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Abstract. A hybrid unsupervised learning algorithm, termed as rough-fuzzy c-means, is proposed
in this paper. It comprises a judicious integration of the principles of rough sets and fuzzy sets. While
the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and
incompleteness in class definition, the membership function of fuzzy sets enables efficient handling
of overlapping partitions. The concept of crisp lower boundand fuzzy boundary of a class, intro-
duced in rough-fuzzy c-means, enables efficient selection of cluster prototypes. Several quantitative
indices are introduced based on rough sets for evaluating the performance of the proposed c-means
algorithm. The effectiveness of the algorithm, along with acomparison with other algorithms, has
been demonstrated on a set of real life data sets.
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1. Introduction

Cluster analysis is a technique for finding natural groups present in the data. It divides a given data set
into a set of clusters in such a way that two objects from the same cluster are as similar as possible and
the objects from different clusters are as dissimilar as possible. In effect, it tries to mimic the human
ability to group similar objects into classes and categories [8, 10].

Clustering techniques have been effectively applied to a wide range of engineering and scientific dis-
ciplines such as pattern recognition, machine learning, psychology, biology, medicine, computer vision,

∗Address for correspondence: Center for Soft Computing Research, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700
108, India



476 P. Maji and S.K. Pal / Rough-Fuzzy C-Means Algorithm

communications, and remote sensing. A number of clusteringalgorithms have been proposed to suit
different requirements [8, 10, 11].

One of the most widely used prototype based partitional clustering algorithms is hardc-means [17].
In hardc-means, each object must be assigned to exactly one cluster.On the other hand, fuzzyc-means
relaxes this requirement by allowing gradual memberships [4, 9]. In effect, it offers the opportunity to
deal with the data that belong to more than one cluster at the same time. It assigns memberships to an
object which are inversely related to the relative distanceof the object to cluster prototypes. Also, it can
deal with the uncertainties arising from overlapping cluster boundaries.

Although fuzzyc-means is a very useful clustering method, the resulting membership values do not
always correspond well to the degrees of belonging of the data, and it may be inaccurate in a noisy
environment [13, 14]. In real data analysis, noise and outliers are unavoidable. Hence, to reduce this
weakness of fuzzyc-means, and to produce memberships that have a good explanation of the degrees of
belonging for the data, Krishnapuram and Keller [13, 14] proposed a possibilistic approach to clustering
which used a possibilistic type of membership function to describe the degree of belonging. However,
the possibilisticc-means sometimes generates coincident clusters [3]. Recently, the use of both fuzzy
(probabilistic) and possibilistic memberships in a clustering algorithm has been proposed in [19].

Rough set theory [22, 23] is a new paradigm to deal with uncertainty, vagueness, and incompleteness.
It has been applied to fuzzy rule extraction, reasoning withuncertainty, fuzzy modeling, etc [12, 24]. It
is proposed for indiscernibility in classification according to some similarity [22]. In [15], Lingras and
West introduced a new clustering method, called roughc-means, which describes a cluster by a prototype
(center) and a pair of lower and upper approximations. The lower and upper approximations are weighted
different parameters to compute the new centers. Asharaf etal. [1] extended this algorithm that may not
require specification of the number of clusters.

Combining fuzzy set and rough set provides an important direction in reasoning with uncertainty [2,
6, 7, 16, 21]. Both fuzzy sets and rough sets provide a mathematical framework to capture uncertainties
associated with the data [6, 7]. They are complementary in some aspects. Recently, combining both
rough and fuzzy sets, Mitra et al. [18] proposed rough-fuzzyc-means, where each cluster consists of a
fuzzy lower approximation and a fuzzy boundary. Each objectin lower approximation takes a distinct
weight, which is its fuzzy membership value. However, the objects in lower approximation of a cluster
should have similar influence on the corresponding centroidand cluster as well as their weights should be
independent of other centroids and clusters. Thus, the concept of fuzzy lower approximation, introduced
in rough-fuzzyc-means of [18], reduces the weights of objects of lower approximation. In effect, it drifts
the cluster prototypes from their desired locations. Moreover, it is sensitive to noise and outliers.

In this paper, we propose a hybrid algorithm, termed as rough-fuzzy c-means, based on rough sets
and fuzzy sets. While the membership function of fuzzy sets enables efficient handling of overlapping
partitions, the concept of lower and upper approximations of rough sets deals with uncertainty, vague-
ness, and incompleteness in class definition. Each partition is represented by a set of three parameters,
namely, a cluster prototype (centroid), a crisp lower approximation, and a fuzzy boundary. The lower
approximation influences the fuzziness of the final partition. The cluster prototype (centroid) depends
on the weighting average of the crisp lower approximation and fuzzy boundary. Several quantitative
measures are introduced based on rough sets to evaluate the performance of the proposed algorithm. The
effectiveness of the proposed algorithm, along with a comparison with crisp, fuzzy, possibilistic, and
roughc-means, has been demonstrated on a set of benchmark data sets.



P. Maji and S.K. Pal / Rough-Fuzzy C-Means Algorithm 477

The structure of the rest of this paper is as follows. Section2 briefly introduces the necessary notions
of fuzzy c-means, rough sets, and roughc-means algorithm. In Section 3, we describe rough-fuzzyc-
means algorithm based on the theory of rough sets and fuzzyc-means. Several quantitative performance
measures are introduced in Section 4 to evaluate the qualityof the proposed algorithm. A few case
studies and a comparison with other methods are presented inSection 5. Concluding remarks are given
in Section 6.

2. Fuzzy C-Means and Rough C-Means

This section presents the basic notions of fuzzyc-means and roughc-means. The proposed rough-fuzzy
c-means algorithm is developed based on these algorithms.

2.1. Fuzzy C-Means

Let X = {x1, · · · , xj , · · · , xn} be the set ofn objects andV = {v1, · · · , vi, · · · , vc} be the set ofc
centroids, wherexj ∈ <m andvi ∈ <m. The fuzzyc-means provides a fuzzification of the hardc-means
[4, 9]. It partitionsX into c clusters by minimizing the objective function

J =

n
∑

j=1

c
∑

i=1

(µij)
ḿ1 ||xj − vi||

2 (1)

where1 ≤ ḿ1 < ∞ is the fuzzifier,vi is theith centroid corresponding to clusterβi, µij ∈ [0, 1] is the
probabilistic membership of the patternxj to clusterβi, and||.|| is the distance norm, such that

vi =
1

ni

n
∑

j=1

(µij)
ḿ1xj; where ni =

n
∑

j=1

(µij)
ḿ1 (2)

µij = (
c

∑

k=1

(
dij

dkj
)

2

ḿ1−1 )−1; d2
ij = ||xj − vi||

2; subject to
c

∑

i=1

µij = 1,∀j, 0 <
n

∑

j=1

µij < n,∀i. (3)

The process begins by randomly choosingc objects as the centroids (means) of thec clusters. The mem-
berships are calculated based on the relative distance of the objectxj to the centroids{vi} by Equation
3. After computing memberships of all the objects, the new centroids of the clusters are calculated as
per Equation 2. The process stops when the centroids stabilize. That is, the centroids from the previous
iteration are identical to those generated in the current iteration. The basic steps are outlined as follows:

1. Assign initial meansvi, i = 1, 2, · · · , c. Choose values foŕm1 and thresholdε. Set iteration
countert = 1.

2. Compute membershipsµij by Equation 3 forc clusters andn objects.

3. Update mean (centroid)vi by Equation 2.

4. Repeat steps 2 to 4, by incrementingt, until |µij(t) − µij(t − 1)| > ε.
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In fuzzy c-means, the memberships of an object are inversely related to the relative distance of
the object to the cluster centroids. In effect, it is very sensitive to noise and outliers. Also, from the
standpoint of “compatibility with the centroid”, the memberships of an objectxj in a clusterβi should
be determined solely by how close it is to the mean (centroid)vi of the class, and should not be coupled
with its similarity with respect to other classes.

To alleviate this problem, Krishnapuram and Keller [13, 14]introduced possibilisticc-means algo-
rithm, where the objective function can be formulated as

J =

c
∑

i=1

n
∑

j=1

(νij)
ḿ2 ||xj − vi||

2 +

c
∑

i=1

ηi

n
∑

j=1

(1 − νij)
ḿ2 (4)

where1 ≤ ḿ2 ≤ ∞ is the fuzzifier andηi represents the scale parameter. The membership matrixν
generated by the possibilisticc-means is not a partition matrix in the sense that it does not satisfy the
constraint

c
∑

i=1

νij = 1 (5)

The update equation ofνij is given by

νij =
1

1 + D
; where D =

{

||xj − vi||
2

ηi

}1/(ḿ2−1)

(6)

subject to νij ∈ [0, 1],∀i, j; 0 <

n
∑

j=1

νij ≤ n,∀i; and maxiνij > 0,∀j.

The scale parameterηi represents the zone of influence of the clusterβi. The update equation forηi is

ηi = K ·
P

Q
; where P =

n
∑

j=1

(νij)
ḿ2 ||xj − vi||

2; and Q =

n
∑

j=1

(νij)
ḿ2 (7)

Typically K is chosen to be 1. In each iteration, the updated value ofνij depends only on the similarity
between the objectxj and the centroidvi. The resulting partition of the data can be interpreted as a
possibilistic partition, and the membership values may be interpreted as degrees of possibility of the
objects belonging to the classes, i.e., the compatibilities of the objects with the means (centroids). The
updating of the means proceeds exactly the same way as in the case of the fuzzyc-means algorithm.

2.2. Rough Sets

The theory of rough sets begins with the notion of an approximation space, which is a pair< U,R >,
whereU be a non-empty set (the universe of discourse) andR an equivalence relation onU , i.e., R is
reflexive, symmetric, and transitive. The relationR decomposes the setU into disjoint classes in such a
way that two elementsx, y are in the same class iff(x, y) ∈ R. Let denote byU/R the quotient set ofU
by the relationR, and

U/R = {X1,X2, · · · ,Xm}
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whereXi is an equivalence class ofR, i = 1, 2, · · · ,m. If two elementsx, y in U belong to the same
equivalence classXi ∈ U/R, we say thatx andy are indistinguishable. The equivalence classes ofR
and the empty set∅ are the elementary sets in the approximation space< U,R >. Given an arbitrary set
X ∈ 2U , in general it may not be possible to describeX precisely in< U,R >. One may characterize
X by a pair of lower and upper approximations defined as follows[22]:

R(X) =
⋃

Xi⊆X

Xi; R(X) =
⋃

Xi∩X 6=∅

Xi

That is, the lower approximationR(X) is the union of all the elementary sets which are subsets ofX, and
the upper approximationR(X) is the union of all the elementary sets which have a non-emptyintersec-
tion with X. The interval[R(X), R(X)] is the representation of an ordinary setX in the approximation
space< U,R > or simply called the rough set ofX. The lower (resp., upper) approximationR(X)
(resp.,R(X)) is interpreted as the collection of those elements ofU that definitely (resp., possibly)
belong toX. Further, we can define:

• a setX ∈ 2U is said to be definable (or exact) in< U,R > iff R(X) = R(X).

• for anyX,Y ∈ 2U , X is said to be roughly included inY , denoted byX⊂̃Y , iff R(X) ⊆ R(Y )
andR(X) ⊆ R(Y ).

• X andY is said to be roughly equal, denoted byX 'R Y , in < U,R > iff R(X) = R(Y ) and
R(X) = R(Y ).

In [22], Pawlak discusses two numerical characterizationsof imprecision of a subsetX in the approx-
imation space< U,R >: accuracy and roughness. Accuracy ofX, denoted byαR(X), is simply the
ratio of the number of objects in its lower approximation to that in its upper approximation; namely

αR(X) =
|R(X)|

|R(X)|

The roughness ofX, denoted byρR(X), is defined by subtracting the accuracy from 1:

ρR(X) = 1 − αR(X) = 1 −
|R(X)|

|R(X)|

Note that the lower the roughness of a subset, the better is its approximation. Further, the following
observations are easily obtained:

1. AsR(X) ⊆ X ⊆ R(X), 0 ≤ ρR(X) ≤ 1.

2. By convention, whenX = ∅, R(X) = R(X) = ∅ andρR(X) = 0.

3. ρR(X) = 0 if and only if X is definable in< U,R >.
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2.3. Rough C-Means

Let A(βi) andA(βi) be the lower and upper approximations of clusterβi, andB(βi) = {A(βi)−A(βi)}
denote the boundary region of clusterβi. In roughc-means algorithm, the concept ofc-means algorithm
is extended by viewing each clusterβi as an interval or rough set. However, it is possible to define apair
of lower and upper bounds [A(βi), A(βi)] or a rough set for every setβi ⊆ U , U be the set of objects of
concern [22]. The family of upper and lower bounds are required to follow some of the basic rough set
properties such as:

1. an objectxj can be part of at most one lower bound;

2. xj ∈ A(βi) ⇒ xj ∈ A(βi); and

3. an objectxj is not part of any lower bound⇒ xj belongs to two or more upper bounds.

Incorporating rough sets intoc-means algorithm, Lingras and West [15] introduced roughc-means
algorithm. It adds the concept of lower and upper bounds intoc-means algorithm. It classifies the object
space into two parts - lower approximation and boundary region. The mean (centroid) is calculated based
on the weighting average of the lower bound and boundary region. All the objects in lower approximation
take the same weightw while all the objects in boundary take another weighting index w̃ (= 1 − w)
uniformly. Calculation of the centroid is modified to include the effects of lower as well as upper bounds.
The modified centroid calculation for roughc-means is given by:

vi =











w ×A + w̃ × B if A(βi) 6= ∅, B(βi) 6= ∅

A if A(βi) 6= ∅, B(βi) = ∅

B if A(βi) = ∅, B(βi) 6= ∅

(8)

A =
1

|A(βi)|

∑

xj∈A(βi)

xj ; and B =
1

|B(βi)|

∑

xj∈B(βi)

xj

βi represents theith cluster associated with the centroidvi. A(βi) andB(βi) represent the lower bound
and the boundary region of clusterβi. The parameterw andw̃ correspond to the relative importance of
lower bound and boundary region, andw + w̃ = 1. The main steps of roughc-means are as follows:

1. Assign initial meansvi, i = 1, 2, · · · , c. Choose value for thresholdδ.

2. For each objectxj , calculate distancedij between itself and the centroidvi of clusterβi.

3. If dij is minimum for 1 ≤ i ≤ c and (dij − dkj) ≤ δ, thenxj ∈ A(βi) and xj ∈ A(βk).
Furthermore,xj is not part of any lower bound.

4. Otherwise,xj ∈ A(βi) such thatdij is minimum for1 ≤ i ≤ c. In addition, by properties of rough
sets,xj ∈ A(βi).

5. Compute new centroid as per Equation 8.

6. Repeat steps 2 to 5 until no more new assignments can be made.
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Incorporating both fuzzy and rough sets, recently Mitra et al. [18] have proposed rough-fuzzyc-
means, where each cluster consists of a fuzzy lower approximation and a fuzzy boundary. If an object
xj ∈ A(βi), thenµkj = µij if k = i and µkj = 0 otherwise. That is, each objectxj ∈ A(βi)
takes a distinct weight, which is its fuzzy membership value. Thus, the weight of the object in lower
approximation is inversely related to the relative distance of the object to all cluster prototypes.

In fact, the objects in lower approximation of a cluster should have similar influence on the corre-
sponding centroid and cluster. Also, their weights should be independent of other centroids and clusters
and should not be coupled with their similarity with respectto other clusters. Thus, the concept of fuzzy
lower approximation, introduced in [18], reduces the weights of objects of lower approximation and
effectively drifts the cluster centroids from their desired locations.

3. Rough-Fuzzy C-Means Algorithm

Incorporating both fuzzy and rough sets, next we describe a new c-means algorithm, termed as rough-
fuzzyc-means (RFCM). The proposedc-means adds the concept of fuzzy membership of fuzzy sets, and
lower and upper approximations of rough sets intoc-means algorithm. While the membership of fuzzy
sets enables efficient handling of overlapping partitions,the rough sets deal with uncertainty, vagueness,
and incompleteness in class definition.

3.1. Objective Function

The proposedc-means partitions a set ofn objects intoc clusters by minimizing the objective function

JRF =











w ×A1 + w̃ × B1 if A(βi) 6= ∅, B(βi) 6= ∅

A1 if A(βi) 6= ∅, B(βi) = ∅

B1 if A(βi) = ∅, B(βi) 6= ∅

(9)

A1 =
c

∑

i=1

∑

xj∈A(βi)

(µij)
ḿ1 ||xj − vi||

2; and B1 =
c

∑

i=1

∑

xj∈B(βi)

(µij)
ḿ1 ||xj − vi||

2

where the parametersw andw̃ (= 1 − w) correspond to the relative importance of lower and boundary
region. Note that,µij has the same meaning of membership as that in fuzzyc-means.

In proposed RFCM, each cluster is represented by a centroid,a crisp lower approximation, and a
fuzzy boundary (Fig. 1). The lower approximation influencesthe fuzziness of final partition. According
to the definitions of lower approximations and boundary of rough sets, if an objectxj ∈ A(βi), then
xj /∈ A(βk),∀k 6= i, andxj /∈ B(βi),∀i. That is, the objectxj is contained inβi definitely. Thus,
the weights of the objects in lower approximation of a cluster should be independent of other centroids
and clusters, and should not be coupled with their similarity with respect to other centroids. Also, the
objects in lower approximation of a cluster should have similar influence on the corresponding centroid
and cluster. Whereas, ifxj ∈ B(βi), then the objectxj possibly belongs toβi and potentially belongs to
another cluster. Hence, the objects in boundary regions should have different influence on the centroids
and clusters. So, in RFCM, the membership values of objects in lower approximation areµij = 1, while
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Figure 1. Rough-fuzzyc-means: clusterβi is represented by crisp lower bound and fuzzy boundary

those in boundary region are the same as fuzzyc-means (Equation 3). In other word, the proposedc-
means first partitions the data into two classes - lower approximation and boundary. Only the objects in
boundary are fuzzified. Thus,A1 reduces to

A1 =

c
∑

i=1

∑

xj∈A(βi)

||xj − vi||
2

andB1 has the same expression as that in Equation 9.

3.2. Cluster Prototypes

The new centroid is calculated based on the weighting average of the crisp lower approximation and fuzzy
boundary. Computation of the centroid is modified to includethe effects of both fuzzy memberships and
lower and upper bounds. The modified centroid calculation for RFCM is obtained by solving Equation
9 with respect tovi:

vRF
i =











w × C1 + w̃ ×D1 if A(βi) 6= ∅, B(βi) 6= ∅

C1 if A(βi) 6= ∅, B(βi) = ∅

D1 if A(βi) = ∅, B(βi) 6= ∅

(10)

C1 =
1

|A(βi)|

∑

xj∈A(βi)

xj ; and D1 =
1

ni

∑

xj∈B(βi)

(µij)
ḿ1xj; where ni =

∑

xj∈B(βi)

(µij)
ḿ1

|A(βi)| represents the cardinality ofA(βi).
Thus, the cluster prototypes (centroids) depend on the parametersw and w̃, and fuzzifierḿ1 rule

their relative influence. The correlated influence of these parameters and fuzzifier, makes it somewhat
difficult to determine their optimal values. Since the objects lying in lower approximation definitely
belong to a cluster, they are assigned a higher weightw compared tõw of the objects lying in boundary
region. Hence, for RFCM, the values are given by0 < w̃ < w < 1.
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3.3. Fundamental Properties

From the above discussions, we can get the following properties of RFCM algorithm.

1.
⋃

A(βi) = U , U be the set of objects of concern.

2. A(βi) ∩ A(βk) = ∅,∀i 6= k.

3. A(βi) ∩ B(βi) = ∅,∀i.

4. ∃i, k,B(βi) ∩ B(βk) 6= ∅.

5. µij = 1,∀xj ∈ A(βi).

6. µij ∈ [0, 1],∀xj ∈ B(βi).

Let us briefly comment on some properties of RFCM. The property 2 says that if an objectxj ∈
A(βi) ⇒ xj /∈ A(βk),∀k 6= i. That is, the objectxj is contained inβi definitely. The property 3
establishes the fact that ifxj ∈ A(βi) ⇒ xj /∈ B(βi), - that is, an object may not be in both lower and
boundary region of a clusterβi. The property 4 says that ifxj ∈ B(βi) ⇒ ∃k, xj ∈ B(βk). It means an
objectxj ∈ B(βi) possibly belongs toβi and potentially belongs to other cluster. The properties 5 and 6
are of great importance in computing the objective functionJRF and the cluster prototypevRF. They say
that the membership values of the objects in lower approximation areµij = 1, while those in boundary
region are the same as fuzzyc-means. That is, each clusterβi consists of a crisp lower approximation
A(βi) and a fuzzy boundaryB(βi).

3.4. Details of the Algorithm

Approximate optimization ofJRF (Equation 9) by the RFCM is based on Picard iteration throughEqua-
tions 3 and 10. This type of iteration is called alternating optimization. The process starts by randomly
choosingc objects as the centroids of thec clusters. The fuzzy memberships of all objects are calculated
using Equation 3.

Let µi = (µi1, · · · , µij , · · · , µin) represent the fuzzy clusterβi associated with the centroidvi.
After computingµij for c clusters andn objects, the values ofµij for each objectxj are sorted and
the difference of two highest memberships ofxj is compared with a threshold valueδ. Let µij andµkj

be the highest and second highest memberships ofxj. If (µij − µkj) > δ, thenxj ∈ A(βi) as well as
xj ∈ A(βi), otherwisexj ∈ A(βi) andxj ∈ A(βk). After assigning each object in lower approximations
or boundary regions of different clusters based onδ, membershipsµij of the objects are modified. The
values ofµij are set to 1 for the objects in lower approximations, while those in boundary regions are
remain unchanged. The new centroids of the clusters are calculated as per Equation 10. The main steps
of RFCM algorithm proceed as follows:

1. Assign initial centroidsvi, i = 1, 2, · · · , c. Choose values for fuzzifieŕm1, and thresholdsε and
δ. Set iteration countert = 1.

2. Computeµij by Equation 3 forc clusters andn objects.

3. If µij andµkj be the two highest memberships ofxj and(µij − µkj) ≤ δ, thenxj ∈ A(βi) and
xj ∈ A(βk). Furthermore,xj is not part of any lower bound.



484 P. Maji and S.K. Pal / Rough-Fuzzy C-Means Algorithm

4. Otherwise,xj ∈ A(βi). In addition, by properties of rough sets,xj ∈ A(βi).

5. Modify µij considering lower and boundary regions forc clusters andn objects.

6. Compute new centroid as per Equation 10.

7. Repeat steps 2 to 7, by incrementingt, until |µij(t) − µij(t − 1)| > ε.

The performance of RFCM depends on the value ofδ, which determines the class labels of all the
objects. In other word, the RFCM partitions the data set intotwo classes - lower approximation and
boundary, based on the value ofδ. In practice we find that the following definition works well:

δ =
1

n

n
∑

j=1

(µij − µkj) (11)

wheren is the total number of objects,µij andµkj are the highest and second highest memberships of
xj. That is, the value ofδ represents the average difference of two highest memberships of all the objects
in the data set. A good clustering procedure should make the value ofδ as high as possible. The value of
δ is, therefore, data dependent.

4. Quantitative Measures

In this section we propose some quantitative indices to evaluate the performance of rough-fuzzy cluster-
ing algorithm incorporating the concepts of rough sets [22].
α Index: It is given by

α =
1

c

c
∑

i=1

wAi

wAi + w̃Bi
(12)

where Ai =
∑

xj∈A(βi)

(µij)
ḿ1 = |A(βi)|; and Bi =

∑

xj∈B(βi)

(µij)
ḿ1 (13)

µij represents the probabilistic memberships of objectxj in clusterβi. The parametersw andw̃ corre-
spond to the relative importance of lower and boundary region.

Theα index represents the average accuracy ofc clusters. It is the average of the ratio of the number
of objects in lower approximation to that in upper approximation of each cluster. In effect, it captures
the average degree of completeness of knowledge about all clusters. A good clustering procedure should
make all objects as similar to their centroids as possible. Theα index increases with increase in similarity
within a cluster. Therefore, for a given data set andc value, the higher the similarity values within the
clusters, the higher would be theα value. The value ofα also increases withc. In an extreme case when
the number of clusters is maximum, i.e.,c = n, the total number of objects in the data set, the value of
α = 1. WhenA(βi) = A(βi), ∀i, that is, all the clusters{βi} are exact or definable, then we haveα = 1.
Whereas ifA(βi) = B(βi), ∀i, the value ofα = 0. Thus,0 ≤ α ≤ 1.
% Index: The % index represents the average roughness ofc clusters and is defined by subtracting the
average accuracyα from 1:

% = 1 − α = 1 −
1

c

c
∑

i=1

wAi

wAi + w̃Bi
(14)
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whereAi andBi are given by Equation 13. Note that the lower the value of%, the better is the over-
all clusters approximations. Also,0 ≤ % ≤ 1. Basically,% index represents the average degree of
incompleteness of knowledge about all clusters.
α? Index: It can be defined as

α? =
C

D
; where C =

c
∑

i=1

wAi; and D =

c
∑

i=1

{wAi + w̃Bi} (15)

whereAi andBi are given by Equation 13. Theα? index represents the accuracy of approximation of all
clusters. It captures the exactness of approximate clustering. A good clustering procedure should make
the value ofα? as high as possible. Theα? index maximizes the exactness of approximate clustering.
γ Index: It is the ratio of the total number of objects in lower approximations of all clusters to the
cardinality of the universe of discourseU and is given by

γ =
R

S
; where R =

c
∑

i=1

|A(βi)|; and S = |U | = n. (16)

Theγ index basically represents the quality of approximation ofa clustering algorithm.

5. Performance Analysis

The performance of proposed RFCM algorithm is compared extensively with that of differentc-means
algorithms. These involve different combinations of the individual components of the hybrid scheme.
The algorithms compared are hardc-means (HCM), fuzzyc-means (FCM) [4, 9], possibilisticc-means
(PCM) [13, 14], fuzzy-possibilisticc-means (FPCM) [19], roughc-means (RCM) [15], and rough-fuzzy
c-means of Mitra et al. (RFCMMBP) [18]. All the methods are implemented in C language and run in
LINUX environment having machine configuration Pentium IV,3.2 GHz, 1 MB cache, and 1 GB RAM.
The input parameters used, which are held constant across all runs, are as follows:

Values of fuzzifiersḿ1 = 2.0; andḿ2 = 2.0

Value of thresholdε = 0.00001; and Value ofw = 0.95

To analyze the performance of the proposed method, the experimentation has been done in two parts.
In the first part, we have used synthetic as well as real data sets. In the second part, we present the results
on segmentation of brain MR images. The major metrics for evaluating the performance of different
algorithms are the indices proposed in Section 4 such asα, %, α?, andγ, as well as some existing
measures like Davies-Bouldin (DB) and Dunn index [5], whichare described next.
Davies-Bouldin Index: The Davies-Bouldin (DB) index [5] is a function of the ratio of sum of within-
cluster distance to between-cluster separation and is given by

DB =
1

c

c
∑

i=1

maxk 6=i{
S(vi) + S(vk)

d(vi, vk)
} for 1 ≤ i, k ≤ c. (17)

The DB index minimizes the within-cluster distanceS(vi) and maximizes the between-cluster separation
d(vi, vk). Therefore, for a given data set andc value, the higher the similarity values within the clusters



486 P. Maji and S.K. Pal / Rough-Fuzzy C-Means Algorithm

and the between-cluster separation, the lower would be the DB index value. A good clustering procedure
should make the value of DB index as low as possible.
Dunn Index: Dunn’s index [5] is also designed to identify sets of clusters that are compact and well
separated. Dunn’s index maximizes

Dunn = mini{mink 6=i{
d(vi, vk)

maxlS(vl)
}} for 1 ≤ i, k, l ≤ c. (18)

5.1. Synthetic Data Set: X32

The synthetic data setX32 consists ofn = 32 objects in<2 with two clusters. Fig. 2 depicts the scatter
plots of the data setX32. The objectsx30, x31, andx32 are outliers (noise), and the objectx7 is the so
called inlier or bridge. Two randomly generated initial centroids, along with two scale parameters and
the final prototypes of differentc-means, are reported in Table 1. Fig. 2 represents the scatter plots of
the data setX32 along with the clusters prototypes obtained using different c-means algorithms. The
objects ofX32 are represented by�, while ‘box’ depict the positions of cluster prototypes.

Table 2 reports the values ofα, %, α?, γ, JRF, Dunn, and DB index of RFCM algorithm over different
iterations. All the results reported in Table 2 show that as the number of iteration increases, the values
of %, JRF, and DB index decrease, while the values ofα, α?, γ, and Dunn index increase. Finally, all
the indices are saturated when RFCM terminates after 4th iterations. Thus, the proposed indices (e.g.,α,
%, α?, andγ) can be used to act as the objective function of rough-fuzzy clustering as they reflect good
quantitative measures like existing DB and Dunn index.
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Figure 2. Example data setX32 and clusters prototypes of differentc-means algorithms

Table 1. Cluster Prototypes of Different C-Means forX32

Algorithms Centroid 1 Centroid 2

Initial 2.088235; 2.382353 5.100000; 2.000000

Scale η1 =4.553732 η2 =3.697741

HCM 2.088235; 2.382353 5.100000; 2.000000

FCM 2.025431; 1.943642 4.974481; 1.943406

PCM 2.087332; 1.500811 4.912668; 1.500811

FPCM 2.281087; 1.749121 4.782719; 1.765219

RCM 1.807862; 1.500375 5.192139; 1.500375

RFCMMBP 1.783023; 1.500408 5.216976; 1.500408

RFCM 1.727380; 1.636481 5.272620; 1.636481

Table 2. Performance of RFCM over Different Iterations

Itr. % Index DB Index JRF α Index α? Index γ Index Dunn Index

1 0.000081 0.159813 17.002853 0.999919 0.999905 0.562500 10.022817

2 0.000053 0.140268 16.035562 0.999947 0.999963 0.625000 11.543916

3 0.000037 0.137502 12.191273 0.999963 0.999974 0.812500 13.798013

4 0.000009 0.123709 9.073391 0.999991 0.999991 0.812500 14.621336

5 0.000009 0.123709 9.073391 0.999991 0.999991 0.812500 14.621336

Table 3 provides comparative results of differentc-means algorithms. The rough set based clustering
algorithms (RCM, RFCMMBP, and RFCM) are found to improve the performance in terms of DBand
Dunn index over other algorithms. It is also observed that the proposed RFCM algorithm perform better
than FCM, PCM, FPCM, RCM, and RFCMMBP, although it is expected that both PCM and FPCM
perform well in noisy environment. Finally, Table 4 shows the comparative results of different rough-
fuzzy clustering algorithms in terms ofα, %, α?, andγ. The performance of RFCM is better than that of
RFCMMBP.
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Table 3. Performance of Different C-Means Algorithms

Algorithms DB Index Dunn Index

HCM 0.266063 5.934918

FCM 0.210139 9.022365

PCM 0.183069 10.309421

FPCM 0.276837 6.894526

RCM 0.127478 14.252816

RFCMMBP 0.125088 14.491059

RFCM 0.123709 14.621336

Table 4. Quantitative Evaluation of Rough-Fuzzy Clustering

Methods α Index % Index α? Index γ Index

RFCMMBP 0.999953 0.000047 0.999942 0.625000

RFCM 0.999991 0.000009 0.999991 0.812500

5.2. Real Data Set: Iris

This subsection demonstrates the performance of differentc-means algorithms on Iris data set, withc = 2
and 3. The Iris data set is a four-dimensional data set containing 50 samples each of three types of Iris
flowers. One of the three clusters (class 1) is well separatedfrom the other two, while classes 2 and 3
have some overlap. The data set can be downloaded from http://www.ics.uci.edu/∼mlearn.

Several runs have been made for each of thec-means algorithms on Iris data set with different choices
of parameters. The final prototypes of differentc-means algorithms, along with initial centroids and scale
parameters, are provided in Table 5 forc = 2.

Table 5. Cluster Prototypes of Different C-Means for Iris Data (c = 2)

Algorithms Centroid 1 Centroid 2

Initial 4.5 2.3 1.3 0.3 6.3 2.7 4.9 1.8

Scale η1 = 0.651171 η2 = 1.154369

FCM 5.02 3.37 1.57 0.29 6.34 2.91 5.01 1.73

PCM 5.04 3.41 1.47 0.24 6.17 2.88 4.76 1.60

FPCM 5.02 3.38 1.56 0.28 6.31 2.90 4.98 1.72

RCM 5.01 3.42 1.46 0.24 6.40 2.94 5.11 1.77

RFCMMBP 5.00 3.42 1.46 0.24 6.38 2.92 5.08 1.76

RFCM 5.01 3.42 1.46 0.24 6.40 2.94 5.11 1.77

Tables 6-7 depict the best results obtained using differentc-means algorithms forc = 2. In Table 6,
the performance of different algorithms is reported with respect to DB and Dunn index. The results
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reported in Table 6 establish the fact that although eachc-means algorithm generates good prototypes
with lower values of DB index and higher values of Dunn index for c = 2, RFCM provides best result
having lowest DB index and highest Dunn index. The results ofother versions of rough clustering are quit
similar to that of RFCM. Finally, Table 7 compares the performance of different rough-fuzzy clustering
with respect toα, %, α?, andγ. The proposed RFCM performs better than RFCMMBP.

Table 6. Results on Iris Data Set (c = 2)

Algorithms DB Index Dunn Index

HCM 0.117736 12.081416

FCM 0.114973 12.359162

PCM 0.121456 9.993713

FPCM 0.113514 11.875308

RCM 0.105311 13.495355

RFCMMBP 0.106170 13.425817

RFCM 0.105310 13.495560

Table 7. Quantitative Evaluation of Rough-Fuzzy Clustering

Methods α Index % Index α? Index γ Index

RFCMMBP 0.999991 0.000009 0.999989 0.812500

RFCM 0.999994 0.000006 0.999994 0.906667

Next, the performance of differentc-means algorithms on Iris data set is reported forc = 3. Several
runs have been made with different initializations and different choices of parameters. The final proto-
types of differentc-means algorithms, along with three random initial centroids and scale parameters,
are reported in Table 8.

Table 8. Cluster Prototypes of Different C-Means for Iris Data (c = 3)

Methods Centroid 1 Centroid 2 Centroid 3

Initial 5.8 2.7 5.1 1.9 5.0 2.0 3.5 1.0 5.1 3.5 1.4 0.3

Scale η1 = 0.689405 η2 = 0.582364 η3 = 0.344567

FCM 6.78 3.05 5.65 2.05 5.89 2.76 4.36 1.40 5.00 3.40 1.49 0.25

PCM 6.17 2.88 4.76 1.61 6.17 2.88 4.76 1.61 5.04 3.41 1.47 0.24

FPCM 6.62 3.01 5.46 1.99 5.92 2.79 4.40 1.41 5.00 3.40 1.49 0.25

RCM 6.87 3.09 5.79 2.12 5.69 2.66 4.11 1.26 5.01 3.42 1.46 0.24

RFCMMBP 6.88 3.09 5.79 2.12 5.70 2.68 4.11 1.26 5.00 3.41 1.47 0.24

RFCM 6.87 3.09 5.79 2.12 5.69 2.66 4.11 1.26 5.01 3.42 1.46 0.24

In each case, except PCM, all thec-means algorithms generate good prototypes. The final prototypes
of FCM are used to initialize PCM and FPCM. Even three initialcentroids belong to three different
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classes, PCM generates coincident clusters. That is, two ofthree final prototypes are identical in case of
PCM.

Table 9. Results on Iris Data Set (c = 3)

Algorithms DB Index Dunn Index

FCM 0.321984 4.316334

FPCM 0.480586 2.627405

RCM 0.225069 6.755984

RFCMMBP 0.224806 6.907512

RFCM 0.224164 6.936064

In Iris data set, since class 2 and class 3 overlap, it may be thought of having two clusters. But, to
design a classifier, at least three clusters have to be identified. Thus for such applications, RFCM will
be more useful than FCM, PCM, and FPCM, because it is not sensitive to noise, can avoid coincident
clusters, and their DB and Dunn index values are far better than that of FCM, PCM, and FPCM, as
reported in Table 9.

Table 10. Quantitative Evaluation of Rough-Fuzzy Clustering

Methods α Index % Index α? Index γ Index

RFCMMBP 0.999971 0.000029 0.999963 0.625000

RFCM 0.999986 0.000014 0.999988 0.800000

Finally, Table 10 provides comparative results of different rough-fuzzy clustering with respect toα,
%, α?, andγ. All the results reported here confirm that the performance of RFCM is better than that of
RFCMMBP for Iris data set havingc = 3.

5.3. Segmentation of Brain MR Images

In this subsection, we present the results of differentc-means algorithms on segmentation of brain MR
images. Above 100 MR images with different sizes and 16 bit gray levels are tested with different
c-means algorithms. All the brain MR images are collected from Advanced Medicare and Research
Institute, Salt Lake, Kolkata, India. The comparative performance of differentc-means is reported with
respect toα, %, α?, γ, DB, and Dunn index, as well as theβ index [20], which is defined next.
β Index: Theβ-index of Pal et al. [20] is defined as the ratio of the total variation and within-cluster
variation, and is given by

β =
N

M
; where N =

c
∑

i=1

ni
∑

j=1

||xij − v||2; M =

c
∑

i=1

ni
∑

j=1

||xij − vi||
2; and

c
∑

i=1

ni = n; (19)

ni is the number of objects in theith cluster (i = 1, 2, · · · , c), n is the total number of objects,xij is the
jth object in clusteri, vi is the mean or centroid ofith cluster, andv is the mean ofn objects. For a given
image andc value, the higher the homogeneity within the segmented regions, the higher would be theβ
value. The value ofβ also increases withc.
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Figure 3. IMAGE-20497774: original and segmented versionsof HCM, FCM, RCM, RFCMMBP, and RFCM

Consider Fig. 3 as an example, which represents an MR image (IMAGE-20497774) along with the
segmented images obtained using differentc-means algorithms. Each image is of size256 × 180 with
16 bit gray levels. So, the number of objects in the data set ofIMAGE-20497774 is 46080. Table 11
depicts the values of DB index, Dunn index, andβ index of FCM and RFCM for different values ofc on
the data set of IMAGE-20497774. The results reported here with respect to DB and Dunn index confirm
that both FCM and RFCM achieve their best results forc = 4 (background, gray matter, white matter,
and cerebro-spinal fluid). Also, the value ofβ index, as expected, increases with increase in the value of
c. For a particular value ofc, the performance of RFCM is better than that of FCM.

Table 11. Performance of FCM and RFCM on IMAGE-20497774

Value DB Index Dunn Index β Index

of c FCM RFCM FCM RFCM FCM RFCM

2 0.51 0.21 2.30 6.17 2.15 2.19

3 0.25 0.17 1.11 1.62 3.55 3.74

4 0.16 0.15 1.50 1.64 9.08 9.68

5 0.39 0.17 0.10 0.64 10.45 10.82

6 0.20 0.19 0.66 1.10 16.93 17.14

7 0.23 0.27 0.98 0.12 21.63 22.73

8 0.34 0.27 0.09 0.31 25.82 26.38

9 0.32 0.28 0.12 0.13 31.75 32.65

10 0.30 0.24 0.08 0.12 38.04 39.31

Fig. 4 shows the scatter plots of the highest and second highest memberships of all the objects in the
data set of IMAGE-20497774 at first and final iterations respectively, consideringw = 0.95, ḿ1 = 2.0,
andc = 4. The diagonal line represents the zone where two highest memberships of objects are equal.
From Fig. 4, it is observed that though the average difference between two highest memberships of the
objects are very low at first iteration (δ = 0.145), they become ultimately very high at the final iteration
(δ = 0.652). In Fig. 5, the variations of different indices like%, α?, andγ over different iterations are
reported for the IMAGE-20497774 data set. All the results reported in Fig. 5 clearly establish the fact
that as the iteration increases, the value of% decreases and the values ofα? andγ increase. Ultimately,
all the values are saturated after 20 iterations. That is, the proposed rough sets based indices provide
good quantitative measures for rough-fuzzy clustering.
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Figure 4. Scatter plots of two highest membership values of all the objects in the data set of IMAGE-20497774

Table 12 compares the performance of differentc-means algorithms on some brain MR images with
respect to DB, Dunn, andβ index consideringc = 4 (back-ground, gray matter, white matter, and CSF).
The original images along with the segmented versions of differentc-means are shown in Figs. 6-8. All
the results reported in Table 12 and Figs. 6-8 confirm that theproposed algorithm produces segmented
images more promising than do the conventional methods. Some of the existing algorithms like PCM
and FPCM have failed to produce multiple segments as they generate coincident clusters even when they
have been initialized with the final prototypes of FCM. Also,the values of DB, Dunn, andβ index of
RFCM are better compared to otherc-means algorithms.
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Figure 5. Variation of%, α?, andγ over different iterations for IMAGE-20497774 consideringḿ1 = 2.0

Following conclusions can be drawn from the results reported in this paper:

1. It is observed that RFCM is superior to otherc-means algorithms. However, RFCM requires
higher time compared to FCM/PCM. But, the performance of RFCM is significantly higher than
otherc-means. Also, RFCM performs better than RFCMMBP.



P. Maji and S.K. Pal / Rough-Fuzzy C-Means Algorithm 493

Table 12. Performance of Different C-Means Algorithms

Data Set Algorithms DB Index Dunn Index β Index

IMAGE HCM 0.16 2.13 12.07

20497761 FCM 0.14 2.26 12.92

RCM 0.15 2.31 11.68

RFCMMBP 0.14 2.34 9.99

RFCM 0.13 2.39 13.06

IMAGE HCM 0.18 1.88 12.02

20497763 FCM 0.16 2.02 12.63

RCM 0.15 2.14 12.59

RFCMMBP 0.15 2.08 10.59

RFCM 0.11 2.12 13.30

IMAGE HCM 0.18 1.17 8.11

20497774 FCM 0.16 1.50 9.08

RCM 0.17 1.51 9.10

RFCMMBP 0.15 1.51 9.02

RFCM 0.15 1.64 9.68

IMAGE HCM 0.17 2.01 8.68

20497777 FCM 0.16 2.16 9.12

RCM 0.15 2.34 9.28

RFCMMBP 0.15 2.33 9.69

RFCM 0.14 2.39 9.81

2. Use of rough sets and fuzzy memberships adds a small computational load to HCM algorithm;
however the corresponding integrated method (RFCM) show a definite increase in Dunn index and
decrease in DB index.

3. The proposed indices such asα, %, α?, andγ based on the theory of rough sets provide good
quantitative measures for rough-fuzzy clustering. The values of these indices reflect the quality of
clustering.

The best performance of the proposed RFCM algorithm in termsof α, %, α?, γ, DB, Dunn, andβ is
achieved due to the following reasons:

1. the concept of crisp lower bound and fuzzy boundary of the proposed algorithm deals with uncer-
tainty, vagueness, and incompleteness in class definition;and

2. membership function of RFCM handles efficiently overlapping partitions.

In effect, good cluster prototypes are obtained using the proposed RFCM algorithm.
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Figure 6. IMAGE-20497761: original and segmented versionsof HCM, FCM, RCM, RFCMMBP, and RFCM

Figure 7. IMAGE-20497763: original and segmented versionsof HCM, FCM, RCM, RFCMMBP, and RFCM

Figure 8. IMAGE-20497777: original and segmented versionsof HCM, FCM, RCM, RFCMMBP, and RFCM

6. Conclusion

The contribution of the paper lies in developing a hybrid methodology, which integrates judiciously
rough sets and fuzzyc-means algorithm. This formulation is geared towards maximizing the utility of
both rough sets and fuzzy sets with respect to knowledge discovery tasks. Several new measures are
defined based on rough sets to evaluate the performance of rough-fuzzy clustering algorithms. Finally,
the effectiveness of the proposed algorithm is demonstrated, along with a comparison with other related
algorithms, on a set of synthetic as well as real life data sets.

Although our methodology of integrating rough sets, fuzzy sets, andc-means algorithm has been
efficiently demonstrated for synthetic and real data sets, along with the segmentation of brain MR images,
the concept can be applied to other unsupervised classification problems. Some of the indices (e.g.,α, α?,
%, andγ) used for evaluating the quality of the proposed algorithm may be used in a suitable combination
to act as the objective function of an evolutionary algorithm, for rough-fuzzy clustering.
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