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Abstract. A hybrid unsupervised learning algorithm, termed as rofigtzy c-means, is proposed
in this paper. It comprises a judicious integration of thagples of rough sets and fuzzy sets. While
the concept of lower and upper approximations of rough seddsdvith uncertainty, vagueness, and
incompleteness in class definition, the membership funafduzzy sets enables efficient handling
of overlapping partitions. The concept of crisp lower boamd fuzzy boundary of a class, intro-
duced in rough-fuzzy c-means, enables efficient selecfigtuster prototypes. Several quantitative
indices are introduced based on rough sets for evaluatsngdiformance of the proposed c-means
algorithm. The effectiveness of the algorithm, along wittoaparison with other algorithms, has
been demonstrated on a set of real life data sets.
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1. Introduction

Cluster analysis is a technique for finding natural grougsent in the data. It divides a given data set
into a set of clusters in such a way that two objects from timeeseluster are as similar as possible and
the objects from different clusters are as dissimilar asiptes In effect, it tries to mimic the human
ability to group similar objects into classes and categojde 10].

Clustering techniques have been effectively applied todewange of engineering and scientific dis-
ciplines such as pattern recognition, machine learninggchasiogy, biology, medicine, computer vision,
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communications, and remote sensing. A number of clusteaiggrithms have been proposed to suit
different requirements [8, 10, 11].

One of the most widely used prototype based partitionaketirgy algorithms is hard-means [17].
In hardc-means, each object must be assigned to exactly one cl@idhe other hand, fuzzymeans
relaxes this requirement by allowing gradual membershp®]. In effect, it offers the opportunity to
deal with the data that belong to more than one cluster ataime dime. It assigns memberships to an
object which are inversely related to the relative distasfde object to cluster prototypes. Also, it can
deal with the uncertainties arising from overlapping @ustoundaries.

Although fuzzyc-means is a very useful clustering method, the resulting beeship values do not
always correspond well to the degrees of belonging of the,datd it may be inaccurate in a noisy
environment [13, 14]. In real data analysis, noise and enstlare unavoidable. Hence, to reduce this
weakness of fuzzy-means, and to produce memberships that have a good explanathe degrees of
belonging for the data, Krishnapuram and Keller [13, 14msed a possibilistic approach to clustering
which used a possibilistic type of membership function teatide the degree of belonging. However,
the possibilisticc-means sometimes generates coincident clusters [3]. Rgcre use of both fuzzy
(probabilistic) and possibilistic memberships in a clustg algorithm has been proposed in [19].

Rough set theory [22, 23] is a new paradigm to deal with uag#st, vagueness, and incompleteness.
It has been applied to fuzzy rule extraction, reasoning witbertainty, fuzzy modeling, etc [12, 24]. It
is proposed for indiscernibility in classification accarglito some similarity [22]. In [15], Lingras and
West introduced a new clustering method, called rattgieans, which describes a cluster by a prototype
(center) and a pair of lower and upper approximations. Tlwet@nd upper approximations are weighted
different parameters to compute the new centers. Ashagdf Elf] extended this algorithm that may not
require specification of the number of clusters.

Combining fuzzy set and rough set provides an importanttiime in reasoning with uncertainty [2,
6, 7, 16, 21]. Both fuzzy sets and rough sets provide a mattiegthframework to capture uncertainties
associated with the data [6, 7]. They are complementary fimesaspects. Recently, combining both
rough and fuzzy sets, Mitra et al. [18] proposed rough-fuzmeans, where each cluster consists of a
fuzzy lower approximation and a fuzzy boundary. Each ohjedbwer approximation takes a distinct
weight, which is its fuzzy membership value. However, thgadls in lower approximation of a cluster
should have similar influence on the corresponding cenamiticluster as well as their weights should be
independent of other centroids and clusters. Thus, theepbrod fuzzy lower approximation, introduced
in rough-fuzzyc-means of [18], reduces the weights of objects of lower agpration. In effect, it drifts
the cluster prototypes from their desired locations. Meeeait is sensitive to noise and outliers.

In this paper, we propose a hybrid algorithm, termed as rdugky c-means, based on rough sets
and fuzzy sets. While the membership function of fuzzy setbkes efficient handling of overlapping
partitions, the concept of lower and upper approximationsogh sets deals with uncertainty, vague-
ness, and incompleteness in class definition. Each parigioepresented by a set of three parameters,
namely, a cluster prototype (centroid), a crisp lower apipnation, and a fuzzy boundary. The lower
approximation influences the fuzziness of the final partitidhe cluster prototype (centroid) depends
on the weighting average of the crisp lower approximatiod fuzzy boundary. Several quantitative
measures are introduced based on rough sets to evaluatertbenance of the proposed algorithm. The
effectiveness of the proposed algorithm, along with a caiapa with crisp, fuzzy, possibilistic, and
roughc-means, has been demonstrated on a set of benchmark data sets
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The structure of the rest of this paper is as follows. Se@ibriefly introduces the necessary notions
of fuzzy c-means, rough sets, and rougtmeans algorithm. In Section 3, we describe rough-fuzzy
means algorithm based on the theory of rough sets and firzyans. Several quantitative performance
measures are introduced in Section 4 to evaluate the qudlitlye proposed algorithm. A few case
studies and a comparison with other methods are presentgekciion 5. Concluding remarks are given
in Section 6.

2. Fuzzy C-Means and Rough C-Means

This section presents the basic notions of fuzzgeans and rougbrmeans. The proposed rough-fuzzy
c-means algorithm is developed based on these algorithms.

2.1. Fuzzy C-Means

Let X = {x1,---,zj,--- ,z,} be the set of objects and/ = {vy,--- ,v;,--- ,v.} be the set ot
centroids, where;; € R andv; € ™. The fuzzyc-means provides a fuzzification of the hartheans
[4, 9]. It partitions X into ¢ clusters by minimizing the objective function

T =Y (nig)™ ||y — il )

j=1i=1

wherel < ni; < oo is the fuzzifier,v; is theith centroid corresponding to clustey, 1;; € [0,1] is the
probabilistic membership of the pattern to clusters;, and||.|| is the distance norm, such that

n
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k=1 " i=1 j=1

The process begins by randomly choosirabjects as the centroids (means) of tr@usters. The mem-
berships are calculated based on the relative distance aifjectz; to the centroidgv;} by Equation

3. After computing memberships of all the objects, the nemtro@s of the clusters are calculated as
per Equation 2. The process stops when the centroids gtabilhat is, the centroids from the previous
iteration are identical to those generated in the currenafion. The basic steps are outlined as follows:

1. Assign initial means;, i = 1,2,--- ,c. Choose values form, and threshold:. Set iteration
countert = 1.

2. Compute membershipsg; by Equation 3 for clusters and objects.
3. Update mean (centroid) by Equation 2.

4. Repeat steps 2 to 4, by incrementingintil |1 () — pi;(t — 1) > e.
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In fuzzy c-means, the memberships of an object are inversely relatedet relative distance of
the object to the cluster centroids. In effect, it is verysive to noise and outliers. Also, from the
standpoint of “compatibility with the centroid”, the membkips of an object; in a cluster3; should
be determined solely by how close it is to the mean (centrgidf the class, and should not be coupled
with its similarity with respect to other classes.

To alleviate this problem, Krishnapuram and Keller [13, ittoduced possibilistie-means algo-
rithm, where the objective function can be formulated as

J = ZZMUW%ﬂW+Zm21ﬂw> @

=1 j=1 =1

wherel < s < oo is the fuzzifier andy; represents the scale parameter. The membership matrix
generated by the possibilisttemeans is not a partition matrix in the sense that it does aidfg the

constraint .
Z vij =1 %)
i=1

The update equation of; is given by

1

Vij = ——; where D = { (6)
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i

n
subject to v;; € [0,1],V1,5;0 < Zl/z‘j < n,Vi; and max;v;; > 0, V.
j=1

The scale parameter represents the zone of influence of the clugterThe update equation fay, is

P " ) - )
n =K- o) where P = " (v35)"||z; — vi|*; and Q =Y~ (vy5)"™ ()

j=1 j=1

Typically K is chosen to be 1. In each iteration, the updated valug;afepends only on the similarity
between the object; and the centroid);. The resulting partition of the data can be interpreted as a
possibilistic partition, and the membership values mayriterpreted as degrees of possibility of the
objects belonging to the classes, i.e., the compatikslidiethe objects with the means (centroids). The
updating of the means proceeds exactly the same way as iaske€tthe fuzzy-means algorithm.

2.2. Rough Sets

The theory of rough sets begins with the notion of an apprakion space, which is a pait U, R >,
whereU be a non-empty set (the universe of discourse) &rah equivalence relation dif, i.e., R is
reflexive, symmetric, and transitive. The relatiBrdecomposes the sgtinto disjoint classes in such a
way that two elements, y are in the same class fff:, y) € R. Let denote by//R the quotient set of/
by the relationR, and

U/R: {X17X27”' 7Xm}
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where X; is an equivalence class &, i = 1,2,--- ,m. If two elementsz,y in U belong to the same
equivalence clasX; € U/R, we say thatr andy are indistinguishable. The equivalence classeR of
and the empty sdt are the elementary sets in the approximation spaéé R >. Given an arbitrary set
X € 2Y,in general it may not be possible to descrieprecisely in< U, R >. One may characterize
X by a pair of lower and upper approximations defined as foll{22%:

RX)=|J x5 RX)= |J X

That s, the lower approximatioR(X) is the union of all the elementary sets which are subsels, aind
the upper approximatiof(X) is the union of all the elementary sets which have a non-einptysec-
tion with X. The intervallR(X), R(X)] is the representation of an ordinary $&in the approximation
space< U, R > or simply called the rough set of. The lower (resp., upper) approximatid(X)
(resp., R(X)) is interpreted as the collection of those elementd/athat definitely (resp., possibly)
belong toX. Further, we can define:

e asetX € 2V is said to be definable (or exact)inU, R > iff R(X) = R(X).

e foranyX,Y € 2V, X is said to be roughly included i¥, denoted byX CY, iff R(X) C R(Y)
andR(X) C R(Y).

e X andY is said to be roughly equal, denoted By~ Y, in < U, R > iff R(X) = R(Y) and
R(X) = R(Y).

In [22], Pawlak discusses two numerical characterizatmfrisnprecision of a subseX in the approx-
imation space< U, R >: accuracy and roughness. Accuracy)of denoted byxr(X), is simply the
ratio of the number of objects in its lower approximationHhattin its upper approximation; namely

_B(X)|
R(X)

aR(X)

The roughness oK, denoted byr(X), is defined by subtracting the accuracy from 1:

e
R(X)

pr(X) =1-agr(X) =1

Note that the lower the roughness of a subset, the bettes &pjiroximation. Further, the following
observations are easily obtained:

1. AsR(X) C X C R(X),0< pr(X) < L
2. By convention, wheX =, R(X) = R(X) = 0 andpr(X) = 0.

3. pr(X) = 0ifand only if X is definable in< U, R >.
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2.3. Rough C-Means

Let A(3;) and A(3;) be the lower and upper approximations of clugteandB(3;) = {A(5;) — A(B;)}
denote the boundary region of clustgr In roughc-means algorithm, the concept®fneans algorithm
is extended by viewing each clust&ras an interval or rough set. However, it is possible to defipaia
of lower and upper boundsi[ 3;), A(3;)] or a rough set for every sgf C U, U be the set of objects of
concern [22]. The family of upper and lower bounds are reglito follow some of the basic rough set
properties such as:

1. an objectr; can be part of at most one lower bound,;
2. z; € A(Bi) = z; € A(B;); and
3. an objectr; is not part of any lower boung> x; belongs to two or more upper bounds.

Incorporating rough sets intemeans algorithm, Lingras and West [15] introduced rougheans
algorithm. It adds the concept of lower and upper boundsdmteans algorithm. It classifies the object
space into two parts - lower approximation and boundaryregrhe mean (centroid) is calculated based
on the weighting average of the lower bound and boundargmedill the objects in lower approximation
take the same weight while all the objects in boundary take another weightingeind (= 1 — w)
uniformly. Calculation of the centroid is modified to inckithe effects of lower as well as upper bounds.
The modified centroid calculation for rougkhmeans is given by:

wx A+wx B if A(B;) #0,B(5;) #0
v = A it A(3;) #0, B(6;) =0 (8)
B if A(B;) =0, B(6;) # 0

1 1
_ . and B = )
A= Gy 2 w5 B =pas 2 @

z;€A(B) z;€B(Bi)

B; represents théh cluster associated with the centreid A(3;) and B(3;) represent the lower bound
and the boundary region of clustgr. The parametew andw correspond to the relative importance of
lower bound and boundary region, and+ @ = 1. The main steps of rougiimeans are as follows:

1. Assign initial means;, i = 1,2, --- , c. Choose value for threshold
2. For each object;, calculate distancé;; between itself and the centroid of clusterg;.

3. If d;; is minimum for1 < i < cand(d;; — di;) < 6, thenz; € A(B;) andz; € A(By).
Furthermorey; is not part of any lower bound.

4. Otherwiseg; € A(3;) such thatl;; is minimum forl < ¢ < ¢. In addition, by properties of rough
setsz; € A(3).

5. Compute new centroid as per Equation 8.

6. Repeat steps 2 to 5 until no more new assignments can be made
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Incorporating both fuzzy and rough sets, recently Mitralet[&8] have proposed rough-fuzzy
means, where each cluster consists of a fuzzy lower appeatiimand a fuzzy boundary. If an object
x; € A(B;), thenpy; = py; if B = 4 andu,; = 0 otherwise. That is, each object € A(f;)
takes a distinct weight, which is its fuzzy membership val@i@us, the weight of the object in lower
approximation is inversely related to the relative distaotthe object to all cluster prototypes.

In fact, the objects in lower approximation of a cluster dtichave similar influence on the corre-
sponding centroid and cluster. Also, their weights sho@dnldlependent of other centroids and clusters
and should not be coupled with their similarity with respodther clusters. Thus, the concept of fuzzy
lower approximation, introduced in [18], reduces the wiighf objects of lower approximation and
effectively drifts the cluster centroids from their desditecations.

3. Rough-Fuzzy C-Means Algorithm

Incorporating both fuzzy and rough sets, next we describevacimeans algorithm, termed as rough-
fuzzy c-means (RFCM). The proposedmeans adds the concept of fuzzy membership of fuzzy sals, an
lower and upper approximations of rough sets imtmeans algorithm. While the membership of fuzzy
sets enables efficient handling of overlapping partitidins,rough sets deal with uncertainty, vagueness,
and incompleteness in class definition.

3.1. Objective Function

The proposed-means partitions a set afobjects intoc clusters by minimizing the objective function

wx Ay +w x By if A(B;) #0, B(6;) # 0
JRF = Ay if A(B;) #0,B(B;) =10 9
B if A(3;) =0,B(6;) #0

C

A= > ()™ llzy — il and Bi=73" Y (i)™ [ — vl

i=1 2;€A(5;) =1 2;€B(83:)

where the parameters andw (= 1 — w) correspond to the relative importance of lower and boundar
region. Note thaty.;; has the same meaning of membership as that in fuzmgans.

In proposed RFCM, each cluster is represented by a centaidisp lower approximation, and a
fuzzy boundary (Fig. 1). The lower approximation influenttes fuzziness of final partition. According
to the definitions of lower approximations and boundary efgto sets, if an object; € A(g;), then
xj ¢ A(Br),Vk #1i, andx; ¢ B(5;),Vi. Thatis, the object; is contained in3; definitely. Thus,
the weights of the objects in lower approximation of a clusteuld be independent of other centroids
and clusters, and should not be coupled with their simjlaith respect to other centroids. Also, the
objects in lower approximation of a cluster should have Isiminfluence on the corresponding centroid
and cluster. Whereas, if; € B(f3;), then the object; possibly belongs t@; and potentially belongs to
another cluster. Hence, the objects in boundary regionsldhmave different influence on the centroids
and clusters. So, in RFCM, the membership values of objadtsier approximation arg;; = 1, while
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— Cluster fj

— Crisp LowerApproximation
A(Bj) with pjj =1

i

FuzzyBoundary B(j3;j)
‘ with p i — [0, 1]

Figure 1. Rough-fuzzy-means: clustes; is represented by crisp lower bound and fuzzy boundary

those in boundary region are the same as fuzmyeans (Equation 3). In other word, the proposed
means first partitions the data into two classes - lower aymiation and boundary. Only the objects in
boundary are fuzzified. Thugl; reduces to

C
A= > o=l
=1 z;€A(B;)

andB; has the same expression as that in Equation 9.

3.2. Cluster Prototypes

The new centroid is calculated based on the weighting aeeytiipe crisp lower approximation and fuzzy
boundary. Computation of the centroid is modified to incltiieeffects of both fuzzy memberships and
lower and upper bounds. The modified centroid calculatiorRIBCM is obtained by solving Equation
9 with respect tay;:

wxCr+wxDy if A(B;) #0,B(3;) #0
vt = Ci it A(B;) # 0, B(B;) =0 (10)
Dy if A(B;) =0, B(6;) #0
= \A(lﬁ-)! Y aj and Dy = ni Y (wig)™ay; where ni= Y (ui)™
=V g ieAs) "2,€B(8:) x;€B(5:)

|A(5;)| represents the cardinality of( ;).

Thus, the cluster prototypes (centroids) depend on thermeasw andw, and fuzzifierrh; rule
their relative influence. The correlated influence of thememeters and fuzzifier, makes it somewhat
difficult to determine their optimal values. Since the obgelying in lower approximation definitely
belong to a cluster, they are assigned a higher weigbbmpared tav of the objects lying in boundary
region. Hence, for RFCM, the values are giverby @ < w < 1.
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3.3. Fundamental Properties
From the above discussions, we can get the following prigseof RFCM algorithm.
1. |JA(B;) = U, U be the set of objects of concern.
2. A(Bi) N A(B) = 0,Vi # k.
3. A(B;) N B(B;) = 0,Vi.
4. 3i,k, B(3;) N B(By) # 0.
5. uij = 1,Va; € A(B).
6. nij € [0,1],Va; € B(5).

Let us briefly comment on some properties of RFCM. The prgp2rsays that if an object; €
A(Bi) = z; ¢ A(Br),Vk # i. Thatis, the object;; is contained in3; definitely. The property 3
establishes the fact thatif; € A(5;) = x; ¢ B(5;), - that is, an object may not be in both lower and
boundary region of a clustei;. The property 4 says thatif; € B(3;) = 3k, z; € B(f). It means an
objectz; € B(f;) possibly belongs t@; and potentially belongs to other cluster. The propertiescba
are of great importance in computing the objective functigp and the cluster prototype*”'. They say
that the membership values of the objects in lower appraxamare/.;; = 1, while those in boundary
region are the same as fuzzymeans. That is, each clust@r consists of a crisp lower approximation
A(B;) and a fuzzy boundargB(/3;).

3.4. Detailsof the Algorithm

Approximate optimization offgr (Equation 9) by the RFCM is based on Picard iteration thrdagha-
tions 3 and 10. This type of iteration is called alternatipgiraization. The process starts by randomly
choosinge objects as the centroids of thelusters. The fuzzy memberships of all objects are caledlat
using Equation 3.

Let i = (par, -+ g, -+ 5 1in) represent the fuzzy clustet; associated with the centroig.
After computingp;; for c clusters and: objects, the values gf;; for each object:; are sorted and
the difference of two highest membershipsrgfis compared with a threshold valde Let 1;; and i
be the highest and second highest membershipg.off (u;; — 1x;) > 9, thenz; € A(B;) as well as
xj € A(B;), otherwiser; € A(f;) andx; € A(fy). After assigning each object in lower approximations
or boundary regions of different clusters basedypmembershipg:;; of the objects are modified. The
values ofy;; are set to 1 for the objects in lower approximations, whilesthin boundary regions are
remain unchanged. The new centroids of the clusters aralatdd as per Equation 10. The main steps
of RFCM algorithm proceed as follows:

1. Assign initial centroidsy;, i = 1,2,--- ,c. Choose values for fuzzifief,;, and thresholds and
0. Set iteration counter= 1.

2. Computeu;; by Equation 3 fore clusters andh objects.

3. If u;; and ug; be the two highest membershipsaofand (u;; — ux;) < 6, thenz; € A(3;) and
z; € A(Bg). Furthermoreg; is not part of any lower bound.
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Otherwisey; € A(f;). In addition, by properties of rough sets, € A(3;).
Modify 1i;; considering lower and boundary regions falusters andh objects.

Compute new centroid as per Equation 10.

N o &

Repeat steps 2 to 7, by incrementin@intil |1;;(t) — ps5(t — 1) > e.

The performance of RFCM depends on the valué,oithich determines the class labels of all the
objects. In other word, the RFCM partitions the data set into classes - lower approximation and
boundary, based on the valuedfln practice we find that the following definition works well:

n

1
0=~ > (ij = pry) (11)
j=1
wheren is the total number of objectg,;; andy,; are the highest and second highest memberships of
x;j. Thatis, the value of represents the average difference of two highest memipsrehall the objects
in the data set. A good clustering procedure should makeate wfs as high as possible. The value of

0 is, therefore, data dependent.

4, Quantitative Measures

In this section we propose some quantitative indices taet@lthe performance of rough-fuzzy cluster-
ing algorithm incorporating the concepts of rough sets.[22]
a Index: Itis given by

l — wA;
- el 12
‘T ; whA; + wB; (12)
where Aj = > (py)™ =[A(B)]; and Bi= Y (uiy)™ (13)
zj€A(B:) zj€B(Bi)

;j represents the probabilistic memberships of ohjgah cluster3;. The parameters) andw corre-
spond to the relative importance of lower and boundary regio

Thea index represents the average accuracyafisters. It is the average of the ratio of the number
of objects in lower approximation to that in upper approxiara of each cluster. In effect, it captures
the average degree of completeness of knowledge aboutisiécs. A good clustering procedure should
make all objects as similar to their centroids as possibtealindex increases with increase in similarity
within a cluster. Therefore, for a given data set an@lue, the higher the similarity values within the
clusters, the higher would be thevalue. The value ofv also increases with In an extreme case when
the number of clusters is maximum, i.e.= n, the total number of objects in the data set, the value of
a = 1. WhenA(8;) = A(j;), Vi, that is, all the cluster§3; } are exact or definable, then we have- 1.
Whereas ifA(3;) = B(f;), Vi, the value ofx = 0. Thus,0 < a < 1.
o Index: The g index represents the average roughness afisters and is defined by subtracting the
average accuraay from 1:

1 - ’U)AZ
o=1l-a= __ZwA- B, (14)
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whereA; andB; are given by Equation 13. Note that the lower the value,dhe better is the over-
all clusters approximations. Als®, < ¢ < 1. Basically, ¢ index represents the average degree of
incompleteness of knowledge about all clusters.

o* Index: It can be defined as

(& C
o = %; where C = Z wA;; and D = Z{wAi + wB;} (15)
=1 1=1
whereA; andB; are given by Equation 13. The" index represents the accuracy of approximation of all
clusters. It captures the exactness of approximate cingte good clustering procedure should make
the value ofo* as high as possible. The index maximizes the exactness of approximate clustering.
~ Index: 1t is the ratio of the total number of objects in lower approations of all clusters to the

cardinality of the universe of discourg&and is given by

'y:E; where R:Z|A(ﬂi)|; and S=|U|=n. (16)
S i=1
The~ index basically represents the quality of approximatioa ofustering algorithm.

5. Performance Analysis

The performance of proposed RFCM algorithm is comparedsitely with that of different-means
algorithms. These involve different combinations of thdiWidual components of the hybrid scheme.
The algorithms compared are hargneans (HCM), fuzzy-means (FCM) [4, 9], possibilistie-means
(PCM) [13, 14], fuzzy-possibilistie-means (FPCM) [19], rougbrmeans (RCM) [15], and rough-fuzzy
c-means of Mitra et al. (RFCMPBP) [18]. All the methods are implemented in C language and nun i
LINUX environment having machine configuration Pentium3\2 GHz, 1 MB cache, and 1 GB RAM.
The input parameters used, which are held constant aclossisl are as follows:

Values of fuzzifiersf; = 2.0; andrfi, = 2.0
Value of threshold = 0.00001; and Value ofw = 0.95

To analyze the performance of the proposed method, theiexgmtiation has been done in two parts.
In the first part, we have used synthetic as well as real d&galsethe second part, we present the results
on segmentation of brain MR images. The major metrics foluaiimg the performance of different
algorithms are the indices proposed in Section 4 such,as «o*, and~y, as well as some existing
measures like Davies-Bouldin (DB) and Dunn index [5], whach described next.
Davies-Bouldin Index: The Davies-Bouldin (DB) index [5] is a function of the ratibsum of within-
cluster distance to between-cluster separation and is giye

S(vi) + S(vr)

1 C
DB = . Z maxy.£;{ (0 08)

i=1

} for 1 <ik<ec. a7

The DB index minimizes the within-cluster distangév; ) and maximizes the between-cluster separation
d(v;, vi). Therefore, for a given data set anglalue, the higher the similarity values within the clusters
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and the between-cluster separation, the lower would be Biim@ex value. A good clustering procedure
should make the value of DB index as low as possible.

Dunn Index: Dunn’s index [5] is also designed to identify sets of clustérat are compact and well
separated. Dunn’s index maximizes

d(vi, vg)

Dunn = mini{mink#{maXls(vl)

o ofor 1 <ikl<ec. (18)

5.1. Synthetic Data Set: X32

The synthetic data séf32 consists of. = 32 objects init? with two clusters. Fig. 2 depicts the scatter
plots of the data sek'32. The objectsesg, x31, andxs, are outliers (noise), and the objegt is the so
called inlier or bridge. Two randomly generated initial teids, along with two scale parameters and
the final prototypes of different-means, are reported in Table 1. Fig. 2 represents the ispiits of
the data sefX32 along with the clusters prototypes obtained using differemeans algorithms. The
objects ofX'32 are represented hy, while ‘box’ depict the positions of cluster prototypes.

Table 2 reports the values af g, a*, v, Jrr, Dunn, and DB index of RFCM algorithm over different
iterations. All the results reported in Table 2 show thatresrtumber of iteration increases, the values
of o, Jrr, and DB index decrease, while the valuesxoix*, v, and Dunn index increase. Finally, all
the indices are saturated when RFCM terminates after 4dties. Thus, the proposed indices (e«g.,

0, a*, and~) can be used to act as the objective function of rough-fuhastering as they reflect good
guantitative measures like existing DB and Dunn index.
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Figure 2. Example data s&t32 and clusters prototypes of differerrtmeans algorithms

Table 1. Cluster Prototypes of Different C-Means 032

Algorithms Centroid 1 Centroid 2
Initial 2.088235;2.382353  5.100000; 2.000000

Scale n =4.553732 1o =3.697741
HCM 2.088235;2.382353  5.100000; 2.000000
FCM 2.025431;1.943642 4.974481; 1.943406
PCM 2.087332;1.500811  4.912668; 1.500811
FPCM 2.281087;1.749121  4.782719;1.7652[19
RCM 1.807862;1.500375  5.192139; 1.500375
RFCMMBP 1.783023;1.500408 5.216976; 1.500408
RFCM 1.727380;1.636481  5.272620; 1.636481

Table 2. Performance of RFCM over Different Iterations

Itr. o Index DB Index JRF « Index o™ Index ~ Index Dunn Index
1 0.000081 | 0.159813 | 17.002853 | 0.999919 | 0.999905| 0.562500| 10.022817
2 0.000053 | 0.140268 | 16.035562 | 0.999947 | 0.999963 | 0.625000| 11.543916
3 0.000037 | 0.137502 | 12.191273| 0.999963 | 0.999974 | 0.812500| 13.798013
4 0.000009 | 0.123709 | 9.073391 0.999991 | 0.999991 | 0.812500 | 14.621336
5 0.000009 | 0.123709 | 9.073391 0.999991 | 0.999991 | 0.812500 | 14.621336

Table 3 provides comparative results of differemheans algorithms. The rough set based clustering
algorithms (RCM, RFCNY'BP ' and RFCM) are found to improve the performance in terms ofaDB
Dunn index over other algorithms. It is also observed thatptoposed RFCM algorithm perform better
than FCM, PCM, FPCM, RCM, and RFCNPP | although it is expected that both PCM and FPCM
perform well in noisy environment. Finally, Table 4 showe tomparative results of different rough-

fuzzy clustering algorithms in terms of p, o*, andy. The performance of RFCM is better than that of
RFCMMBP,
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Table 3. Performance of Different C-Means Algorithms

Algorithms DB Index | Dunn Index
HCM 0.266063 5.934918
FCM 0.210139 9.022365
PCM 0.183069 | 10.309421
FPCM 0.276837 6.894526
RCM 0.127478 | 14.252816

RFCMMBP 0.125088 | 14.491059
RFCM 0.123709 | 14.621336

Table 4. Quantitative Evaluation of Rough-Fuzzy Clustgrin

Methods a Index o Index a* Index ~ Index
RFCMMBP | 0.999953 | 0.000047 | 0.999942 | 0.625000
RFCM 0.999991 | 0.000009 | 0.999991 | 0.812500

5.2. Real Data Set: Iris

This subsection demonstrates the performance of differergans algorithms on Iris data set, with- 2
and 3. The Iris data set is a four-dimensional data set aontab0 samples each of three types of Iris
flowers. One of the three clusters (class 1) is well separfated the other two, while classes 2 and 3
have some overlap. The data set can be downloaded fromlittpv/ics.uci.edutmlearn.

Several runs have been made for each otthreans algorithms on Iris data set with different choices
of parameters. The final prototypes of differenheans algorithms, along with initial centroids and scale
parameters, are provided in Table 5 for 2.

Table 5. Cluster Prototypes of Different C-Means for Irig®& = 2)

Algorithms Centroid 1 Centroid 2
Initial 452.31.30.3 6.32.74.91.8
Scale n = 0.651171 1o = 1.154369
FCM 5.023.371.570.29 6.342.915.011.13
PCM 5.043.411.470.24 6.17 2.884.76 1.60
FPCM 5.023.381.560.28 6.312.904.981.72
RCM 5.013.421.460.24 6.402.945.11 1.97

RFCMMBP 5.003.421.460.24 6.382.925.081.76
RFCM 5.013.421.460.24 6.402.945.11 1.77

Tables 6-7 depict the best results obtained using differenéans algorithms far = 2. In Table 6,
the performance of different algorithms is reported witbpect to DB and Dunn index. The results
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reported in Table 6 establish the fact that although eacteans algorithm generates good prototypes
with lower values of DB index and higher values of Dunn indexd = 2, RFCM provides best result
having lowest DB index and highest Dunn index. The resulttluér versions of rough clustering are quit
similar to that of RFCM. Finally, Table 7 compares the parfance of different rough-fuzzy clustering
with respect tay, o, o*, andy. The proposed RFCM performs better than RPERP .

Table 6. Results on Iris Data Set£ 2)

Algorithms DB Index | Dunn Index
HCM 0.117736 | 12.081416
FCM 0.114973 | 12.359162
PCM 0.121456 9.993713
FPCM 0.113514 | 11.875308
RCM 0.105311 | 13.495355

RFCMMBP 0.106170 | 13.425817

RFCM 0.105310 | 13.495560

Table 7. Quantitative Evaluation of Rough-Fuzzy Clustgrin

Methods a Index o Index a* Index ~ Index
RFCMMBP | 0.999991 | 0.000009 | 0.999989 | 0.812500
RFCM 0.999994 | 0.000006 | 0.999994 | 0.906667

Next, the performance of differentmeans algorithms on Iris data set is reportedcfer 3. Several
runs have been made with different initializations andedéht choices of parameters. The final proto-
types of differentc-means algorithms, along with three random initial ceniscind scale parameters,
are reported in Table 8.

Table 8. Cluster Prototypes of Different C-Means for Irig®@ = 3)

In each case, except PCM, all theneans algorithms generate good prototypes. The finaltypee
of FCM are used to initialize PCM and FPCM. Even three initahtroids belong to three different

Methods Centroid 1 Centroid 2 Centroid 3

Initial 5.82.75.11.9 5.02.03.51.0 5.13.51.40.3

Scale m = 0.689405 12 = 0.582364 ng = 0.344567

FCM 6.783.055.652.05 5.892.764.361.40 5.003.401.49Q.25

PCM 6.172.884.761.61 6.172.884.761.61 5.043.411.470.24

FPCM 6.623.015.461.99 5922.794.401.41 5.003.401.490(.2

RCM 6.873.095.792.12 5.692.664.111.26 5.013.421.460Q0.24
RFCMMBP 6.883.095.792.12 5.702.684.111.26 5.003.411.47Q.24

RFCM 6.873.095.792.12 5.692.664.111.26 5.013.421.40.2
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classes, PCM generates coincident clusters. That is, tWoed final prototypes are identical in case of
PCM.

Table 9. Results on Iris Data Set£ 3)

Algorithms DB Index | Dunn Index
FCM 0.321984 | 4.316334
FPCM 0.480586 2.627405
RCM 0.225069 6.755984
RFCMMBP 0.224806 6.907512
RFCM 0.224164 6.936064

In Iris data set, since class 2 and class 3 overlap, it maydaggtit of having two clusters. But, to
design a classifier, at least three clusters have to be fidgehtiThus for such applications, RFCM will
be more useful than FCM, PCM, and FPCM, because it is nottsensd noise, can avoid coincident
clusters, and their DB and Dunn index values are far bettm that of FCM, PCM, and FPCM, as
reported in Table 9.

Table 10. Quantitative Evaluation of Rough-Fuzzy Clusigri

Methods a Index o Index a* Index ~ Index
RFCMMBP 0.999971 | 0.000029 | 0.999963 | 0.625000
RFCM 0.999986 | 0.000014 | 0.999988 | 0.800000

Finally, Table 10 provides comparative results of diffén@mugh-fuzzy clustering with respect tq
o, a*, and~. All the results reported here confirm that the performarfd@CM is better than that of
RFCMMBP for Iris data set having = 3.

5.3. Segmentation of Brain MR Images

In this subsection, we present the results of differemteans algorithms on segmentation of brain MR
images. Above 100 MR images with different sizes and 16 kit devels are tested with different
c-means algorithms. All the brain MR images are collectednfrddvanced Medicare and Research
Institute, Salt Lake, Kolkata, India. The comparative perfance of different-means is reported with
respect tay, o, a*, v, DB, and Dunn index, as well as titeindex [20], which is defined next.

0 Index: The g-index of Pal et al. [20] is defined as the ratio of the totaiatson and within-cluster
variation, and is given by

c ng ¢ ng c

8= %; where N = ZZ |45 —7|% M= ZZ [|lzij — vi||%; and an =n; (19)
=1 j=1 =1 j=1 =1

n; is the number of objects in théh cluster { = 1,2, -- , ¢), n is the total number of objects,; is the

jth object in clustei, v; is the mean or centroid éfh cluster, and is the mean ofi objects. For a given

image and: value, the higher the homogeneity within the segmentednsgithe higher would be the

value. The value of also increases with
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Figure 3. IMAGE-20497774: original and segmented versafi$CM, FCM, RCM, RFCM'BP  and RFCM

Consider Fig. 3 as an example, which represents an MR imB{@&GE-20497774) along with the
segmented images obtained using differemeans algorithms. Each image is of s® x 180 with
16 bit gray levels. So, the number of objects in the data séMAIGE-20497774 is 46080. Table 11
depicts the values of DB index, Dunn index, ahthdex of FCM and RFCM for different values efon
the data set of IMAGE-20497774. The results reported hette n@gpect to DB and Dunn index confirm
that both FCM and RFCM achieve their best resultsdfer 4 (background, gray matter, white matter,
and cerebro-spinal fluid). Also, the value®fndex, as expected, increases with increase in the value of
c. For a particular value af, the performance of RFCM is better than that of FCM.

Table 11. Performance of FCM and RFCM on IMAGE-20497774

Value DB Index Dunn Index G Index
of ¢ FCM RFCM | FCM | RFCM FCM RFCM
2 0.51 0.21 2.30 6.17 2.15 2.19
0.25 0.17 1.11 1.62 3.55 3.74
0.16 0.15 1.50 1.64 9.08 9.68
0.39 0.17 0.10 0.64 10.45 | 10.82
0.20 0.19 0.66 1.10 16.93 | 17.14
0.23 0.27 0.98 0.12 21.63 | 22.73
0.34 0.27 0.09 0.31 25.82 | 26.38
0.32 0.28 0.12 0.13 31.75 | 32.65
10 0.30 0.24 0.08 0.12 38.04 | 39.31

© 0 NO 01 b W

Fig. 4 shows the scatter plots of the highest and second $tighemberships of all the objects in the
data set of IMAGE-20497774 at first and final iterations retipely, consideringv = 0.95, 1 = 2.0,
andc = 4. The diagonal line represents the zone where two highesthmestips of objects are equal.
From Fig. 4, it is observed that though the average differdratween two highest memberships of the
objects are very low at first iteration & 0.145), they become ultimately very high at the final iteration
(6 = 0.652). In Fig. 5, the variations of different indices like «*, and~ over different iterations are
reported for the IMAGE-20497774 data set. All the resultsoreed in Fig. 5 clearly establish the fact
that as the iteration increases, the value decreases and the valuescdfand~ increase. Ultimately,
all the values are saturated after 20 iterations. That é&ptioposed rough sets based indices provide
good quantitative measures for rough-fuzzy clustering.
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Figure 4. Scatter plots of two highest membership valued gdi@objects in the data set of IMAGE-20497774

Table 12 compares the performance of differemeans algorithms on some brain MR images with
respect to DB, Dunn, and index considering: = 4 (back-ground, gray matter, white matter, and CSF).
The original images along with the segmented versions &rdifitc-means are shown in Figs. 6-8. All
the results reported in Table 12 and Figs. 6-8 confirm thaptbposed algorithm produces segmented
images more promising than do the conventional methods.eSurthe existing algorithms like PCM
and FPCM have failed to produce multiple segments as thegrgencoincident clusters even when they
have been initialized with the final prototypes of FCM. Alsloe values of DB, Dunn, and index of
RFCM are better compared to othemeans algorithms.
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012

1

09t 7
0%t |

097 |
008 ]
096/
006 095

094

Roughness

004 i
093 1

02 [
002 |

Accur acy of Approximation
Qual ity of Approximtion

091
0 B 09

0 20 80 100 0 20

0 .60 4‘0 . éo 4‘0 . éo
Iteration Iteration Iteration

Figure 5. \Variation ob, o*, and~ over different iterations for IMAGE-20497774 considerifig = 2.0

Following conclusions can be drawn from the results relirehis paper:

1. It is observed that RFCM is superior to othemeans algorithms. However, RFCM requires
higher time compared to FCM/PCM. But, the performance of RRE significantly higher than
otherc-means. Also, RFCM performs better than RFERIF .
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Table 12. Performance of Different C-Means Algorithms

Data Set | Algorithms | DB Index | Dunnindex | S Index
IMAGE HCM 0.16 2.13 12.07
20497761 FCM 0.14 2.26 12.92
RCM 0.15 2.31 11.68
RFCMMBP 0.14 2.34 9.99
RFCM 0.13 2.39 13.06
IMAGE HCM 0.18 1.88 12.02
20497763 FCM 0.16 2.02 12.63
RCM 0.15 2.14 12.59
RFCMMBP 0.15 2.08 10.59
RFCM 0.11 2.12 13.30
IMAGE HCM 0.18 1.17 8.11
20497774 FCM 0.16 1.50 9.08
RCM 0.17 1.51 9.10
RFCMMBP 0.15 1.51 9.02
RFCM 0.15 1.64 9.68
IMAGE HCM 0.17 2.01 8.68
20497777 FCM 0.16 2.16 9.12
RCM 0.15 2.34 9.28
RFCMMBP 0.15 2.33 9.69
RFCM 0.14 2.39 9.81

2. Use of rough sets and fuzzy memberships adds a small catigmal load to HCM algorithm;
however the corresponding integrated method (RFCM) shosfiaitk increase in Dunn index and
decrease in DB index.

3. The proposed indices such aso, o*, and~ based on the theory of rough sets provide good
quantitative measures for rough-fuzzy clustering. Theeslof these indices reflect the quality of
clustering.

The best performance of the proposed RFCM algorithm in texfras o, o*, v, DB, Dunn, and3 is
achieved due to the following reasons:

1. the concept of crisp lower bound and fuzzy boundary of topgsed algorithm deals with uncer-
tainty, vagueness, and incompleteness in class definiiuoh;

2. membership function of RFCM handles efficiently overlagppartitions.

In effect, good cluster prototypes are obtained using thpgsed RFCM algorithm.
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Figure 6. IMAGE-20497761: original and segmented versafiti$CM, FCM, RCM, RFCMBP | and RFCM

Figure 7. IMAGE-20497763: original and segmented versafiti$CM, FCM, RCM, RFCM'BP  and RFCM

Figure 8. IMAGE-20497777: original and segmented versafiti$CM, FCM, RCM, RFCM'BP  and RFCM

6. Conclusion

The contribution of the paper lies in developing a hybrid moelblogy, which integrates judiciously
rough sets and fuzzy-means algorithm. This formulation is geared towards méiirg the utility of
both rough sets and fuzzy sets with respect to knowledgewiisg tasks. Several new measures are
defined based on rough sets to evaluate the performance gii-famzy clustering algorithms. Finally,
the effectiveness of the proposed algorithm is demonstraleng with a comparison with other related
algorithms, on a set of synthetic as well as real life dats. set

Although our methodology of integrating rough sets, fuzejssandc-means algorithm has been
efficiently demonstrated for synthetic and real data s&iagavith the segmentation of brain MR images,
the concept can be applied to other unsupervised clasgifigatoblems. Some of the indices (e@, o*,

0, and~y) used for evaluating the quality of the proposed algorithaytme used in a suitable combination
to act as the objective function of an evolutionary alganittior rough-fuzzy clustering.
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