ¢ Bailuce stiles,
21 't the SR based ree type nevral network, s the 'Cldtic” element.
31 Initialize a aulti-laver Lood-forsand neuval nereeork as e "Action”
eleinsl.

¥

> For randnm iitial statzs, genarate tha autpuc ot
“Action” amd "Critie' elements.

Sawe e Liainesd Clrilie
and Action Jlomchts,

Troan Critee with e Caperirnenio] data.

v

Trun o LEEVE rerressar ae Aclion socl1hal i
tailnre staces Critic oot iz o, eg. (250

Fig. 8. Floachart showing ADHDP-based controller training. Critic element:
SVM-hased tree-type NN, Action element: LS-5VM regressor,

be swamped by exemplars of the other class. This common
phenomenon has been discussed at length in [25], where the
use of evolutionary strategies has been suggested. Ermor min-
mmization does not address maximizing generalization or the
classification margin. Therefore, we use SVMs for the entic
because they are known for maximizing generabizaton while
simultaneously minimizing the classification emor.

Our Approach: This work attempts o overcome the afore-
mentioned difficulty in leaming binary classification data;
this 15 achieved by using the SVM-based tree-type NN [14]
as the ertic. The approach 1s based on the imteresting sel
of NN legrning methods that wvses LP-based formulations
[15], [26]-[31] to determine network weights as descenbed in
Secton HI-A. The constructive nature of this network, based on
LP formulations of the problem, guarantees complete lkeaming
of any binary classification data, as has been demonstrated on
real benchmark data sets [8].

2) Action Element: The action element 15 the main controller
that generates contrmol actions depending on the plant states.
Making use of the generalization capabilities of SVMs, an
L5-5VM regressor with a radial basis function (RBF) kernel
wias used as the action element. Consequently, the number of
hidden units did not need o be determined a priod, and centers
do not have w be specified for the Gaussian kemels, as the
kernels are centered on the falure states. The regularization pa-
rameter ~ and the kernel parameter m were tuned (o minimize
error during training.

3) Plant States: If the displacement of the cart and the an-
gular displacement of the pole are denoted by =[!) and 9i7], re-
spectively, then the four components of the plant’s states that
have been considered in the control scheme are o st
wa = G{1), wy = 4(f), and vy = 0.
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Fig. 9.

Structure of the SVM-hased tree-type NN that learns to be the “critic™ in the ADHDP contmol strategy for the inverted pendulum problem. The input vector

has five components. The weights indicated in the boxes contain six corresponding components, viz. wty, 2, 3, 15, ey, and 1w;. The first weight s, is the

weight corresponding to the constant input.

4) Utility Function: The actoal vtlity function used for de-
veloping the ADHDP-type control scheme 1s given by

.. (1, AErr = 197 5 I
B { -|] [N < 127 and w[d)] = ﬂ"&ml 30)

otherwise

The utility function penalizes a state il the pole angle falls past
12* om either side of the vertical, or il the cart reaches the end
of the track (0.5 m (rom the center. For the plant being consid-
ered, the state vanable of utmost interest 15 the pendulum ver-
tical angle #t), which renders the plant to the “failure™ state
most oflen.

C. Controller Implementation

Using the plant parameters as given in Table V, the complete
control scheme was built by wsmg the simulation softwane
SIMULINK (version 5.0} and by mtedacing it with MATLAB
[version 65(R13)] progmmming environment. The  plant
states and the comesponding critic output are available in

the MATLAB workspace o retrain the action element after
obtaining the falure data.

In our implementaton, all the state vanables and the input
have been nomalized to lie between — 1 and 1. The maximum
and minimuom values used for normalizing the state variables of
the pendulum-cart system are shown in Table VI

The states and the input of the eritic and the action networks
were randomly mmtiahized. The imitahized states and the mput
give the imital traming set for the action element. Inial traming

data was generated by assumimng different random positions
of the pendulum over its two angular imits, and also over
the length of the tmck. A total of 168 states were mitialized.
The experiments were performed using this imtalization 1o
obtain rehable expenmental data. A three-layer feedforward
network was vsed as the imbal action element, which dunng
subsequent tramning with actal faolt data, was replaced by
the LS-5WVM regressor. Applying the vtlity function on the
randomly mitialized staes, the uthity value of each state ®
can be obtamed. The mital states, control mputs, and the
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Fig. 1. Sample trajectonies from the ADHDP training scheme of the cart-pole system. The failure condition occurs when the pendulum angle falls past the

positive limit.
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corresponding utility value act as the mital tmining set for
the SVM-based tree-type NN,

The plant was simulated with the imibaleed states, and
traming data was collected for both the critie and acton net-
works., Once a faled state is reached (which 1s mdicated by
the entic output of 41), both the cribe and action elements
need o be updated. Once a batch of falure data 15 obtamed
by conducting the expenments from mandomly generated
mital conditions over the state space, a new criic has w be
tamed. Once a new crilic has been obtained, out of a set
tugd L2 oo kiw € (=1, L) of B available controls, the
proper control action 15 chosen. This 1s the action that produces
a zero al the output of the entic doe o fnlue state, as well
as provides a control force n the right direction 10 balance
the cat-pole system. Once the falure states and ther desired
control actions to balance the pole are known, the LS-5VM
regressor 18 tmined. The regulanzaton parameter v and the

kernel parameter 77 were tuned by using the function runelssvm
of the LS-5VM wolbox [32]. This cycle of traimng the entic
and the action element s continued whenever the eritic network
indicates a falure. The larger the number of zero values at
the output of the cate 15, the more the value function S s
reduced. The flowchart in Fig. 8 illustrates the ADHDP-based
controller raimning in which the 5VM-based tree-type NN has
been wsed as the “enbe” and an LS-5VM regressor as the
“action” element.

The trained ADHDP-based controller had a 14-node SVM-
based tree-type NN as the ente (Fig. 9), and the parameters of
the LS-5VM regressor-based action element were - = 91,111
and @% = J4TY.

. Simudation Results
The sample perfformance of the ree network as the critic
and the progress of the stale trajectories of the cart-pole system
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Fig. 13 Phase-plane plots showing convergence of the ADHDP-hased
control scheme: pendulum angular velocity (5] versus pendulum angle
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with the input dunng training of the entic and action elements
in tandem have been demonstmted. As the pole angle falls
past the vertical beyond +12%/ — 12°, the output of the critic
switches from O 1o 1, indicating the falure condition and
stopping further control input o the plant, as shown in Figs. 10
and 11.

Fig. 12 shows the performance of a trined ADHDP-based
controller with the pole imtally placed at some arbitrary angle
(say, 10.87) from the vertical. The controller successfully steers
the plant and it achieves an equiliboum state of

¥ o= TG 00l

The safe operation of the plant has been indicated by zero
outputs at the output of the tree network, while the Gaossian-
kernel-based LS-SVM regressor provides smooth control.

Curt ¥eluvily, s (mis}

th ke =
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Fig. 14. Phase-plane plots showing convergence of the ADHDP-hased
control scheme: cant velocity [atz] vemus pendulum angle {rg).
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Fig. 15 Angular deviation of the pendulum starting from initial pendulum

angles on both sides of the vertical at +10.%~,

The main objectve of the pole-balancing problem is o keep
the state of pole angle vertical within the bounds of the track.



DER eral: SYM-BASED TREE-TYPE NNS AS A CRITIC IN ACDS FOR CONTROL

1027

15 ' T ! ! :
EEgo . : . .
=T 1 1 1 1
i iy i Ll 4 i Gl Y il K0 11
= 0z 1 ' : i |
3 2 § i | ] ]
o
S L L L L
3 i |]n iU M n 4 i Gl h il iy 1
E ! ' ' ' '
e e 1 1 1 1
e EE "JLL‘ T T —dpr—— T
z D L L 1 L
= 2.:II'J 1 My K11 Al L1 dil i ] L (1]
ey | | |
5 _E'E ':'#-' 1 T —jpre T
i L L L L
= e 0 24 i Al 5 il I; 50 ] 109
ER | | | |
gzF 0 1 T h‘ T 1
22 m 1 I I I
T Z.IJD n B k1] Al 5 2] 0 R0 ] 100
o : : T :
E T of T T | i T
o S | | | |
T 1y M n 4 o Gl T il iy 101
linmy [sec)
Fig. 16, Effect of disturbance duve to an impulse input at the fiftieth second.

Convergence of the velocity components of an equilibrium state
&' 1o the ongin ensures stability of the plant [33]. The simu-
lation data for an inital pole angle of —10.%" has been used
Lo draw the phase-plane rajectories shown in Figs. 13 and 14,
The trapectories depict the convergence of the pendulum an-
gular velocity and the cart velocity o the ongin, along with
the pendulum vertical angle. The coarseness of the ime inter-
vals for the control actions shows the controlling capability of
the technigque. With the final can position well inside the track,
the ADHDP-based controller ensures smooth operation of the
cart-pole system.

The performance of the ADHDP-based control scheme for
the pole-balancing problem was tested for the initial position
of the pole on both sides of the vertical. Fig. 15 shows the tra-
jectory of the pendulum angle, for mmital angles of the pole
at 108" and  1LE% from the vertical. The Gaussian-kernel-
based LS-5VM regressor that acts as the action element ensumes
smooth control while balancing the pole.

In order to provide a comparison, we used the same mital

conditions as thatin Lin and Lin [21 ], viz. the imitial cart position
= 0.1 m, initial pendulum angle = 58", initial cart velocity
= 001 m's, and initial angular velocity of the pendulum =
0.058"fs. The other parameters of the cart-pendulum setup are
nearly wdentical. In the proposed approach, the mean deviation
of the pendulum was 0.146%, as against 057 in [21]

E Controller Robustness

Omne of the atributes desired of a controller 15 1ts ability o
perform under unforeseen condinons. These conditions may
be manifested in a control system as external disturbances, or
changes in plant operating conditions. A controller should be
capable o operate the plant even under such conditions.,

1) Disturbance Rejection: To demonstrate the disturbance
rejection capability of a controller tmined by the ADHDP-based
control scheme, an impulse input was applied on the cart at the
fiftieth second when the plant states had achieved steady state.
A force of 10 N was applied for (0.1 s at the fiftieth second,

Lo generate the impulse input. Fig. 16 shows the corrective ac-
tions taken by the LS-SVM controller to quickly restore the pole
back to the stable condinon on applicaton of the disturbance.
Throughout the simulation period, the SVM-based tree-Lype NN
that acts as the critic generates a zem outpul, indicating stable
operation of the plant.

2) Change in Plant Parameters: To show the effect of
changes n the plant parameters, the pole length was reduced
to hall of s ongmal length. Fig. 17 shows the simulation
results of controlling such a pole by the trammed ADHDP-based
controller. The tmmed controller takes prompt and smooth
corrective action to restore the pole o the wvertical position.
In another test, o mimic the changes in plant parameters, the
mass of the cart was doubled. Fig. 18 shows how the tramed
ADHDP-based controller provides necessary control imputs
that move the cart both ways about the center of the track, 1o
ultmately restore the pole to the vertical position.

These robusmess tests show good control capabilities of the
ADHDP-based controller for appreciable changes in plant pa-
rameters, and also demonstrate its disturbance rejection perdfor-
mance. The response o plant parameter changes demonstrales
the real-time leaming capability of the controller to handle un-
foreseen situations.

V1. CONCLUSION

In this paper. we have proposed applying the SVM-based
tree-type NN [E] as the critc in the ADHDP strategy for con-
trol. Conventional feedforward ANNs, when used as the critc,
suffer from some drowbacks in such an application. Smee the
failure state is rare, failure instances may be difficult to learn
in the midst of a large number of exemplars of the other class
[7]. The empiricism inherent in the application of ANNs has
been pointed out in the hiterature—the number of hidden nodes,
layers, and learning parameters requires a careful choice [24],
and the solution may have a high sensitivity around optimal
choiee values. Ermor backpropagation-based learning algonthms
also sulfer from being entrapped in local mimima. The use of
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Fig. 18. Effect due to change in plant purameters when the mass of the cart is doubled.

SWVM-based tree-type NN that guamntees complete learning of
any data set for a binary classification task, has helped amehio-
rate some of these problems. This also facilitates the learning of
rare events such as failure states, which is important in the ACD
selng.

SWMs address the problem of maximizing generahizability
while simultaneously minimizing the classification error. ANN
traming methods are wsonally based on minimizing the mean
squared error over a set of raimng exemplars. In this paper, the
criic target of leaming a binary mapping has been formulated
in i linear progrmming framework. Advantages of using linear
programming are is simplcity, possibility of parallelism, and
optimality of the soluton. The supenor funclion approximation
capability of an L5-5VM regressor with a Gaossian kernel has
been used o implement the controller. The “highly nonlinear™
mverted pendulum model was chosen as the plant w implement
the control strategy. The proposed type of control scheme of-

fers an effecuve way of “falure avoidance control,” where the
L5-5VM controller provides near-optimal control for a highly
nonlinear plant.

Centering the Gaussian kemels on the failure states appears
L contribute Lo robustness. Al the same ume, the SVM-based
tree-Lype NN that is capable of leaming any binary classification
data provides fault wlerance to the control system. The ability of
the ramed controller w reject disturbances and also o mancuver
the plant under adverse conditions of plant parameter changes
demonstrates its robust performance.

The tree may be more amenable o being interpreted in the
form of a set of sequential decisions or rules. Such a tree-type
network can also be trained o learn sequences, in which the
present output 15 4 function of past and present mputs, as well
as past outputs [34]. This opens up the possibility of an VM-
based tree-type network being used in place of an ANN in a fully
recurrent ACD-ANN setling.



DEB eral.: SVM-BASED TREE- TYPE NNS AS A CRITIC IN ACDS FOR CONTROL

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers and
Prof. 8. C. Dutta Roy for their valuable comments and critical
appraisal of the manuscript.

[
(2]

[3]

[4

[5

[6

|7

5]

[4

1]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

G. Cybenko, “Approximation by superposition of a sigmoidal fune-
tion,” Marf. Conrrod Signals Svsr, vol. 2, pp. 303-314, 1989,

K. Homik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators” Newrad Nenw., vol. 2, pp.
350-306, 1989,

P.1. Werhos, “A mem of designs for reinforcement leaming over time,”
in Newral Netwarks for Conrol, W, Miller, B, Sutton, and P. Werbaos,
Eds. Cambridge, MA: MIT Press, 19490,

[ V. Prokhoroy, B, AL Santiago, and D, C. Wunsch, 11, *Adaptive critic
designs: A case study for neurocontrol,” Nesral Neni, vol. 8 no. 9, pp.
1367-1372, 1995,

[ V. Prakhorov, “Adaptive critic designs and thei rapplications,” Ph.D.
dissertation, Dept. Electr. Eng., Texas Tech Univ., Lubbock, TX, Oct.
19497,

. V. Prokhomow and D C. Wunsch, [, “Adaptive critic designs,” fEEE
Trans. Newral Netnw_, vol. 8, no. 5, pp. 9971007, Sep. 1997,

[ Liu, “Adaptive critic designs for problems with known analytical
formof cost function,” in Proc. Ins Joint Canfl Newral Netw_, Honolulu,
HL, May 12-17, 2002, vol. 3, pp. 1808—1813.

A. K. Deb, Tayadeva, 5. Chandra, and M. Gopal, “Modified growth
network for pattern classification,” in Operations Research and fis Ap-
plicartions: Recent Trends (APORS 20003, M. B, Rao and M. C. Puri,
Eds.  MNew Delhi, India: Allied Publishers, val. I, pp. 270-277.

Y. Vapnik, The Namre of Statistical Learning Theary, Ind ed.  New
York: Springer-Verlag, 2000,

Y. Vapnik, Staristical Leaming Theory.  New York: Wiley, 1998,

M. Crstianini and 1. Shawe-Taylor Ar fnrmdiction to Suppart Vecrar
Machines and Other Kemel Bosed Leaming Methods.  Cambridge,
LLK.: Cambridge Univ. Press, 3000,

C. Saunders, A Gammerman, and V. Vovk, “Ridge regression learni ng
algorthm in dual variables” in Proc. {50 fee Conf. Mach. Learn.,
1998, pp. 515-521.

1. AL K. Suykens and 1. Vandewalle, " Least squares support vector ma-
chines classifiers” Newral Process. Lere, vol. 9, no. 3, pp. 293300,
1999,

Jayadeva, A, K. Deb, and S, Chandra, “Binary classification by SVM-
hased tree type neural networks" in Proc. fer Joier Conf Neral Ner-
warks, Honolulu, HI, May 12-17, 2002, vol. 3, pp. 27732778,

G. Martinelli, L. P. Ricott, 5. Ragazzini, and F. M. Mascioli, A pyra-
midal delayed perceptron,” FEEE Trans. Circuits Sysr, vol. 37, no. 9,
pp. 761181, Sep. 1990,

I AL K. Suykens, I. Vandewalle, and B. De. Moor, “Optimal control
by least squares suppon vector machines” Nenral Netwe, val. 14, pp.
X335, 2001,

Feedback Instruments Limited, “Feedback MATLAB based control
products—Digital pendulum comtmol systems,” Crowbomugh, E.
Sussex, UK.

W. Biegn and 5. N. Balakrishnan, *A dual neuml network archi tecture
fior linear and nonlinear control of inverted pendulum on a cart,” in
Proc JEEE fnt. Conf. Contrad Appl., 199, pp. 614-619.

G. K. Venayagamoorthy, R, G. Harley, and D, C. Wunsch, 1L “Tmple-
mentation of adaptive cnitic-based neurocontmller for turbo generators
in multimachine power systems,” fEEE Trans. Newral Netwe, vol. 14,
mo. 5, pp. 1H7-1064, Sep. 2003,

H. K. Berenji and P. Khedkar, “Leaming and mning fuezy logic con-
trollers through reinforcements,” FEEE Frans. Newral Netwe, vol. 3, no.
5 pp. 724740, Sep. 1992

C. 1. Linand C. T. Lin, “Heinforcement learning for an ART-hased
fuzzy adaptive learning control network,” FEEE Trans. Newral Nem,
vol. 7, no. 3, pp. TOS-T731, May 1996,

1. M. Zuradn, farroduction ro Artificial Newral Svstems.  Mumbai,
India: Jnico Publishing House, 1997,

M. K. Bose and P. Liang, Newrad Netwaork Fundamensals with Graphs,
Al gorithms and Applications.  New Delhi, India: Tata/MoGraw-Hill,
1995,

10029

[24] Jayadeva, A. K. Deb, and 5. Chandra, “Algor thm for building a neural
network for function approximation,” fesr. Elear Eng. Proc.—Cir-
cuits, Devices, Syse, vol. 149, no. 56, pp. 300307, 2002,

[25] 1. A. Bullinaria, “Evolving efficient learning algonithms for hinary
mappings,” Mewrad Nena, vol. TH, pp. TO3-800, 2003,

[26] 0. L. Mangasarian, “Mathematical progmmming in neural networks"
CREA S Compar, vol. 5, no. 4, pp. M49-3ai, 1993,

[27] K. P. Bennett and 0. L. Mangasarian, “Multicategory discrimination
vin linear pmgramming,” Chpsine. Meshods Software, vol. 3, pp. 27-34,
1994,

[28] A. Koy, 5. Govil, and R. Miranda, “An algorithm to generate Radial
Basis Function {RBFrlike nets for cassification problems.” Newral
Nerw., vol. 8, no. 2, pp. 179301, 1995,

[20] A. Roy, 5. Govil, and R. Miranda, A neurl-network learning theory
and a polynomial time RBF algorithm,” FEEE Trans. Newrad Neow, val.
#,no. 6, pp. 1300-1313, Nov. 1997

[30] A. Roy and 5. Mukhopadhyay, “herative genemtion of higher-order
nets in polynomial time wsing linear programming,” fEEE Trans
Newral Nemw., vol. 8, no. 2, pp. 402—412, Mar. 1997,

[31] B.L.Lu, H. Kita,and Y. Nishikawa, “Inverting feedforwand nenral net-
works using linear and nonlinear progrmmming,” FEEE Frans. Newral
Nerw_, vol. 10, no. 6, pp. 1271-1290, Nov, 1949,

[32] K. Pelckmans, 1. A, Suvkens, T. V. Gestel, 1. [ Brabanter, L. Lukas,
B. Hamars, B. 0. Moor, and 1. Vandewalle, L5-5¥Mlab Toolbox
User's Guide, [Online]. Awvailable: http:iwaw esat kuleuven.ac bef
sistaflssvmlabyf

[33] M. Gopal, “Lyapunoy stability analysis” in £igital Conml and State

Viarable Methods, 2nd ed.  New Delhi, Indin: Tata/MeGraw, 3003, ch.

B.

Jayadeva and A. K. Deb, “Learning sequences using tree type neural

networks,"” in W Jar Confl Cogn. Newral Swir, Boston, MA, May

20-Jun. 1 2002, p. 90.

|34

Alok Kanti Deb (502 ) was born in Ranaghat, West
Bengal, India. He meeived the B E. degree with first
cluss from the Bengal Engineenng College, Calcutta
University, Shibpur, India and the M. Tech and Ph.D.
degrees from the Indian Instituteof Technology (11T),
Mew Delhi, India, in 1994, 1999, and 306, respec-
tively, all in electrical engineerng.

Currently, he is an Assistamt Professor at the
Center for Soft Computing Research: A Mational Fa-
cility, Indian Statistical Institute, Kolkata, India. His
research interests are in computational intelligence
and commol systems.

Dr. Deb received the student travel award from the IEEE Neurnl Network
Society for attending the I[EEE Word Congress on Computational Intelligence
(WOCT 2002). He was a Program Committee member of FUZZ-IEEE 2005,
Reno, NV.

Javadeva {M94-SM"(4) received the B.Tech, and
Ph.D}. degrees from the Indian Instinne of Tech-
nology (1IT), New Delhi, India, in 1988 and 1993,
respectively.

Curremtly, he is a Professor ot the Department
of Electrical Engineering, [T Delhi. He was o
Young Scientist of the International Union of Radio
Science in 1996, He visited the Depanment of Brin
A and Cognitive Sciences, Massachusetts Instine of

Technology, Cambridge, in summer 1997 a5 2 Better
Opportunities for Young Scientists in Chosen Areas
of Sciences and Technology (BOYSCAST) Fellow from the Department of
Science and Technology, Govemment of India. His cument research interests
include machine leaming, biological and artificial neural systems, optimization,
and very large scale imtegration (VLSI design and computer-aided design
(CAD).

Drr. Jayadeva is therecipient of the Indian Mational Science Academy ‘s Madal
for Young Scientists, the Indian National Academy of Engineering's Young
Engineer Awurd, and the IEEE Aerospace and Communication (AESCOM)
Chapter India Award in the area of electronic systems. He is an Honorary Ed-
itor of the Instination of Electronics and Telecommunication Engineers, India
(IETE) fonumal of Research. He is a speaker from India on the IEEE Computer
Society Distinguished Visitor Program.



1030

Madan Gopal received the B.Tech. degree in elec-
trical engineering, the M. Tech. degree in control sys-
tems, and the PhD. degree in contml systems from
Bida Institute of Technology, Pilani, India, in 1968,
1970, and 1976, respectively.

Currently, he is 2 Professor at the Department
of Electrical Engineering, Indian Institute of Tech-
nology (IT), Mew Delhi, India. His teaching and
research stints span over three decades at prestigious
institutes. He is the authorfcoauthor of six books.
His viden course on control engineering is being
transmitied p:'.rluiln:.ully through EKLAVYA Technology Channel of [1Ts.
He is author of an imeractive web compatible multimedia course on control
engineering. He has a large number of research publications to his credit. His
current research interests ane in the areas of machine leaming, soft-computing
technologies, and intelligent contral.

[EEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY XK

Suresh Chandra meeived the M.S. degree in math-
ematical statistics from Lucknow University, India,
in 1965 and the Ph.D. degree in mathematics {math-
ematical programming) from the Indian Institme of
Technology (1T, Kanpur, India, in 1970,

Cumently, he is a Professor at the Department of
Muthematics, Indian Institute of Technology, Delhi,
India. He has authored and coauthored more than
100 publications in refereed joumals and interna-
tional conferences and conuthomed two books, ane on
fuzzy mathematical programming and furey matnx
games and the other on principles of optimization theory. His research interests
include numerncal optimization, mathematical programming, general ized con-
verity, fuzey optimization, fuezy games, NNs, machine leaming, and financial
mathematics,

Dr. Chandra is a Member of the Editorial Board for the faternasional dowmal
af Management and Systems and the Joumal af Decision Sciences. Heis also a
Senior Member of the Operational Research Society of India and 2 Member of
the Intemational Working Group on Generalized Convexity and Applications,



	SVM based tree type neural networks as critic in adaptive critic design for c1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg

