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Rough-Fuzzy C-Medoids Algorithm and
Selection of Bio-Basis for Amino Acid
Sequence Analysis
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Abstract—In most pattern recognition algorithms, amino acids cannot be used directly as inputs since they are nonnume rical
variables. They, therefore, need encoding prior to input. In this regard, bio-basis function maps a nonnumerical sequence space to a
numerical feature space. It is designed using an amino acid mutation matrix. One of the important issues for the bio-basis function is
how to select the minimum set of bio-bases with maximum information. In this paper, we describe an algorithm, termed as ough-fuzzy
r-medloid s {AFCMd) algonthm, to select the most informative bio-bases. It is comprised of a judicious integration of the principles of
rough sets, fuzzy sets, the c-medoids algorithm, and the amino acid mutation matrix. While the membe ship function of fuzzy sets
enables efficient handling of overlapping partitions, the concept of lower and upper bounds of rough sets deals with uncertainty,
vagueness, and incompleteness in class definition. The concept of crisp lower bound and fuzzy boundary of a class, introduced in
RFCMdd, enables efficient selection of the minimum set of the most informative bic-bases. Some new indices are intreduced for
evaluating quantitatively the guality of selected bio-bases. The effectiveness of the proposed algorithm, along with a comparison with
other algorithms, has been demonstrated on different types of protein data sets.

Index Terms—~Pattern recognition, data mining, c-medoids algorithm, fuzzy sets, rough sets, bicinformatics.

1 INTRODUCTION

ECENT advancement and wide use of high-throughput

technology for biulugical research are producing an
enormous size of biological data. Data mining techniques
and machine learning methods provide useful tools for
analyzing these biological data. The successful analysis of
biological sequences relies on the efficient coding of the
biological information contained in sequences/subse-
quences. For example, to recognize functional sites within
a biological sequence, the subsequences obtained through
moving a fixed length sliding window are generally
analyzed. The problem with using most pattern recognition
algorithms to analyze these binlogical subsequences is that
they cannot recognize nonnumerical features such as the
binchemical codes of amino acids. Investigating a proper
encoding process prior to modeling the amino acids is then
critical.

The most commonly wsed method for coding a sub-
sequence is distributed encoding, which encodes each of
20 amino acids using a 20-bit binary vector [1]. However, in
this method, the input space is expanded unnecessarily.
Also, this method may not be able to encode biological
content in sequences efficiently. On the other hand,
different distances for different amino acid pairs have been
defined, by various mutation matrices, and validated [2],
[3]. [4]. However, they cannot be used directly for encoding
an amino acid to a unique numerical value.
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In this background, Thomson et al. [5], Berry et al. [6],
and Yang and Thomson [7] proposed the concept of a bio-
basis function for analyzing biological sequences. 1t uses a
kernel function to transform biological sequences to feature
vectors directly. Bio-bases consist of sections of biological
sequences that code for a feature of interest in the study and
are responsible for the transformation of biological data to
high-dimensional feature space. Transformation of input
data to high-dimensional feature space is performed based
on the similarity of an input sequence to a bio-basis with
reference to a biological similarity matrix. Thus, the
biological content in the sequences can be maximally
utilized for accurate modeling. The use of similarity
matrices to map features allows the bio-basis function to
analyze biological sequences without the need for encoding,

The most important issue for bio-basis function is how to
select the minimum set of bio-bases with maximum
information. Berry et al. [6] used genetic algorithms for
bio-bases selection considering the Fisher ratio as the fitness
function. Yang and Thomson [7] proposed a method to
select bio-bases using mutual information (MI). In principle,
the bio-bases in nonnumerical sequence space should be
such that the degree of resemblance (DOR) between pairs of
bio-bases would be as minimum as possible. Each of them
would then represent a unique feature in numerical feature
space. As this is a feature selection problem, the clustering
method can be used, which partitions the given biological
sequences into subgroups around each bio-basis, each of
which should be as homogeneous /informative as possible.
However, the methods proposed in [6] and [7] have not
adequately addressed this pmblem. Also, not much atten-
tion has been paid to it earlier.



860

In biological sequences, the only available information is
the numerical values that represent the degrees to which
pairs of sequences in the data set are related. Algorithms
that generate partitions of that type of relational data are
usually referred to as relational or pairwise clustering
algurithms. A well-known relational clustering algorithm is
c-medoids due to Kaufman and Rousseeuw [8]. The
c-medoids algorithm is applicable to situations where the
objects to be clustered cannot be represented by numerical
features, rather, only represented with similarities/dissim-
ilarities between pairs of objects. Therefore, the relational
clustering algorithms can be used to cluster biological
subﬁa:[ueru:es if one can come up with a similarity measure
to quantify the DOR between the pairs of subsequences. The
pairwise similarities are usually stored in the form of a
matrix called the similarity matrix.

One of the main problems in biological subsequence
analysis is uncertainty. Some of the sources of this
uncertainty include incompleteness and vagueness in dass
definitions. In this background, the possibility concept
introduced by the fuzzy-sets theory [9] and rough-sets
theory [10] have gained popularity in modeling and
propagating uncertainty. Both fuzzy sets and rough sets
provide a mathematical framework to capture uncertainties
associated with the data [11], [12], [13]. [14]. Two of the
early rough-clustering algorithms are those due to Hirano
and Tsumoto [15] and De [16]. Other notable algorithms
include rough c-means [17], rough self organizing map [18],
rough support vector clustering [19], and so forth. In [20],
the indiscernibility relation of rough sets has been used to
initialize the expectation-maximization algorithm. The most
notable fuzzy relational algorithm is fuzzy c-medoids
(FCMdd) due to Krishnapuram et al. [21]. Recently,
combining rough sets and fuzzy sets, Mitra et al. proposed
rough-fuzzy collaborative dustering [22].

In this paper, we propose an algorithm, termed as
RFCMdd algorithm, based on rough sets and fuzzy sets to
select the most informative bio-bases. Although the mem-
bership function of fuzzy sets enables efficient handling of
overlapping partitions, the concept of lower and upper
approximations of rough sets deals with uncertainty,
vagueness, and incompleteness in class definition. Each
partition is represented by a medoid (bio-basis), a crisp
lower approximation, and a fuzzy boundary. The lower
approximation influences the fuzziness of the final partition.
The medoid (bio-basis) depends on the weighting average of
the crisp lower approximation and fuzzy boundary. The
concept of “DOR,” based on nongapped pairwise homology
alignment score, circumvents the initialization and local
minima problems of e-medoids and enables efficient selec-
tion of the minimum set of the most informative bio-bases.
Some quantitative measures are introduced based on MI and
nongapped pairwise homo logy alignment scores to evaluate
the quality of selected bio-bases. The effectiveness of the
proposed algorithm, along with a comparison with hard
c-medoids (HCMdd) [8], rough e-medoids (RCMDdd),
FCMdd [21], Berry et al’s method [6], and Yang and
Thomson's method [7], has been demonstrated on different
protein data sets.

The structure of the rest of this paper is given as follows:
Section 2 briefly introduces necessary notions of bio-basis
function, rough sets, and fuzzy sets. In Section 3, a new
c-medoids algorithm is proposed based on rough sets and
fuzzy sets for bio-bases selection. Some quantitative
measures are presented in Section 4 to select the most
informative bio-bases. A few case studies and a comparison
with other methods are presented in Section 5. Concluding
remarks are given in Section 6.

2 Bio-Basis FuncTioN, ROUGH SET, AND
Fuzzy SET

In this seciion, the basic notions in the theories of bio-basis
function, rough sets, and fuzzy sets are reported.

2.1 Bio-Basis Function

The most successful method of sequence analysis is
homology alignment [23], [24]. In this method, the function
of a sequence is annotated through aligning a nowvel
sequence with known sequences. If the homology align-
ment between a novel sequence and a known sequence
gives a very high similarity score, the novel sequence is
believed to have the same or similar function as the known
sequence. In h{rmnlng}r alignment, an amino acid mutation
matrix is commonly used. Each mutation matrix has
A columns and 20 rows. A value at the nth row and
mth column is a probability or a likelihood value that the
nth amino acid mutates to the mth amino acid after a
particular evolutionary time [3], [4].

However, the principle of homology alignment cannot be
used directly for subsequence analysis because a subse-
quence may not contain enough information for conven-
tional homology alignment. A high homology alignment
score between a novel subsequence and a known subse-
quence cannot assert that two subsequences have the same
function. However, it can be assumed that they may have
the same function statistically.

The design of bio-basis function is based on the prindple
of conventional homology alignment used in biology. Using
a table lookup technique, a l:mrrrmlng'j.-r alignment score as a
similarity value can be obtained for a pair of subsequences.
The nongapped homology alignment method is used to
calculate this similarity wvalue, where no deleion or
insertion is used to align two subsequences. The definition
of bio-basis function is given as follows [5], [7]:

hfx;, i —4 i Uy
fl:r-l .HIIJ _f-‘xF’{T ”:JAJ :’ll:i_l-,-!_ll-? ! J}

(1)

where fliir; 1) is the nongapped pairwise homology
alignment score between a subsequence z; and a bio-
basis 1; calculated using an amino acid mutation matrix
[3], [4] A{viv;) denotes the maximum homology align-
ment score of the ith bio-basis 1;, and ~ is a constant. Let
A& be the set of 20 amino acids, X = {x;,---.x;,---. 1, ] be
the set of n subsequences with m residues, and V=
{ug, - - 0.} © X be the set of ¢ bio-bases such that
vk, T €A, ¥, Yi,, ¥ii,. The nongapped pairwise
homology alignment score between z; and u is then
defined as
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hzsv) =D Mz, va), (2)
=1
where M(xr;c, 1) can be obtained from an amino acid
mutation matrix through a table lookup method. The
function value is high if two subsequences are similar or
close to each other and one for two identical subsequences.
The value is small if two subsequences are distinct.

The bio-basis function transforms various homology
alignment scores to a real number as a similarity within the
interval [0, 1]. Each bio-basis is a feature dimension in a
numerical feature space. lt needs asubﬁa:lumce as asupport.
A collection of ¢ bio-bases formulates a numerical feature
space IR". After the mapping using bio-bases, a nonnumerical
subsequence space A" will be mapped to a c-dimensional
numerical feature space IR", thatis, &A™ — IR"

The most important assumption about bio-basis function
is that the distribution of the amino acids in sequences
depends on the specificity of the sequences. If the
distribution of amino acids is random, the selection of bio-
basis will be very difficult. Fortunately, the biological
experiments have shown that the distribution of amino
acids at the spedfic subsites in sequences does depend on
the specificity of the sequences.

2.2 Rough Sets

The theory of rough sets begins with the notion of an
approximation space, which is a pair < UV, B = , where [/ is
a nonempty set (the universe of discourse), and R is an
equivalence relation on U, that is, R/ is reflexive, symmetric,
and transitive. The relation R decomposes the set [V into
disjoint classes in such a way that two elements x and y are
in the same class if and only if (x,y) € R. Let us denote by
[7/ R the quotient set of [/ by the relation R, and

U R =KX Ik

where X; is an equivalence class of R, 7= 1,2,---,p. If two
elements x and y in 7 belong to the same equivalence dass
X, e U/R, we say that r and y are indistinguishable. The
equivalence classes of R and the empty set ¥ are the
elementary sets in the approximation space < U R = .
Given an arbitrary set X € 2, in general, it may not be
possible to describe X precisely in < [/, R > . One may
characterize X by a pair of lower and upper approximations
defined as [10]

Bx)=|J xs

XiCX

rRx)= |J x.

XnX

That is, the lower approximation £ X ) is the union of all the
elementary sets, which are subsets of X, and the upper
approximation R(X) is the union of all the elementary sets,
which have a nonempty intersection with X. The interval
[R(X), R(X)| is the representation of an ordinary set X in
the approximation space < U7, R > or simply called the
rough set of X. The lower (respectively, upper) approxima-
tion R(X) (respectively, R(X)) is interpreted as the
collection of those elements of U7 that definitely (respec-
tively, possibly) belong to X. Further,

e aset X2 is said to be definable (or exact) in
< U, R > if and only if B{X) = R(X);

e forany X, Y £2", X is said to be roughly included
in ¥, denoted by XCY, if and only if B(X) € B(Y)
and R(X) C RY); and

o X and ¥ are said to be roughly equal, denoted by
X=pY,in <U,R> if and only if R(X)=R(Y)
and R(X) = RY).

In [10], Pawlak discusses two numerical characterizations of
impredsion of a subset X in the approximation space
< U, R > accuracy and roughness. The accuracy of X,
denoted by ag( X), is the ratio of the number of objects in its
lower approximation to that in its upper approximation,
namely,

RX
HREL = :%Exf:: :

The roughness of X, denoted by pgr(X), is defined by
subtracting the accuracy from 1:

[B(XX)|
[R{X))|
Mote that the lower the roughness of a subset, the better is

its approximation. Further, the following observations are
easily obtained:

pnl:.’{_:l = 1 —ﬂ:nl:.r_:l = 1

I As B(X)C X CR(X), 0< pa(X) < L
2. By convention, when X =, R(X) = R(X)=1 and

pnl: .Y_:I =1
3. pr(X)=0if and only if X is definable in < I/, R = .
2.3 Fuzzy Set

Let I7 be a finite and nonempty set called universe. A fuzzy
set F' of [/ is a mapping from 7 into the unit interval [0, 1]:

pp s 0 —[0,1],

where, for each = £ U, we call pp(z) the membership degree
of » in F. Practically, we may consider [7 as a set of objects
of concern, and a crisp subset of [/ represents a nonvague
concept imposed on objects in IV, Then, a fuzzy set F of [T is
thought of as a mathematical representation of a vague
concept described linguistically. The support of fuzzy set F
is the crisp set that contains all the elements of [7 that have a
nonzero membership value in F [9].

A function mapping all the elements in a crisp set into
real numbers in [0, 1] is called a membership function. The
larger value of the membership function represents the
higher degree of the membership. It means how closely an
element resembles an ideal element. Membership functions
can represent the uncertainty using some particular func-
tions. These functions transform the linguistic variables into
numerical calculations by setting some parameters. The
fuzzy decisions can then be made.

3 RoucH Fuzzy C-MeDoOIDS ALGORITHM

In this section, we first describe two existing relational
clustering algorithms—HCMdd [8] and FCMdd [21], for
selection of bio-bases. Next, we propose two relational
algorithms—RCMdd and RFCMdd, incorporating the con-
cept of lower and upper approximations of rough sets into
HCMdd and FCMdd, respectively. Some quantitative
measures are introduced to select the minimum set of the
most informative bio-bases.
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3.1 HCMdd

The HCMdd algorithm [8] uses the most centrally located
object in a cluster, which is termed as the medoid. A
medoid is essentially an existing data from the cluster,
which is closest to the mean of the cluster.

The objective of the HCMdd algorithm for selection of
bin-bases is to assign n subsequences to ¢ clusters. Each of
the clusters 4 is represented by a bio-basis v;, which is the
medoid for that cluster. The process begins by randomly
choosing csubsequences as the bio-bases. The subsequences
are assigned to one of the ¢ clusters based on the maximum
value of the nongapped pairwise homology alignment score
h(x;, ;) between the subsequence r; and the bio-basis .
After the assignment of all the subsequences to various
clusters, the new bio-bases are calculated as follows:

— (3)
where g is given by

g =argmax{h{ze. )l med: med,

and fi(x, ;) can be calculated as per (2). The basic steps are
outlined as follows:

1. Arbitrarily choose ¢ subsequences as the initial bio-
bases v;,{ =1.2.---, .

2. Assign each remaining subsequence to the cluster

for the closest bio-basis.

Compute the new bio-basis as per (3).

4. RepeatSteps 2 and 3 until no more new assignments
can be made.

3.2 FCMdd

This provides a fuzzification of the HCMdd algorithm [21].
For bin-bases selection, it maximizes

T=3"3 ()" bty )} (4)
=1 i=1

where 1 < m < oo is the fuzzifier, and pi; € [0, 1] is the fuzzy
membership of the subsequence x; in cluster [, such that

o hlE) = z
Hij Z { MJ?J'- W :I} ()

i=1

tad

subject to

Z;L,-_,- = 1,%j, and 0 < Zp,,-_,- < 98, Wi
i=1 =1
The new bio-bases are calculated as
U; = Ty, 16)

where g is given by

l<j<m

= Argmax Zl[j!a'.t-:lhil {hize, x50}
k=1

The algorithm proceeds as follows:

1. Assign initial bio-bases v, i= 12, --,c. Choose
values for fuzzifier 1 and threshold ¢,. Set iteration
counter t = 1.

Cluster Ji;

Tovser appeoximatinn AL [}

Upper upproximurion A7 [}
Boondary BCfi) = A7 - A

Fig. 1. RCMdd: cluster 4, is represented by lower and upper bounds
lﬁr'i'.lir'il]l

2. Compute membership jp;; by (5) for ¢ clusters and

n subsequences,

Update bio-basis v by (6).

4. Repeat steps 2 to 4, b}r incrementing f,
pij(t) — peislt — 1)] = er.

3.3 RCMdd

Let A(5;) and A() be the lower and upper approxima-
tions of cluster 4, and B(3;) = A(3;) — A 4;) denotes the
boundary region of cluster & (Fig. 1). In the RCMdd
algorithm, the concept of c-medoids algorithm is extended
by viewing each cluster 3 as an interval or rough set.
However, it is possible to define a pair of lower and
upper bounds [A(7;).A(3)] or a rough set for every set
4 €U, U is the set of objects of concern [10]. The fa]'l'l.ll‘l.-’
of upper and lower bounds are required to follow some of
the basic rough set properties such as

tad

until

an object x; can be part of at most one lower bound;
e A(f) = 1 € El[:':l‘,-j; and

an object x; is not part of any lower bound = =,
belongs to two or more upper bounds.

fad |nd =

Incorporating rough sets into cmedoids algorithm, we
propose RCMdd for generating bio-bases. It adds the
concept of lower and upper bounds of rough sets into
HCMdd algorithm. It classifies the subsequence space into
two parts—lower approximation and boundary region. The
bio-basis (medoid) is calculated based on the weighting
average of the lower bound and boundary region. All the
subsequences in lower approximation take the same weight
uy, whereas all the subsequences in boundary take another
weighting index 1 uniformly. Calculation of the bio-bases is
modified to include the effects of lower, as well as upper,
bounds. The modified bio-bases calculation for RChMdd is
given by

Ui = Ty, (7
where g is given by
wx A+ x B if A3 #0,B(5) £ D

g = arg max A if A(d)# 0. B8(8:) =10
B if A(G,) = 0, B(5,) # 0
A= Z hire, x); B= Z Bl e, 25).
e A bl

The parameters w and 1 (= 1 — w) correspond to the relative
importance of lower bound and boundary region. Since the
subﬁa:luences lying in lower approximation definitel}r
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belong to a cluster, they are assigned a higher weight w
compared to @ of the subsequences lying in the boundary
region. That is, 0 < ' < w < 1. The main steps of RCMdd
algorithm are described as follows:

1. Assign initial bio-bases 1, i =1.2,---, ¢ Choose a
value for threshold e.

2. For each subsequence r;, calculate the homology
alignment score hi{x;,v;) between itself and the bio-
basis v; of duster 3.

3. If hiz;, ) is maximum for 1 < i < ¢ and

iz v) — hirg ) < e,

then r; € A(3;) and r; € A(3). Furthermore, r; is
not part of any lower bound.
4. Otherwise, z; € A(4) such that h(r; ) is the
maximum for 1 < ¢ < ¢ In addition, by properties
of rough sets, x; € Ald).
Compute the new bio-basis as per (7).
6. Repeat Steps 2 to 5 until no more new assignments
can be made.

3.4 RFCMdd

Incorporating both fuzzy sets and rough sets, next, we
propose another version of c-medoids algorithm, termed
as RFCMdd. The proposed RFCMdd algorithm adds the
concept of fuzzy membership of fuzzy sets and the
lower and upper approximations of rough sets into the
c-medoids  algorithm. Although the lower and upper
bounds of rough sets deal with uncertainty, vagueness,
and incompleteness in class definition, the membership
of fuzzy sets enables effident handling of overlapping
partitions.

In FCMdd, the bio-basis (medoid) depends on the fuzzy
membership values of different subsequences. Whereas in
RFCMdd, after computing the memberships for ¢ clusters
and n subsequences, the membership values of each
subsequence are sorted, and the difference of the two
highest memberships is compared with a threshold value
ea. Let p;; and pg; be the highest and second highest
memberships of subsequence x; If (j; — pe;) > €2, then
;e AlF), as well as x; € A(4;) and x; & Ald); otherwise,
x; € B(H) and x; € B(4.). That is, the proposed a]gurithm
first separates the “core” and overlapping portions of each
cluster 4; based on the threshold value e, The “core”
portion of the cluster #; is represented by its lower
approximation A(4;), whereas the boundary region B(3)
represents the overlapping portion. In effect, it minimizes
the vagueness and incompleteness in cluster definition.

According to the definitions of lower approximations
and boundary of rough sets, if a subsequence x; € A( ),
then =; & A(fc), vk# 14, and =; & B{F), ¥i. That is, the
subsequence r; is contained in @ definitely. Thus, the
weights of the subsequences in the lower approximation of
a cluster should be independent of other bio-bases and
clusters and should not be coupled with their similarity
with respect to other bin-bases. Also, the subsequences in
lower approximation of a cluster should have similar
influence on the corresponding bio-basis and cluster.
Although if x; € B(), then the subsequence x; possibly
belongs to & and potentially belongs to another cluster.

LA

—— Cluster [4

—— Clisp Lower Approsimation A¢ i)
with p ij= 1

Furey Boondary B[
with Ri = [ 11

Fig. 2. RFCMdd: cluster 3, is represented by a crisp lower bound and
fuzzy boundary.

Hence, the subsequences in boundary regions should have
different influence on the bio-bases and clusters.

Therefore, in RFCMdd, after assigning each subsequence
in the lower approximations and boundary regions of
different clusters based on e, the memberships j,; of the
subsequences are modified. The membership values of the
subsequences in lower approximation are set to 1, whereas
those in the boundary regions remain unchanged. In other
words, the proposed emedoids first partitions the data into
two classes—lower approximation and boundary. The
concept of fuzzy memberships is applied only to the
subsequences of boundary region, which enables the
algorithm to handle overlapping clusters. Thus, in RFCMdd,
each duster is represented by a bio-basis (medoid), a crisp
lower approximation, and a fuzzy boundary (Fig. 2). The
lower approximation influences the fuzziness of final
partition. The FCMdd can be reduced from RFCMdd when
Aid) =0, ¥i. Thus, the proposed algorithm is the general-
ization of existing FCMdd algorithm.

The new bio-bases are calculated based on the weighting
average of the crisp lower approximation and fuzzy
boundary. Computation of the bio-bases is modified to
include the effects of both fuzzy membership and lower and
upper bounds. Since the subsequences lying in lower
approximation definitely belong to a cluster, they are
assigned a higher weight compared to that of the sub-
sequences lying in the boundary region. The modified bio-
bases calculation for RFCMdds is therefore given by

Ui = Ty, i5)
where q is given by

wx A+ x B if A() # 0, B(3) # 0

§ = Argmax A if Ald) #0. B(d) =0
B if A3 =0, B(3)#48
A= Z hire, x;); B = Z I:ji.,-i-jlhil Iire, ;).
arpe Al rpEBE)

The main steps of this algorithm proceeds as follows:

1. Assign initial bio-bases v, i=1.2,---,e Choose
values for fuzzifier m and thresholds ¢; and . Set
the iteration counter £ = 1.

2. Compute the membership ju; by (5) for ¢ clusters
and n subsequences.
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3. If py; is maximum for 1 <4 < cand (p; — pey) < e,
then r; € A(%) and x; € A(&). Furthermore, r; is
not part of any lower bound.

4. Otherwise, z; £ A(d) such that j; is the maximum
for 1 < i < . In addition, by properties of rough sets,
;e Al

5. Compute the new bio-basis as per (8).

6. Repeat Steps 2 to 6, by incrementing ¢, until
|t (£) — gt — 1)] = €q.

3.5 Selection of Initial Bio-Basis

A limitation of the c-medoeids algorithm is that it can only
achieve a local optimum solution that depends on the initial
choice of the bio-bases. Consequently, computing resources
may be wasted in that some initial bio-bases get stuck in
regions of the input space with a scarcity of data points and
may therefore never have the chance to move to new
locations where they are needed. To overcome this
limitation of the c-medoids algorithm, next, we propose a
method to select initial bio-bases, which is based on a
similarity measure using amino acid mutation matrix. It
enables the algorithm to converge to an optimum or near
optimum solutions (bio-bases).

Prior to describing the proposed method for selecting
initial bio-bases, next, we provide a quantitative measure to
evaluate the similarity between two subsequences in terms
of nongapped pairwise hm'rmlng}r alignment score:

o DOR. The DOR between two subsequences x; and =
is defined as

DOR(z;, =) = bt v b 13 (9)

It is the ratio between the nongapped pairwise
homology alignment scores of two input subse-
quences 1; and T based on an amino acid
mutation matrix to the maximum homology
alignment score of the subsequence x;. It is used
to quantify the similarity in terms of homology
alignment score between pairs of subsequences. If
the functions of two subsequences are different,
the DOR between them is small. A high value of
DOR(x, x;) between two subsequences x; and =
asserts that they may have the same function
statistically. If two subsequences are same,
the DOR between them & maximum, that is,
DOR{x;, x;) =1. Thus, 0 < DOR{x;. x;) < 1. Also,
DOR{x;, x;) # DOR{x;. ;).

Based on the concept of DOR, next, we describe the
method for selecting initial bio-bases. The main steps of this
method proceeds as follows:

1. For each subsequence =z, calculate DOR(z;, =)
between itself and the subsequence x;, ¥7_,.
2. Calculate the similarity score between subsequences

; and

. oy J 1 if DOR{x;, 2] > £y
S(x;,%:) {1’] otherwise.

1. For each =, calculate total number of similar
subsequences of x; as

Nix) = Z S{x;, ;).
J=1

4. Sort n subsequences according to their values of
N(x;) such that N{xy) > N{xa) = --- = N(x, ).

5. IfN{x) = Niz;) and DOR(z;, ) > €3, then x; cannot
be considered as a bio-basis, resulting in a reduced set
of subsequences to be consid ered for initial bio-bases.

6. Letthere be vt subsequences in the reduced set having
N(x;) values such that N{r) = N(za) > -+ = N{x:).
A heuristic threshold function can be defined as [12]

R - 1

Tr & where R ; Nz = N(zor))
where ¢ is a constant (say, =(.5), so that all
subsequences in a reduced set having N{r;) value
higher than it are regarded as the initial bio-bases.

The value of Tr is high if most of the N(z;)s are large and
close to each other. The above condition oocurs when a
small number of large clusters are present. On the other
hand, if the N{z;)s have wide variation among them, then
the number of clusters with smaller size increases. Accord-
ingly, Tr attains a lower value automatically.

MNote that the main motive of introducing this threshold
function lies in reducing the number of bio-bases. We
attempt to eliminate noisy bio-bases (subsequence repre-
sentatives having lower values of N(x;)) from the whole
subsequences. The whole approach is therefore data
dependent.

4 QuANTITATIVE MEASURE
In this section, we propose some quantitative indices to
evaluate the quality of selected bio-bases incorporating the

concepts of nongapped pairwise hmnulng}r alignment
scores and MIL

4.1 Using Homology Alignment Score
Based on the nongapped pairwise homology alignment
scores, next, we mtroduce two indices—3 index and

7 index for evaluating quantitatively the quality of
selected bio-bases:

s {index. It is defined as

1< 1 hix;, u;
cefm o HEIR TN
ie.,
gy DOR(x;, 1)
W= o Ty Ui ),
iy Z 1

e

where #; is the number of subsequences in the
ith cluster 7, and hix;,v;) is the nongapped pairwise
l:mlrrtulngj.-r alignmentscores, obtained using an amino
acid mutation matrix, between subsequence x; and
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bio-basis v;. The J index is the average normalized
homology alignment scores of input subsequences
with respect to their corresponding bio-bases. A good
clustering procedure for bio-bases selection should
make all input subsequences as similar to their bio-
bases as possible. The 4 index increases with the
increase in homology alignment scores within a
cluster. Therefore, for a given data set and « value,
the higher the homology alignment scores within the
clusters, the higher would be the 7 value. The value
of 7 also increases with . In an extreme case, when
the number of clusters is maximum, that is, ¢ = n, the
total number of subsequences in the data set, we have

d=1.Thus 0 < 3 <1.
s ~ Index. It can be defined as

Rivi vy | Rl ;)
1= mﬂx,_,?{h{!l w +f1|i‘!_l“_1-;_j
1
¥ = max; ; 5 { DOR(v;,v;) + DOR(wi, v;) }

ie.,

<<l The 7 index calculates the maximum
normalized homology alignment score between
bio-bases. A good clustering procedure for bio-bases
selection should make the homology alignment
soore between all bio-bases as low as possible. The
7 index minimizes the between-cluster homology
alignment score.

4.2 Using MI

Using the concept of M, one can measure the within-cluster
and between-cluster shared information. In principle, Ml is
regarded as a nonlinear correlation function and can be
used to measure the mutual relation between a bio-basis
and the subsequences, as well as the mutual relation,
between each pair of bio-bases. It is used to quantify the
information shared by two objects. If two independent
objects do not share much information, the MI value
between them is small. Although two highly nonlinearly
correlated ub]'a:b-: will demonstrate a high MI value. In the
present case, the objects can be the bio-bases and the
subsequences.
Based on the MI, the 7 index would be as follows:

= 1 - 1 MI{x )
r;n; Z ;

2, (12)
2 M (i, v,)

MI{z;. x;) is the MI between subsequences x; and =;. The
mutual information MI(x;, x;) is defined as

MIix, x;) = H{z;) + H{z;) — H{z;, x;) 113
with H{z;) and H{zx;) being the entropy of subsequences =;
and r; respectively, and Hix;, ;) as their joint entropy.
Hiz;) and H(x;, x;) are defined as

H{z;) = —plz;)lnp{x;) (14)

Hix;. x;) = —plx. x; )Inplx;, x;). (15)

pix;) and p(x;,x;) are the a priori probability of =; and joint
probability of x; and x;, respectively. The 7 index is the
average normalized MI of input subsequences with respect
to their corresponding bio-bases. A bio-bases selection
procedure should make the shared information between
all input subsequences and their bio-bases as high as
possible. The 7 index increases with the increase in MI
within a cluster. Therefore, for a given data set and ¢ value,
the higher the Ml within the dusters, the higher the A value
would be. The value of 7 also increases with ¢. When ¢ = n,
A=1 Thus, 0= 3 <1.
Similarly, + index would be

MI{w;, vy)
= MAX;; — 3 {}III[:.I,.U, 1

MI{vg, vy) }

MI{ vy, v;) 116G)

The 5 index calculates the maximum normalized MI
between bio-bases. A good clustering procedure for
bio-bases selection should make the shared information
between all bio-bases as low as possible. The 5 index
minimizes the between-cluster ML

5 EXPERIMENTAL RESULTS

The performance of RFCMdd is compared extensively with
that of various other related ones. These involve different
combinations of the individual components of the hybrid
scheme, as well as other related schemes. The algorithms
compared are

1. HCMdd [8],

2. RCMdd,

3. FCMdd [21],

4. the method proposed by Yang and Thomson [7]
using MI, and

q

the method proposed by Berry et al. [6] using genetic
algorithms and Fisher ratio (GAFR).
All the experiments are implemented in C language and run

in a LINUX environment having a machine configuration of
Pentium 1V, 3.2 GHz, 1 Mbyte cache, and 1 Gbyte of RAM.

5.1 Description of a Data Set

To analyze the performance of proposed method, we have
used real data sets of five whole human immunodefidency
virus (HIV) protein sequences, Cai-Chou HIV data set [25],
and caspase cleavage protein sequences. The initial bio-
bases for different c-medoids algorithms, which represent
crude clusters in the nonnumerical sequence space, have
been generated by the method ology described in Section 3.5,
The Dayhoff amino add mutation matrix [2], [3], [4] is used
to calculate the nongapped pairwise homology alignment
score between two subsequences.

5.1.1 Five Whole HIV Protein Sequences

HIV protease belongs to the family of aspartyl proteases,
which have been well characterized as proteolytic enzymes.
The catalytic component is composed of carboxyl groups
from two aspartyl residues located in both NH;-terminal
and COOH-terminal halves of the enzyme molecule in HIV
protease [26]. They are strongly substrate selective and
cleavage specific, demonstrating their capability of cleaving
large virus-specific polypeptides called polyproteins be-
tween a specific pair of amino acids. Miller et al. showed
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TABLE 1
Five Whole HIV Protein Sequences fram NCEBI

Accession No | Lengih
AMCKISNE EIEH]

Cleavage Siles al Py

T2 MAMCAY, 363 CATPZ).
FTTPRMNC, 432001,
HEpLipa)

T3ZMANAY, 363 AL,
FTRCP2INC, 430N,
46ip Llip6)

T3 MARAY, 363 AMZ),
FTTRINC), 43HNCR,
H¥ipliphl

ARRITRPR], SRTFRRT),
TZHHLEHY, 1147(RHN)
[AIMAICAY, A6 AND),
ATT(RZIANC, AZZNCRY,
A4E 1ipa)

AAGFIZ0AS AU

AACNTTT a0kl

NPOSTHAY 1433

NPOSTHE S0

that the cleavage sites in HIV polyprotein can extend to an
octapeptide region [27]. The amino acid residues within this
octapeptide region are represented hr].-r

F 1= P_{—Pg— P |—P |-'—]._"-3- L ]__"_-.;.- -P ¥

where P:—P_‘{- P-;l -P 1 isthe .\'Hg—lerminalhalfand P 1= P-;u- P_'{-'-P 1
is the COOH-terminal half. Their counterparts in the
HIV protease are represented b'l.-r Sy =y= 50515 -5 Hye-5yr
[28]. The HIV protease cleavage site is exactly between P,
and Py.

The five whole HIV protein sequences have been down-
lpaded from the National Center for Biotechnology Informa-
tion (NCBL http:/ /www.ncbinlmnih.gov). The accession
numbers are AACE2R93, AAGA2635, AADADT7T, NP_0R7849,
and NP_057850. Details of these five sequences are included
in Table 1. Note that M A, CA, NC, TE, PR, RT, RH, and IN are
mafrix protein, capsid protein, nucleocapsid core protein,
transframe peptide, protease, reverse transcriptase, RN Ase,
and integrase, respectively. ThE].-r are all cleavage products of
HIV protease. pl, p2, and pé are also cleavage products [29].
For instance, 132 (MA /CA) means that the cleavage site is
between the residues 132 (P, ) and 133 (Py), and the cleavage
split the polyprotein producing two functional proteins: the
matrix protein and the capsid protein. The subsequeru:es
from each of the five whole protein sequences are obtained
through moving a sliding window with eight residues. Once
a sub:-:eque'nce is produced, it is considered as functional
if there is a cleavage site between P,-Py; otherwise, it is
labeled as nonfunctional. The total number of subsequences
with eight residues in AACS2593, AAGA2635, AAMOTTT,
NP_057849, and NP_(057850 are 493, 491, 493, 1428, and 493,
respectively.

5.1.2 Cai-Chou HIV Data Set

In [25], Cai and Chou have described a benchmark data set
of HIV. It consists of 114 positive oligopeptides and
248 negative oligopeptides, in total, 362 subﬁequem:es with
eight residues. The data set has been collected from the
University of Exeter, UK.

5.1.3 Caspase Cleavage Data Set

The programmed cell death, also known as apoptosis, is a
gene-directed mechanism, which serves to regulate and
control both cell death and tissue homeostasis during the
development and the maturation of cells. The importance of
apoptosis study is that many diseases such as cancer,

TABLE 2
Thirteen Caspase Cleavage Proteins from NCBI

Proweins | Gene Lenpth | Cleavprs siles

[SIEEEE] DFFA 331 1170(C3), 224073
QITELT BOL2ZLD 233 G

P11ERD [ GaS: 314 2TC1)

PORZOD [ AFF TH BECE)

POSOGT | ATE TH BT00E), TANCIORCRCY)
QUITWE | BCT2 236 B0 and CO)

TIHIS R{T.2 2349 303

439153 | (7AR2 a3 2TRICD

QI2TT2 | SREBEZ 1141 2GR and CT)

13548 | RIPK] 671 J240CE)

QOEATE [ COLGA3 1458 | 5902, 139003, MLcC?
CalEle | RAT2] 631 2TNCINCT)

Q05155 [ URE4R a0z IDRACANCT), | 2300

ischemic damage, and so forth, result from apoptosis
malfunction. A family of cysteine proteases called caspases,
which are expressed mlhall'l.-r in the cell as proenzymes, is the
key to apoptosis [30]. As caspase cleavage is the key to
prugrammed cell death, the study of caspase inhibitors could
represent effective drugs against some disease where
blocking apoptosis is desirable. Without a careful study of
caspase cleavage specificity, effective drug design could be
difficult.

The 13 protein sequences containing various experimen-
tally determined caspase cleavage sites have been down-
loaded from NCBI (http:/ /www.ncbinih.gov). Table 2
represents the information of these sequences. Ci depicts
the ith caspase. The total number of noncleaved subse-
quences is about 8340, whereas the number of cleaved
subsequences i only 18 In total, there are 8358 sub-
sequences with eight residues.

5.2 Example

Consider the data set NP_057849 with sequence length
1,435. The number of subsequences obtained through
moving a sliding window with eight residues is 1428
The parameters generated in the DOR-based initialization
method for bio-bases selection are shown in Table 3 only for
NP_057849 data, as an example. The values of input
parameters used are also presented in Table 3.

The similarity score of each subﬁequeru:e in the original
set and reduced set are shown in Fig. 3. The initial bio-bases
for c-medoids algorithms have been obtained from reduced
set using the threshold value of Tr. The initial bio-bases

TABLE 3
DOR-Based Initialization of Bio-Bases for NP_057849

Seguence length = 1435

Mumber of subsequences w = 1428

Valoe of «q = (.75

Number of subscquencey in reduced set o= 224
Wadue of €4 = (0.5 Yulue of ‘It = 35.32

Mumber of biv-buses ¢ — 3

Valoe of fuzzifier = 2.0
Valocs nf o = (.7 and i = 0.3
Parameters: <) = (L1 and &g = 0.2

Chupnlilatve Messures:

HOMA: 3 = 1643, = 0731, 3 = 0.E07, &= = 1.0

RO 7= (LAG1, 4 = (761, 7 = 0.822, & = 1000

FOMdd: 3 — 0767,  — 0701, 3 — L8235, ~ — 0.0a6

BLCMdd: 3 — 0838, + — 0681, 3 — LEBE, 7 = b.UL3
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Fig. 3. Similarity scomres of subseguences of HIV protein NP_057849 considerning ¢, = .75 and «, = (1.5, (a) Similarity scomes in orginal data set.
(b) Similarity scores in reduced data set. (c) Similanty scores of initial bio-bases.

with similarity scores are also shown in Fig. 3. Each
e-medoids algﬂrlthm has been evolved using these initial
bio-bases. The perfﬂrrm‘mce obtained by the c-medoids
algorithms are shown in Table 3.

5.3 Performance Analysis

The experimental results on the data sets, reported in
Section 5.1, are presented in Tables 4, 5, 6, 7, 8, 9, and 10.
Subsequent discussions anﬂlyze_the re.*-.-ulba presented in
these tables with respect to 3, v, 4, %, and execution time.

5.3.1 Optimum Value of Parameter e,

Table 4 reports the values of 3, =, 4. and 7 of different
algorithms for the data set NP_057849. Results are
presented for different values of e; Fig. 4 shows the

TABLE 4
Performance of Different Algarithms on NP_057849

Pararmetars | Alporithin ki 3 i 5
RFCHAd n.736 | 094 | DRIT | 1000
rg = LLA0 Bl N1 | s1d | 08 | 1000
%o 15 B Mdd 0312 | B35 | Os0E | 1000
Tr=4.05 HChdd Dol | GB3E | Q0L | 100D
r=13 il | Gl | 4 | RIS | 1000
TIAFR N0 | A2 | D&M | 1000
RFCHAd AL | 0uEZ0 | NRZ2 | 1.000
r3 = ILfid Frheded n.7d6 | RAT | 0811 106K
= ROB NAIT | R | O8I | 1000
Ir - &2 HCMd DGIE | 44 | OB | L1000
=20 il | 0624 | 903 | DA | 10K
GAFR NGI6 | 0z | D&l 1.06K0
RFCHdd DAEDL | ELD | OEIZZ | 0AED
£5 = .70 FChdd 346 | LR | ORI | 0900
f=rd ROM NA35 | RIS | ORI2 | 1000
It = 16,54 J [ 5 DG21 | BEET | OMOE | L0000
oo Z7 bl G625 | I3 | OEGL | 100D
GAFR GIE | 902 | DARID | 1060
BIC M DE3E | (AEL | OH66 | DSI2
ex =M.75 FChdd 0767 | LTOL | D23 | 0856
Bo= 397 RCMdd NS sl ) DE22 | 1000
Tr = 35,32 HIC Wil N&d3 | LTS | QAT | 1000
oo 8 bl 037 | E54 | OE02 | 1000
GAFR D646 | (LETZ | OEIT | 10KK)D
BIC 3 LaHZ | 04T | O | 1000
4 — 0.H0 LB DGy | Gidl | Odls | 1000
Bio= hod RChdd et | il ) DA | 1000
Tr = 2R.04 HC W N&E0s | DU93R | OARNT | 1000
o bl U111 | hh3E | 0611 | 1,000
GAIR DGOE | 0BST | O8O3 | 100D

similarity scores of initial bio-bases as a function of ;. The
parameters generated from the data set NP_057849 are
shown in Table 4. The value of ¢ is computed using the
method described in Section 3.5. It may be noted that the
optimal choice of ¢ is a function of the value 5. In Fig. 4, it is
seen that as the value of £y increases, the initial bio-bases,

TABLE 5
Performance of Different ~Medaoids Algarithms
Daty | Alpmrithms | Bin-hases a 4 a i
A TICK Rouden | 0615 | Q81T | 0800 [ 1,000
A Proposed | 0719 | 0702 | D852 | LOMD
i FOMAd Random Outaa | 0Tl | D21 140K
L Proposed | OE14 | ALAHD | DT | D056
2 B0 Fundem | 0674 | 0815 | DE35 | 1.000
5 Proposed | 0815 | 0677 | 0872 [ 0983
9 RIFCAIAT Fondun | O | 0728 T 0T | 0957
3 Praoposed | 0874 | 0633 | D813 [ 0916
A HCRddd Fundom QUaST | WU | OH0S | 1.OU0
A Proposed | 0,714 | 0664 | 0853 [ 1000
L8 FOMAd Randem | DEFE | 070 | DEIE | 100
4 Proposed | D807 | 0674 | DAS2 | 0924
2 RCMdd Handom utls | 0T | OE1T2 | 1O
fi Proposed | 0768 | LA | DEEZ | 1000
3 FATERE T Fundom OI1T | WTIv | GddT | 1.OUD
5 Propoeed | 0831 | 0611 | 012 | 0957
A HOMdd Fandom a1 | Lknd | DEIT | 100
A Proposed | 0794 | U723 | DAl | 1000
o [ERXNE Fundem | 0718 [ 08 | DE42 | 1.000
4 Proposed | 0817 | 0634 | 0812 [ 097
1 RO Fonden | OFT7 1 0707 [ D& | 1OMW
7 Proposed | 0800 | 0633 | D879 | 0.977
7 RFCMWAd Random OUTs0 ] 00793 | DUESD | 1A
7 Proposed | QSR | 1LA13 | DO | 04T
N HCMAd Randem | G601 | 0882 | GB0L | 1000
Iy Proposed | D643 | 00731 | DEDT | 10NN
11 FChdd Handom it | LR | DT 100K
3 Proposed | 0367 | AT | OH25 | 1056
7 FCadd Fundom Ol | UE1T | GE0T | 1.0
& Propuoeed | 0651 | 0751 | 0822 [ 1000
4 TEFCATA Fanden | 0655 | 0798 | DEM | 100
v Proposed | 0836 | 0681 | D866 | 0913
N HCR L Fundem | 0617 | 09153 | 0792 | 1.000
B Proposed | 0714 | 0719 | 0801 [ 1000
1l FORTId Fandom | OGIR | TLART | GL1en | LK)
5 Praposed | 0TE4 | 0692 | D8EA | 0983
T R Fandom L3 LRLS | e 1.41rK)
H Proposed | 0358 | U702 | D26 | U003
3 BTN Fundem | 0902 | O824 | DE03 | 1.000
Ll Proposed | 0851 | 0629 | 0811 [ 0428
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TABLE &
Execution Time (ms) of Different ~-Medoids Algarithms

Methods | Riohases | AACE | AAGE | AaDd | NPO5 | NTIS

2593 2635 777 | TR THSI

RFCMAd | TRandorn | 10326 [ 17553 | 16218 | 316764 | I803E

Trogases] BRI 12310 13695 | 251050 11749

M Random 49 | 1e34f | 11070 | 3633e4 | 13217

Proposed | 38%8 [ 11996 [ 2131 | 2408M [ 92172

RChAdd Prandam f10% 13616 EIEE] 2HE190 | TIETH
Propyed S691 Hi15 SHel | 16la6i SRS |

H M Fandam 2354 2574 2418 [ 21n0d

Propeued 535 REL] 532 4307 329

which represent the crude clusters, are becﬂm.ing more
prominent. The best result is achieved at e =0.75. The
subsequences selected as initial bio-bases at ¢35 =(.75 have
higher values of N(x;). For the purpose of comparison,
¢ bin-bases are generated using the methods proposed b'l.-r
Berry et al. (GAFR) and Yang and Thomson (MI).

It is seen from the results in Table 4 that the RFCMdd
achieves consistently better perfnrmaﬂce than other algo-
rithms with respect to the values of 4, v, 3 and 7 for
different values of ¢;. Also, the results reported in Table 4
establish the fact that as the value of ¢ increases, the
performance of RFCMdd also increases. The best perfor-
mance with respect to the values of 3,7, .TI, and % s achieved
with ey = 0.75. At gy = (.75, the values of N(x;) for most of
the subseque'nces in the reduced data set are large and close
to each other. Therefore, the threshold Tr attains a higher
value compared to that of other values of ¢;. In effect, the
subsequences selected as initial bio-bases with e = 0.75
have higher values of N{x;). Hence, the quality of generated
clusters using different cmedoids algorithms is better
compared to other values of e,

53.2 7 .wwum versus DOR-Based Initialization

Tables 5 and 6 provide comparative results of different
c-medoids algorithms with random initialization of bio-
bases and the DOR-based initialization method described in
Section 3.5 considering 3 = (.75, The DOR-based initializa-
tion is found to improve the performance in terms of 4, «, 3,
and % and reduce the fime requirement of all c-medoids
algorithms. It s also observed that HCMdd with DOR-
based initialization performs similar to RFCMdd with
random initialization, although it is expected that RFCMdd
is superior to HCMdd in partitioning subsequences.
Although, in random initialization, the cmedoids algo-
rithms get stuck in local optimums, the DOR-based scheme
enables the algorithms to converge to an optimum or near
optimum solutions. In effect, the execution time required
for different c-medoids is lesser in DOR-based initialization
compared to random initialization.

53.3 Optimum Values of Parameters ri, w, and e

The fuzzifier m has an influence on the clustering
performance of both RFCMdd and FCMdd. Similarly, the
performance of RFCMdd and RCMdd depends on the
parameter w and the threshold 6. Tables 7, 8, and 9 report
the performance of different c-medeids algorithms for
different values of m, w, and e, respectively. The results
and subsequent discussions are presented in these tables
with respect to 4, v, 4, and 7.

The fuzzifier v controls the extent of membership
sharing between fuzzy clusters. In Table 7, it is seen that
as the value of m increases, the values of 7 and 7 increase,
whereas v and 5§ decrease. The RFCMdd and FCMdd
achieve their best performance with w = 2.0 for HIV
protein NP_057849, m = 1.9 and 2.0 for Cai-Chou HIV data
set, and m = 2.0 for caspase cleavage protein sequences,
respectively. However, for m > 2.0, the performance of both

TABLE 7
Performance of RFCMdd and FCMdd for Different Values of Fuzzifier

Value | Algomthme HIW Prolein NP_OA TR0 Ci-Choo HTV Thata Sel Cuspase Cleavage Proleins
of ¥t a3 = a = ] - F] 7 ] = ] =
1.5 BFCMdd | 0.75% | 744 | D832 | 897 ([ 0755 | 0714 | 867 [ 0992 | 0748 | 0662 [ 0882 | 0959
FCMdd 0.699 | 0733 | 0811 | 1.000 (| G732 | 0753 | 824 [ 1000 || 0734 | 678 | 0871 | 1.000
1.4 RFCMdd | 0.762 | 717 | D839 | 086G (| 0781 [ D692 | 0878 [ 0979 | D773 | 0658 | 0899 | 0955
FCMdd 0.716 | 726 | 0814 | 1.000 (| 0739 | 0749 | 833 [ 09 | D761 | 677 | 0882 | 1.000
1.7 RFCWILL | 00755 [ 0702 [ A4S | 0956 (| 0794 | DA77 | (L89S | 0940 || D75 [ 0647 | 0.7 | 00977
FCWdd 0725 | 0746 | DR1T | 1000 || 0750 | D728 [ 0868 | 0973 [ 0772 | 0671 | 0883 | 0978
1.5 RECKWL | O&I14 | 0685 [ DA52 | 0947 (| 0818 | D63 | (907 | 0932 || DA05 [ 0628 | 0025 | 0972
FCWdd 0.738 | 0720 | DA1E | 0985 || 0764 | D695 | 0890 [ 0954 [ 0.795 | 0671 | 0840 | 0.978
1] RFCMdd | 0831 | (6ED | OR38 | G913 || (RZY [ 0618 | O811 | 0827 || 0814 [ &l [ 0937 | 0,965
FCKId 0755 | 0702 | DA | 0972 || 0809 | D636 | 0903 | 0041 || DA0R [ O6ak | DRDIR | 0962
2.0 BEFCMdd | 0836 | (k6B | DRG6 | 0913 || (W29 [ D618 | G911 | 0827 || 0.83% [ G608 | 0842 | 0944
FChdd 0767 | (701 | 0823 | (0956 || 0R09 | D636 | 0903 | 0841 (| 0816 | (662 | DM | 1953
21 BEFCMdd | 0835 | (G684 | D61 | 0827 || (B11 [ D622 | G908 | 085 || D826 [ G617 | 0835 | 0.949
FCMdd 734 | (701 | 0820 | (b956 || 0B0Z | 06T | 0801 | 0845 || 0801 | 0665 | D88 | 0973
2.2 BFCMdd | 0817 | 699 | 0847 | G831 (| G802 | D640 | G903 [ 0958 | 0817 | 0639 [ 0928 | 0954
FCMdd 0.751 | 722 | K13 | 978 || 767 | D692 | 92 | 0477 || D79 | (WG65 | OBYS | 05973
2.3 RFCMlL [ D&I6 [ 0712 | 0847 | 0959 (| G791 | D.e58 | (882 | 0961 (| D80T | G641 | 001 | 0861
FCMdd 0.734 | 0759 | D80 | 0891 || G760 | 0703 | 87T | 0982 || 0784 | 0668 | 0886 | 0879
24 RTCKLLL | 0802 [ 712 | DR35S | 0959 (| 0774 | De0% | (L87E | 0967 (| 0792 | 0642 | 080 | 0861
FCMdd 0.712 | 771 | D808 | 1.000 || 752 | 0.726 | 876 | 0983 )| 0.763 | 04672 | O8R5 | 0981
25 RFCKAd | 0.7%5% [ 750 | 0R2% | G984 || 0767 [ 0711 | R63 | D967 || 0783 | (657 | D.RRT | 0079
FCWId 00l | G710 | DAL | 1.000 || 07510 | 0744 | (L8S4 | 008G || DTS5 [ 0673 | 0874 | 0995
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TABLE 8

Performance of RFCMdd and RChdd for

Different Values of Parameter w (= 1 — &)

Yalve | Algorithms HIY Protcin NF 0537849 Cai-Chow HIY D Sct Claspase Cloavage Protcing

al g8 | = 7 5 g i g ¥ I o E =
.51 RFCMdd 0632 0941 [ 0742 [ 1.000 [ 0684 | DEZT [ 0806 | 1000 || 0683 | 0714 | G.HOE | 1.000
| RCMAA 0604 | 952 | 719 | 1000 (| Gads | D836 | (BT822 [ 1000 || 0668 | 00733 | 0781 1000
a5 RFCMdd 0637 | 0839 | 0736 | 1000 || 0739 | 0743 | 0837 | L000 || 0727 | 06EE | 0.M33 | 1000
RCMA 0604 | hR4d | Q720 [ 1000 (| 718 | OB0T | (L7948 | 100 || 0714 ) 0709 | Daba | 1000
X EFCMdd | 0648 | 0730 | 0795 | 0983 || 0788 | 0708 | 0883 | 0001 || 0.77% | 0649 | 085 | 0953
RCMdd 0617 | 766 | 0746 | 1000 (| 731 | 0,733 | GB07 | 10 || 0,762 | 0697 | Q837 | 1.000
(65 RFCWd | O%17 | 0708 | 0839 | G934 || 0811 [ 0633 | 0802 | 0958 || 0821 [ 0622 | 0927 | 0.957
RChdd 0644 | el | DEOT | 1000 || 0763 | 069 | 0866 | 0008 || 0774 [ 0680 | 0852 | 1.000
0,70 RFCKWl | 0836 | 06810 | D866 | 0913 || 829 [ D18 | 0811 | 0927 || 0839 [ dals | 0942 | 0.944
RChdd 0631 | 751 | 0822 | 1000 || 0771 | 0677 | 0897 | 00993 (| 0782 | 0673 | 0887 | 1.000
[ RTFCKd 0819 | 713 | DR | 0940 || RO7 | DA2T | (LRG| 0951 DASR | all | D030 | 0.053
R D647 | 0758 | DAO6 | 1.000 || 0764 | DA%E [ 0871 | 1,000 [ 0.771 | 0684 | 0858 | 1.000
(LR} RFCMdd 0766 | 784 | ORI3 | 0992 | 0793 | 0631 | (LE74 [ 0978 OETT | 622 | D914 | (0.964
ROMA 0645 | (B2 | 0792 | 1.000 || 0.753 | 0.0 | 0R6d | 100 [ 0755 | 0702 | 0851 1.000
(LE5 RFCMdd 0.713 | RR39 | QE0Z [ Lo00 || 78D | 06R2 [ (LES3 [ 0.99] 0804 | 0ad7 | OUR7 | 1000
ROMAA 0642 | RRA1 | 0T8RS | 1000 (| 0247 | OTIR | (RR4T [ 1000 || 0736 ) 00719 | 0845 | 1.000
g EFCMdd 0.64% | G841 | 0788 | 1000 || 0748 | 0711 | 0829 | 1000 || 0761 | 0682 | 0825 | 1000
| RCMAA (641 | (E62 | (1LT8] LGy | 736 | 727 | B2 | 10400 || 0708 | 0732 | 0816 | L0000
45 BFCMdd | 0.630 | 0862 | 0750 | 1000 || 0702 | 0.774 | G818 | 1.000 || 0.738 | 0711 | 0.814 | 1.000
KEChdd 0633 | G865 | 0761 | 1000 || 698 | 0781 [ 0815 | 1000 || D681 | G753 | G803 | 1.000
044 EFCKdd | 0602 | 0968 | 0736 | 1000 || 0671 [ 0813 | 0802 | 1000 || 0675 | 0762 [ 0798 | 1.000
RCMdd 0a01 | G968 [ 0736 | 1000 || (baT1 | D813 | G802 | 1000 || 0674 | 0762 | 079 | 1.000

TABLE 9
Performance of RFCMdd and RCMdd for Different Values of Parameter r

Yalue | Algorithms HIY Protcin NI 037844 Cai-Chow HIY Daa St Caspasc Cleavage Protzins

ol F2 g | = K o i T g i E o kS =
XY RFCMKdd 0643 | 7510 ) OR07 [ 1000 || 0713 | 0782 | (RRIT [ 1000 || 0707 | 00698 | De62 | 1000
ROMA 0643 [ 750 [ OROT | 1.000 || 0713 [ 0782 [ GRIT | 1000 || 00T | 0698 | 0862 | 1000
[IX15] REFCMdd 0704 | 723 ) DRL2 | LO00 (| 753 | D07 | (hB6E | 10 || 0,766 | 00683 | Qusdl | 1.000
RCMAA 0644 | 750 ) ORI [ 1000 (| 716 | 0734 | (LR3Q [ 100 (| 0,723 | 00687 | D863 | 1000
10 EFCMdd 0793 | 0709 | U837 | 0981 || 00794 | 0.0%3 | 0882 | (.01 0E0D | a4 | O80T | 0995
RCMAA 0647 | 750 | ORIA [ L0000 || 738 | 0,726 | (LE4] 1.0 || 0738 | (uGEL | 0872 | L0000
(15 BFCMdd | 0811 | 0702 | 0833 | 0948 || 0806 | 0629 | 0902 | 00964 || 0810 | Oe22 | 0028 | 00973
RChdd 621 | 751 [ OM1Y | 1.000 )| 0744 [ DoR4 [ 08560 | 1000 )| 0764 | 678 | OET8 | 1.000
0,20 RFCHdd | 0836 | 0681 | D866 | 0913 || 0829 [ D618 | 0911 | 0927 || DA% [ 0608 | 0942 | 0.944
RChdd 0631 | 751 | 0822 | 1000 || 0771 | 0677 | 897 | 0993 (| 0782 | 0673 | 0887 | 1.000
025 EFCMWIll | 0836 | 0707 [ DR52 | 0936 || 0811 | D638 | 0907 | 0952 || D.a14 [ 0631 | 0952 | 0.930
RChdd 631 | 0792 | 0819 | 1000 || 0759 | D698 | 881 | 1.000 (| 0.767 | 0692 | 0855 | 1.000
[R1Y) RTCKL OEIT [ 070 [ D84 | 0900 [[ 0805 | N6RT | (0L.ER4 | 0.ORR 0791 | (haa7 | DONR | (.005
RCMdd N6A43 | 0828 | DA | 1.000 || G738 | 073 | WRTR | 1000 || 0.741 [ 0723 | 0839 | 1.000
335 RFCMdd 0801 | 739 | 053] Ly || 84 | 0T [ BTS | 100 || 0772 [ 671 | U8RI 1000
ROMAA 06310 | RRST [ 0.7 | 1000 || 0706 | 0737 [ R4S | 1000 || 0728 | 0756 | 0814 | 1000
[T RFCMdd 0792 | 784 | DR [ Lo00 (| 757 | 0762 | (RET72 [ 100 || 0,739 ] 00699 | Dsk3 | 1000
RCMAA 0620 | 914 | 0738 | 1000 (| ekl | 0796 | (RR26 | 1000 (| 0719 ) 0779 | 79 | 1000
45 EFCMdd 0716 | 833 ) 0796 | 1000 (| 732 | 0783 | he30 [ 10 || D06 | 0737 | D27 | 1000
RCMAdA 0617 | 957 | 0792 | LO00 || 667 | DR1T7 | B03 [ 100 || 0678 | 0793 | Q779 | 1000
0,50 BEFCKdd | 0708 | 0864 | 0781 | 1.000 || 0713 | 0805 | 0813 | 1000 || Deld | 0798 | 0769 | 1.000
RCMdd 0a17 | 0962 | O7R1 | 1000 || (b659 | D836 [ 0793 | 1000 || 0639 | G822 | 0746 | 1.000

algorithms decreases with the increase in m. That is, the
best performance of RFCMdd and FCMdd is achieved
when the fuzz].-r membership value of a subsequence in a
cluster is equal to its normalized homology alignment score
with respect to all the bio-bases.

The parameter w has an influence on the performance of
RFCMdd and RCMdd. Since the subsequences lying in
lower approximation definitely belong to a cluster, they are
assigned a higher weight w compared to o of the
subsequences lying in boundary regions. Hence, for both
RFCMdd and RCMdd, 0 < @ < w < 1. Table 8 presents the
performance of RFCMdd and RCMdd for different values w

considering m1 = 24) and £ = 0.20. When the subsequences
of both lower approximation and boundary regions are
assigned approximately equal weights, the perfﬂrmnnce of
FFCMdd and RCMdd is ﬁignificantl}.’ poorer thag HCMdd.
As the value of w increases, the values of 7 and 7 increase,
whereas the wvalues of and decrease. The best
perfﬂrm.ance of both algorithms is achieved with w = 0.70.
The perfﬂrmance :-.:i,__l-';nil‘iq:.alz'-r:lg.-r reduces with w =~ 1.00). In this
case, since the clusters cannot see the subsequences of
boundary regions, the mobility of the clusters and the bio-
bases reduces. As a result, some bio-bases get stuck in the
local optimum. On the other hand, when the value of

- -



BT0

TABLE 10
Comparative Perfarmance of Different Methods
Dt Sel | Alporithms 3 ~ E = Lime
RFCMAd | 0847 | 0657 | 0813 | D916 | E9R1
Fihdd D14 | QAR | DML [ 0956 | SRus
Al RCMdd | 0E15 | G677 | 0HTE | 0983 0 560
2503 HCMdd | 0018 | 702 [ 0852 | 1.000 535
MI L84 | 0788 | 0006 | 0877 | BELT
GAFR n736 | 0814 | DR2A [ 1O | 12213
RUCK | 0831 | 0611 | 0812 | 0857 0 12510
FCMdd 0B07 | 0674 | DES2 [ 0.924 | 11598
AAGL RCMdd Lo6E | 0681 | 0882 | 1000 | BOLS
2635 HCMdd | 0714 | 0664 [ 0853 | 1O iu
MI 0732 | 63T | OHZY [ 099 | 1E062
GAFR 007 | 0713 | D01 | T | 12604
RFECMAd | DASA | 0613 | 0830 [ 1847 | 15688
Fhddd AT | 63 | 0912 [ 0897 | 9131
AA04 ROMAA | GH00 | OAF3 | OETS [ 0977 | SHED
777 HCMdd | oo | 00723 [ sl | 1000 532
ML 0E01 | 0827 | OG0 | 0982 0 12974
GAR 073 ) 0812 | DE6Y | 1000 | 11728
RFCMAd | 0H3R | 0AHT | OHeR | 1073 | 231058
1Cdd 0767 | 0701 | 02D [ 0856 | 24080
NP5 RO LEST | 0751 | D22 [ 1000 | 160563
T840 HCMdd | 03 [ Q751 [ 0807 | 1000 4387
MT 0637 [ 0854 | DA0O2 | 1O 250038
GAFR Dudf | OET2 | OETE [ 1A | 291413
RFECMdd | 0831 | 0.62% | DBl [ 0825 | 11748
FCMdd 084 [ 0692 [ DASS | (.083 Q174
N5 ROMAA ISR | 0702 | 0A2a | 993 | 5RAS
THE HOMAD | 070 | 0719 [ oo | 140 A2
ML 0736 | 02 | 0M33 [ 100 | oR2T
GALR 0741 | 0914 | DH09 | 1000 | 10873
RFCMAd | ORZ0 | 06T | 08T | D927 | 6217
Fhdd DAY | AT | DU0F [ 0941 | 4083
Cui-Chon RCMUd | 0271 | Q677 [ 08S7 | 0092 3E60
LIV Dena | LCMdd | 0713 ) 0782 | DEL7 | 1000 71E
MI 0764 | 0774 | DESD | 1000 | 6125
CAFR 0719 ) 0794 | DELL | 1O | TS
RUCKd | 039 | Qald | 0442 | U934 515704
FCMdd LEl6 | 0662 | DOOL [ 0.953 | 510961
Caspase T DR [ 0673 [ DAEET [ LODD | 473380
Cleavage HCMdd D07 | DA8% | DAGZ | LOK | E326
MT 0732 | 0728 | ORGY [ 1O | 511628
GAFR 0713 | 0715 | 021 | 140K | S3RSTI

w = (.70, the subsequences of lower approximations are
assigned a higher weight compared to that of boundary
regions, as well as the clusters, and the bio-bases have a
greater degree of freedom to move. In effect, the quality of

generated clusters is better compared to other values of w.

The performance of RFCMdd and RCMdd also depends
on the value of &, which determines the class labels of all
the subﬁequences. In other words, the RFCMdd and
RCMdd partition the data set of a cluster into two
classes—lower approximation and bnunda.ry, based on the
value of . Table 9 presents the comparative performance
of RFCMdd and RCMdd for different values of e
considering m =20 and w=0.70. For e =101, all the
subsequences will be in lower approximations of different
clusters and B(3;) =, ¥i. In effect, both RFCMdd and
RCMdd reduce to conventional HCMdd. On the other
hand, for & = 1.0, A{3;) = 0, ¥i, and all the subsequences
will be in the boundary regions of different clusters. That is,
the RFCMdd boils down to FCMdd. The best performance
of RFCMdd and RCMdd with respect to 3, E, v, and 7 is
achieved with e = 0.2, which is approximately equal to the
average difference of highest and second highest fuzzy
membership values of all the subsequences. In practice, we

find that both RFCMdd and RCMdd work well for e = £,
where

1 n
6= ;;uw ~ ). (17)
n is the total number of subsequences, and y; and i, are
the highest and second highest fuzzy membership values of
the subsequence ;. The values of & for HIV protein
NP_057849, Cai-Chou HIV data set, and caspase cleavage
proteins are (L197, 0201, and (.198, respectively.

53.4 Comparative Performance of Different Algorithms
Finally, Table 10 provides the comparative resultsof different
algﬂrithm:-: for the protein sequences reported in Section 5.1,
It is seen that the RFCMdd with DOR-based initialization
produces bio-bases having the highest 7 and 4 values and
lowest v and 7 values for all the cases. Table 10 ako provides
execution time (in ms) of different algorithms for all protein
data sets. The execution time required for RFCMdd is
cﬂmparable to Ml and GAFRE. For the HCMdd, although
the execution time is less, the performance is significantly
poorer than that of RCMdd, FCMdd, and RFCMdd.

The following conclusions can be drawn from the results
reported in Tables 4, 5, 6, 7, 8, 9, and 10:

1. It is observed that RFCMdd is superior to HCMdd
both with random and DOR-based initialization.
However, HCMdd requires n:{m:-siq:li:-raJ:an.-r less time
compared to RFCMdd. However, the perfurm.ance of
HCMhMdd is Sigﬂiﬁcaﬂll}’ poorer than RFCMdd. The
performance of FCMdd and RCMdd are intermedi-
ate between RFCMdd and HCMdd.

2. The DOR-based initialization is found to improve

the values of 4, -+, 4 and 5 and reduce the

time requirement substanl‘iall}r for all cmedoids
algorithms,

The use of rough sets and fuzzy sets adds a small

computational load to the HCMdd algorithm; how-

ever, the corresponding integrated methods (FCMdd,

RCMdd, and RFCMdd) show a definite increase in 7

and 7 values and decrease in + and F values.

4. Integration of three components—rough sets, fuzzy

sets, and cmedoids, in the RFChMdd algnrithm

produces the minimum set of the most informative
bio-bases in the least computation time compared to

MI and GAFE.

It is observed that the RFCMdd algorithm requires

Sig}[‘liﬁfﬂn“}’ less time compared to Ml and GAFR

having cumparable perfﬂrmance. Reduction in time

is achieved due to DOR-based initialization. The

DOR-based initialization reduces the convergence

time of the RFCMdd algorithm considerably com-

pared to random initialization.

L

LF

The best perfurm.aru:e_nf the proposed RFCMdd algo-
rithm in terms of 4, ~, 4, and 5 is achieved due to the
fnll{mring reasons:

1. The DOR-based initialization of bio-bases enables
the algﬂritku'n to converge to an oplimum or near
optimum solution.
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Fig. 4. Similarity scores of initial bio-bases of HIV protein NP_05784% for different values of « considenng « = (.50, (@) & = (160 and Tr = 1.05
(b) & =0.65 and Tr = 6.02. () & = 0.70 and Tr = 16.58. (d) & =0.75 and Tr = 35.32. (@) £, = (.80 and Tr = 28.05.

2. The membership function of fuzzy sets handles
efficiently overlapping partitions.

3. The concept of lower and upper bounds of rough
sets deals with uncertainty, vagueness, and incom-
pleteness in class definition.

In effect, the minimum set of bio-bases having maximum

information is obtained using RFCMdd algorithm.

6 CONCLUSION

The contribution of the paper is threefold, namely,

1. the development of a methodology integrating the
merits of rough sets, fuzzy sets, c-medaids algorithm,
and amino acid mutation matrix for bio-bases
selection;

2. defining new measures based on MI and nongapped
pairwise l:mrrn{:-lt:-g].-r alignment score to evaluate the
quality of selected bio-bases; and

3. demonstrating the effectiveness of the proposed
algorithm, along with a comparison with other
algorithms, on different types of protein data sets.

The concept of “DOR" is found to be successful in

effectively circumventing the initialization and local mini-
ma problems of iterative refinement clustering algorithms
like c-medoids. In addition, this concept enables efficient

selection of the minimum set of the most informative bio-
bases compared to existing methods. Although the
methodology of integrating rough sets, fuzzy sets, and
c-medoids algorithm has been efficiently demonstrated for
biological sequence analysis, the concept can be applied to
other relational unsupervised classification problems.

REFERENCES

[1] M.(Han and T.J. Sejnowski, “ Predicting the Secondary Structure of
Globular Proteins Using Neural Mebwork Models,” [, Molecular
Biolowpy, vol. 202, pp. 8a5-884, 1988,

M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt, A Model of
Evolutionary Change in Proteins. Matrices for Detecting Distant
Relationships,” Aflos of Profein Sequence and  Structure, vol. 5,
pp. 345-358, 1978,

5 Henikoff and .G, Henikoff, “Aming Acid Substitution Matrices
from Protein Blocks,” Proc. NafT Acodemy of Sciences (PNAS "92),
vol. §9, pp. 10915-1(08919, 1992,

M5, Johrson and J.P. Overington, “A Structural Basis for
Sequence Comparisons: An Evaluation of Scoring Methodolo-
gies,” [ Malecular Biology, vol. 233, pp. 716-738, 1993,

E. Thomson, C. Hodgman, ZR. Yang, and A K. Doyle, “Char-
acterising  Proteolytic Cleavage Site Actvity Using Bio-Basis
Function Meural Mebwork,” Bioiformatics, vol. 19, pp. 1741-1747,
20013,

EA. Berry, AR. Dalby, and ZE Yang “Reduced Bio-Basis
Function Meural Metwork for Identification of Protein Phosphor-
ylation Sites: Comparison with Pattern Recognition Algori thims,”
Compufational Biology and Clemistry, vol. 28, pp. 75-85, 2004.

2

3

4

3

[e]



872

[7

[8]
91
[t
[nn
[tz

[y

(4

s

(i8]

[t

[1H]
[t9]

[20]

20

23

24

2

[26]

2

2

29

[30]

ZR. Yang and R. Thomson, “Bio-Basis Function Meural Network
for Prediction of Protease Cleavage Sites in Proteins,” [EEE Trans.
Neural Networks, vol. 16, no. 1, pp. 263274, 3005,

L. Kaufman and PJ. Rousseeuw, Finding Groups in Dafa, An
Introduction fo Clusfer Analysis John Wiley & Sons, 1990,

L.A. Fadeh, “Fumey Sets,” Information and Confrol, vol. 8, pp. 338
353, 1905,

Z. Pawlak, Rough Sets, Theorefical Aspects of Resoning About Dk,
Kluwer Academic Publishers, 1991,

D. Dubois and H. Prade, “Rough Fuzzy Sets and Fuzzy Rough
Sets,” It [ General Systems, vol. 17, pp. 191-208, 1990,

M. Baneree, 5. Mitra, and 5.K. Pal, "Rough Fusey MLP: Knowl-
edge Encoding and Classification,” [EEE Trans. Newral Nefuworks,
vol 9, no. 6, pp. 1203-1216, Nov. 19958,

5.K. Pal, 5 Mitra, and P. Mitra, “Rough-Fuzzy MLP: Modular
Evolution, Rule Generation, and Evaluation,” IEEE Trans. Knowl-
e and Dafa Eng., vol. 15, no. 1, pp. 1425, Jan. /Feb. 2003,

A, Skowron, RW. Swiniarski, and P. Synak, “Approxmation
Spaces and Information Granulaton,” Trans. Reugh Sefs, vol. 3,
pp. 175-189, 2004,

5. Hirano and 5. Tsumoto, “An Indiscernibility-Based Chstering
Method with Iterative Refinement of Equivalence Relations:
Rough Clustering,” [ Advanced Computational Infelligence and
Intelligent Informatics, vol. 7, no. 2, pp. 169-177, 2003,

SK. De, “A Rough Set Theoretic Approach to Clustering,”
Fundamenta Informaticae, vol. 62, nos. 34, pp. 409417, 2004,

P. Lingras and C. West, “Interval Set Clustering of Web Users with
Rough K-Means,” [ Infelligent Information Systems, vol. 23, no. 1,
Pp. 5-16, 2004,

5.K. Fal, B.D. Gupta, and P. Mitra, “Rough Self Organizing Map,”
Applied Infelligence, vol. 21, no. 3, pp. 289299, 2004

5. Asharaf, 5K. Shevade, and MMN. Murty, “Rough Support
Vector Clustering,” Patfern Recognifion, vol. 38, pp. 1779-1783,
2005.

5.K. Pal and P. Mitra, “Multispectral Image Segmentation Using
the Rough Set-Initialized-EM Algorithm,” TEEE Trans, Geesefence
amd Bempofe Sensing, vol. 40, no. 11, pp. 24952501, 2002,

R. Krishnapuram, A. Joshi, (. Nasraoui, and L. Yi, "Low
Complexity Fuzzy Relational Clustering Algorithms for Web
Mining,” IEEE Trans, Fuzzy System, vol. 9, pp. 595-607, 2001.

5. Mitra, H. Banka, and W. Pedrycz, “Rough-Fuzzy Collaborative
Clustering,” [EEE Trans Systems, Mon, and Cybernefics, Part B
Cybernetics, vol. 36, no. 4, pp. 795-805, Aug. 2006,

S.F Altschul, W. Gish, W. Miller, E. Myers, and [D.J. Lipman,
"Basic Local Alignment Search Tool,” [ Molecular Biology, vol. 215,
pp. 405410, 1990,

5.F Altschul, M5 Boguski, W. Gish, and [.C. Wootton, “Tssues in
Searching Molecular Sequence Databases,” Nafure Genefics, vol. 6,
pp. 119-129, 1994,

Y.D. Cai and K.C. Chou, “Artificial Neural Network Model for
Predicting HIV Protease Cleavage Sites in Protein,” Adwnces in
Eng. Softusre, vol. 29, no. 2, pp. 119125, 1998

L.H. Pearl and W.R. Taylor, “A Structural Model for the Retroviral
Proteases,” Nafure, vol. 329, pp. 351-354, 1987,

M. Miller, J. Schneider, B.K. Sathayanarayana, M.V. Toth, GR.
Marshall, L. Clawson, L. Selk, SB.H. Kent, and A. Wlodawer,
“Structure of Complex of Synthetic HIV-1 Protease with Substrate-
Based Inhibitor at 23 Resolution,” Scignce, vol. 246, pp. 1149-1152,
1989,

K.C. Chou, “A Vectorised Sequence-Coupling Model for Predict-
ing HIV Protease Cleavage Sites in Proteins,” [ Bielogical
Clenistry, vol. 268, pp. 16938-16948, 1993

K.C. Chou, “Prediction of Human Immunodeficiency Virws
Protease Cleavage Sites in Proteins,” Amalyfical Biochemistry,
vol 233, pp. 1-14, 1996,

T.T. Rohn, 5M. Cusack, 5.R. Kessinger, and J.T. Oxford, “Caspase
Activation Independent of Cell Death Is Required for Proper Cell
Dispersal and Correct Morphology in PC12 Cells,” Experimental
Cell Research, vol. 293, pp. 215-225, 2004.

Pradipta Maji received the BSc (Hons) degree
in physics in 1998, the M5c degree in electronics
science in 2000, and the PhD degree in
computer science in 2005, all from Jadavpur
University, India. Cumrently, he is alecturer in the
Machine Intelligence Unit, Indian Statistical
Institute, Kolkata, India. He is also associated
with the Center for Soft Computing Research: A
Mational Facility, Indian Statistical Institute,
Kolkata, India. His research interests include
pattern recognition, biocinfomatics, medical image processing, cellular
automata, neural networks, soft computing, and so forth. He has
published more than 30 papers in intemational journals and confer-
ences. He is also a reviewer of many international joumals.

Sankar K. Pal received the PhD degree in radio
physics and electronics from the University of
Calcutta in 1979 and another PhD degree in
electrical engineering along with a Diploma of
Imperial College (DIC) from the University of
London in 1982, He is the director and a
distinguished scientist at the Indian Stafistical
Institute. He founded the Machine Intelligence
Unit and the Center for Soft Computing He-
search: A Mational Facility in the Institute in
Calcutta. He worked at the University of California, Berkeley, and the
University of Maryland, College Park, in 1986-1 887, the NASA Johnson
Space Center, Houston, Texas, in 1990-1992 and 1994, and in the US
Maval Research Laboratory, Washington, D.C., in 2004. Since 1557, he
has been serving as a distinguished visitor of IEEE Computer Society for
the Asia-Pacific Region and held several visiting positions at Hong Kong
and Australian universities. He is a fellow of the |IEEE, the Academy of
Sciences for the Developing World, Italy, International Association for
Pattem HRecognition, USA, and all the four Mational Academies for
Science/Engineering in India. He is the coauthor of 13 books and about
300 research publications in the amas of pattem recognition and
machine learning, image processing, data mining and Web intelligence,
soft computing, neural nets, genetic algorithms, fuzzy sets, rough sets,
and bicinformatics. He has meceived the 1980 5.5. Bhatnagar Prize
(which is the most coveted award for a scientist in India) and many
prestigious awands in India and abroad including the 1559 G.D. Birla
Award, the 1298 Om Bhasin Award, the 1993 Jawaharlal Nehm
Fellowship, the 2000 Khwarizmi Intemational Award from the Islamic
Republic of Iran, the 2000-2001 FICC| Award, the 1993 Vikram Sarabhai
Research Award, the 1983 NASA Tech Brief Award (USA), the 19094
|EEE Transactions on Newral Networks Outstanding Paper Award
(USA), the 1995 NASA Patent Application Award (USA), the 1997 IETE-
A.L. Wadhwa Gold Medal, the 2001 INSA-5.H. Zaheer Medal, and the
2005-2006 P.C. Mahalanadbis Birth Centenary Award (Gold Medal) for
Lifetime Achievement. He is an associate editor of the JEEE Transac-
fions on Pattem Analysis and Maching Intefligence, the IEEE Transac-
fions on Neural Netwoirks (19594-1858, 2003-2006), Pattern Recognition
Lettars, Neurocomputing (1985-2005), Applied infefigence, Infomation
Sciences, Fuzzy Sets and Systems, Fundamenta Informaticae, the
International Journal on Pattem Recognition and Artificial Intelfigence,
the International Joumal on Computational Intefligence and Applica-
tions, and Proceedings of the Indian Mational Science Academy (INSA-
A), a member of the Executive Advisory Editorial Board of the JEEE
Transactions on Fuzzy Systems, the International Journal on image and
Graphics, and the Infernational Journal of Approximate Reasoning, and
a guest editor of Computer.

= For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



	rough fuzzy c medoids algorithm and selection of bio basis for amino acid sequence 1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg

