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ABSTRACT: A social network represents a social
community as adirected graph. Communication on the
Web has given rise to social network formation like,
Web Community, Referral System etc. An earlier effort
has proposed a data model for such Web-based social
network. Present paper discusses the relevant index
structures for processing queries on a social network
schema based upon the proposed data model. The
paper has also provided evaluation of the structural
operators proposed in the data model and discussed
their efficacy with query examples.
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1. Introduction

Asocial network is a social structure between actors (individuals,
organization or ather social entities) and indicates the ways in
which they are connected through various social relationships
like friendships, kinships, professional, academic etc. Some of
the notable structural properties of a social netwark are
connectedness between actors, reachability between a source
and a target actor, reciprocity or pair-wise connection between
actors with bi-directional links, centrality of actors or the
impartant actors having high degree or mare connections and
finally the division of actors into sub-structures, like cliques or
stranglyconnected components. The division of actors into
strongly-connected components can be avery important factor
far understanding a social structure, particularly the degree of
cohesiveness in a community.

The formal representation of this pattern of relationships is a
directed graph or digraph. In this graph, each member of a social
community (people or other entities embedded in a social
context) is considered as a node and communication
(collaboration, interaction ar influence) from one member of the
community to another member is represented by a directed
edge. In seventies Leinhardt first proposed the idea of
representing a social community by a digraph [8]. A graph
representing a social network has certain basic structural
properties, which distinguishes it from other type of networks
orgraphs. The number of nodes in a social netwark can be very
small representing a circle of friends or very large representing
a Web community.

The diverse and distributed nature of World-Wide-Webhas given
rise tovariety of research into the Web's link structure ranging
from graph-thearetic studies (connectivity, reachability ete.) to
community mining (like, discovering strongly connected
structural components etc.). Recently, Web has played a major
rale in the formation of communities (Cyber-communilies or
Web communities) where members or people fram different
parts of the globe can join the community for comman interest.
Thus Web has become a good source of social networks.
Structural similarities of Web with a social network help in
studying different sociological behaviors of a Web community
thraugh applications of graph theory and social network analysis.
These similarities lead towards a progress in knowledge
representation and management an the Web [6]. Out of the many
social network models on the Web, most commaonly used one
iscalled a referral network. Insuch a network, each node in the
social network provides a set of links to its acquaintances that
inturn become member nodes of the network. [nthe same way,
these new nodes bring their acquaintances to the netwaork again.
This way the social network keeps on growing. So, the social
network anthe Web gives rise to an evolutionary graph. At any
instant of time, when aquery is raised on such an evalutionary
graph, a snapshotof the concerned netwark, i.e. the node-edge
structure at the instant of query, is considered for the purpose
of query processing. The referral system has been bath
commercially (www.LinkedIin.com, www.Ryze.com,
www. Tribe.com etc.) and academically [5] exploited.
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1.1 Motivation

Lot of wark has already been done for statistical analysis of a
social netwark. The purpose isto study the properties of a social
community. On the other hand, researchers in web-mining, web-
based learning etc. have studied on the representation and
navigation of Web graph structures. However, hardly any effort
has been made to develop a data model for a2 Web graph so
that queries can be made both an its structure as well as the
node cantents. Visualizing this need, authors of the present
paper has proposed a data model representing a social network
(10].

Since a Web graph representing a social network usually
containg thousands of nodes and edges, it is necessary to adopt
some methods of compression to efficiently handle such a
graph for storage and querying. Authors of the present paper
have already proposed the relevant methods of compression
[2] and adata model, named SONSYS for such a compressed,
Web-based social network [10]. SONSYS offers an Object
Relational model supporting a Structural and a Node-based
subsystem. It is evident that queries on a compressed graph
proposed in SONSY S, need to access the underlying original
graph aswell. In addition, a query may include predicates related
to node-based information as well. So, an elaborated index
structure is necessary for efficient query processing on such a
data model. An earlier effort has discussed the relevant index
structures for both structural and node-based subsystemsina
nutshell [9]. Primary motivation behind the present paper is 1o
discuss the index structures in detail with the evaluation of the
structural operators proposed in SONSYS. Considering complex
queries, execution processes are then explained. Following the
introduction, Section 2 discusses related work, Section 3 the
data model, Section 4 the node-based indexing technigques and
Section 5 the structural indexing techniques. Ultimately, Section
6 draws the conclusion.

2. Related Work

The graph data models proposed sofar have mainly considered
path-based queries or direct search of nodes and edges. AWeb-
based social netwark, an the ather hand, considers many
complex structures like cycles, nested cycles, strangly
connected components etc. Afew seminal works an Web graph
models have now been discussed so that the relevance and
efficacy of the proposed data model with its query facilities can
be appreciated later.

The Web as a graph: measurement, models and methods [6]
is ane of the few initial waorks for studying the Web graph witha
several hundred millions of nodes (html pages) and billions of
directed edges (hyperlinks). The hyperlinks represent a source
of a few sociological information. However, this application deals
with ane time data mining based analysis and does not provide
a database platform for serving queries. Representing Web
Graphs [11] has proposed a S-node representation scheme that
combines graph compression with support for complex queries
and lacal graph navigation for massive web graphs. However,
only a few specific observed properties of the web graph could
be exploited by this representation scheme. So, the system is
designedto serve a set of dedicated queries. It is not a generic
graph-based data model. Complex Queries over Web
Repositories [12] has dealt with the complex web queries over
massive Web graph. It has been shown that the S-node
representation and the cluster-based optimization significantly
reduce the query execution time. The query processing and the
optimization technigues discussed here are based onthe few
inherent properties of the Web graph. However, it is not suitable
for Web graphs used as a social netwark. Thus, it is apparent
fram the above discussion that none of the earlier research and

development efforts have proposed any genericdata model for
Web graph represented as a social network.

3. Data Model

Web-based social network applications require execution of
complex queries that invalve combination of structural as well
as node-based operations. The queries may involve searching
of compaonent structures and'or path-based search onthe graph
representing asocial network. It may also need predicate based
search an the properties of the nodes. The proposed generic
Object-Relational (OR) data model can make structural, node-
based, as well as composite queries on a Web-based social
network application. Thisdata model consists of two companent
subsystems: Structural subsystem and Node-based
subsystem. Depending on application, these two subsystems
give rise to two different sub-schemas under the objectrelational
framewark considered for modeling a Web-based social
network. A 4-tier architecture proposed in [10] offers the
mechanism to maneuver between the two subsystems and to
answer the composite queries.

The subsequent sections describe the two subsystems in detail.

3.1 Structural Subsystem

Figure 1 Sample Social Network

To understand the madel, a sample social netwark, as shown
in Fig.1, has been chosen. Although a few nodes and edges
have been considered here, the explanation will soon show that
even this small graph covers all the structural peculiarities of a
social netwark on the Web.

As shown in Fig.1, the network initially had 4 nodes (1,2,3.4).
Maode 5is the acquaintance of node 4. 50, node 5 joined the net.
In turn node 5 brought nodes 6 and 7 and they again brought
node 8 inthe netwark. This way the network keeps on growing.
It is assumed that at the time of query, Fig.1 shows the current
status of the network. Important structural companents present
inthe network are described below. Formal definitions of the
components are provided in[10].

« Strongly-Connected-Component (SCC) @ The sample
social network in Fig. 1 has two edge-types shown by farm
and chain lines. Node sequence (1-2-3) represents a
strangly connected component when same edge-types are
considered, whereas (1-2-3-4) is a SCC considering both
the edge-types.

« Cycle : Fig. 1 shows three cycles; (1-2-3-1), (2-3-4-2)
and (2-3-2). Here cycles have been considered irrespective
of the variation in edge-types. The cycles may even be
nested. Cycle (2-3-2) is nested within the other two cycles,
i(1-2-3-1)and (2-3-4-2).

» Reciprocal Edge: In Fig. 1, (2-3-2) is a reciprocal edge.
« Homogeneous Hyper-node: In Fig. 1, (1-2-3) is a
homogeneous hyper-node. It is a strongly connected
companent where all edges are of same type.
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« Heterogeneous Hyper-node: In Fig.1, (1-2-3-4) is a
heterogeneous hyper-node. It is a strongly connected
companent where all edges are not of same type. In Fig. 1,
homogeneous hyper-node (1-2-3) is nested within
heterogeneous hyper-node (1-2-3-4).

* Hyper-edge: If any node p outside a hyper-node H is
connected to mare than one node belonging to H with same
edge-type and in the same direction, all such edges will be
fusedto only ane edge as a hyper-edge. A hyper-edge may
connect a hyper-node with a node or another hy per-node.
After edge set {1,2.3}) in Fig.1 fuses to the homogeneous
hyper-node H-1in Fig.2, edges (1,4) and (3.4) of Fig.1 fuses
to the hyper-edge He-1in Fig.2.

Figure 2. Augmented Social Network

H2@ ¢ 7

Figure 3. Final Augmentation

During pre-processing and compression phase as described
in [2], each of these homogeneous and heterogeneous hyper-
nodes are fused to a single node. In case of nesting of hyper-
nodes [for example, homogeneous hyper-node (1-2-3) nested
within heterogeneous hyper-node (1-2-3-4)] the outer-mostone
would ultimately be fused. Fig. 2 shows the compression when
only hamogeneous hyper-nodes are considered, whereas Fig.
3 shows the final augmentation after considering the
heterogeneous hyper-nodes as well. At the end of compression
process, as shown in Fig.3, the original digraph reduces to a
directed acyclic graph (DAG) [2].

Definitions of the structural components offer an inherent
hierarchy among them. A homogeneous hypernode may be
nested within a heterogeneaus hyper-nade(1-2-3-4). Acycle may
be nested within a hypernode. There can also be nested cycles.
A cycle can again be decomposed to constituent nodes and
edges. As discussed in [2], this nested structure again gives
rise to a Structural DAG as shown in Fig.4.

This DAG essentially offers the complex object type hierarchy
defined in the object-relational structural schema for
representing a social network as explained in [10]. This DAG
can be also be utilized to develop an index structure for structural
query processing as discussed in Section 5.

Graph (&)

HeaHM HaHM

Cycle HE

Mode

Legend : HeHN = Heterogenaous Hypear-node,
HoHMN = Homogeneous Hyper-node, HE = Hyper-edge.

Figure 4. Structural DAG

3.2 Node-based Subsystem

Apart from the structural analysis, Web graph needs to be
studied on the node-based information as well. For this purpose,
the attributes or contents of a node or Web page are required to
be properly represented, stored and indexed. A node-based
schemacan provide a convenient mechanism for representing
Web page attributes. The information or contents of apage and
alink are stored as attributes in two object types, Pageand Link
respectively, somewhat similar to Web relations in [13].

Each Page object is associated with ap /D that represents the
object-id as provided by a object-relationalsystem. It is
synanymaoustothe corresponding nodeid representing a Node
object for that Page in the structural schema. Some of the other
impartant attributes of a page are included in the object type
with their meaning and the corresponding datatypes.

Each Link object is also associated with al_[Dthat represents
its object-id. Attribute [_SrelD is the identifier of the page in which
a hyperlink ariginates and attribute [ Destil) is the identifier of
its target page. Inotherwords, a Link object instance represents
an edge of a Web graph where | SreiD and [ DestiD of the
object refers to corresponding p_1Ds of the pages itis linking.
As amatter of fact, [ SrelDand | DestiDare basically structural
infarmation and would be available in structure-based sub-
system as well. Here it has been provided for drawing similarity
with the representation usedin [13). Some of the ather important
attributes of a page are included in the object type with their
meaning and the corresponding data types.

The detail representation of structural and node-based schema
far a social network has been provided in [10]. Since an object-
relational framewark has been used, there would be underlying
relations representing the Page and Link object types. Such
underlying relations are shown below :

Page (p_ID, p_Text, p_ URL, p_Title, p_Topic, p_Language,
p_Type.p_Length, p_Indegree, p_NumLinks,

p_Domain, p_Host, p_PageRank)

Link({1_ID,|_SrciD, | DestlD)

Thep IDand |_ID shown in the relations are actually system
supplied object-ids and not user specified. They have been
shown here for the convenience of understanding the scenaria.
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These attributes have been borrowed from [13], which deals
with different attributes of a Web page and the associated

by perlinks.

4. Node-based Indexing Techniques

SONSYS model employs separate indexing strategies for node-
based and structural subsystems. Since structural subsystem
covers the peculiarities of a graph structure that represents a
social network, it asks for special operators to answer structural
queries.

Operators for node-based queries, on the other hand, follow
the standard ODMG specification. These operators employ
standard indexing techniques used in an object relational system.
In a social network, nodes can be categorized into different
groups depending on certain node properties. This node
categorization can then be exploited as a convenient index
structure for efficient node-based query processing.

4.1 Node Categorization

It has been observed that there are certain node attributes on
which the queries are made frequently. Domain of each of these
impartant attributes can be partitioned into categories based an
the domain values. Faor example, the attribute, p Domainin Page
can be categorized by the name of different domains like, .edu,
.org etc. Categorization ¢an also be made on the pages based
ontheirlanguage types. Forexample, attribute p_Language in
Fage can be used for categorization of page instances into
different language types: Engish, French or German. This
process of categorization leads to a semantic hierarchy of
objects. In the parlance of object-arientation, it offers a class
hierarchy. A sample node categorization hierarchy for the Web
pages that related to research groups in universities of LLS.
warking on a few specialized areas is shown Fig.5.

Page

—_—

Legend: - Object instances
isA [Is_an_instance_of

Figure . 5 Sample Node Categorization Hierarchy

This hierarchy can be used as an index structure for query
processing. Value based indexing is quite comman in query
processing. Sincethe node-based sub-system isimplemented
as a standard objectrelational system, indexing facilities usually
available in such systems have also been extended here. Usual
B+ tree based indexes and hash based indexes have been
provided as and when required.

5. Structural Indexing Techniques

This section describes a few novel indexing technigues for
structural subsystem to accelerate search duringquery
processing. The structural queries can be divided into two
groups. One that involves queries to analyze the different
structural relationships between the graph objects and hence
requires traversal of the structural DAG Other one emplays path-
based structural queries. So, speciflic operators are required
for executing these two types of queries. Minimal set of operators
required for these two types of queries have already been
discussed in [10]. The present paper deals with their
implementation with correspanding indexing strategies.

First type of query invaolves finding required query objects based
upan the structural relationships like ancestors, descendants
etc. between objects. For example, a cycle is an ancestor of
nodes and edges, a hyper-node is an ancestor of a cycle ele.
An index-based solution has been provided to efficiently search
the structural DAG during query processing. Proposed indexing
scheme covers two types of indexes: Spanning Tree index (5T-
index) and Mon-Spanning Tree index (NST-index). A sample
structural DAG from [4] has been considered to explain the index
structures. For tree and the non-tree cover of a DAG technigue
described in [1] has been adopted. On the ather hand, for node
numbering, the interval encoding scheme of [4] has been
applied. For this purpose, the sample DAG is traversed and
each nodeis assigned an interval or an integer pair [start, end]
according to the depth-first traversal. This DAG and the nodes
with their correspanding intervals are shown in Fig.6. In this
figure, the solid edges are the edges of the tree cover while
dashed edges denate the non-tree edges or the remaining edges
of the graph.

Mode_id Interval

r (1.20)
a (2.15)
a, (3,109
C (4.9}

[+ (56)

Iy (78)

(11,14}
(12,13)
(16,19)
(17.18)

Figure 6. Interval encoding representation of sample DAG.

The index structure similar to XB-tree [4] is meant for accessing
nodes belonging to the spanning tree or the tree-cover and is
named as 5T-free. AST-tree corresponding to the sample DAG
(Fig.6) is illustrated in Fig.7. In the ST-tree for the sample
Structural DAG, each internal node contains interval(s) where
each interval covers all the intervals of their respective
descendant nodes and maintains pointer(s) to child node(s).
As mentioned earlier, each interval has a start and an end
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farming a [start, end] pair. Here a pair of ancestor and
descendent nodes is related as,

ancesftor.start = descendent.start and ancestor.end =
descendent.end

For example, the intervals [2,15] and [16,19] are covered by the
interval [1,20] of their commaon ancestor. Here the intervals are
the search keys. Leaf nodes of ST-tree follow the structure of a
B tree.

[ezall 1

Figure 7. 8T-tree for sample DAG

NST-index

This new index structure, proposed in this paper, is for
accessing anchor nodes. By definition [2]. an anchor node may
have more than ane ancestoror more than one descendant or
both. Also an anchor node is neither a source nar a sink node.
Hence these nodes would be connected by non-tree edges and
would be present inthe NST-free index structure. This structure
has similarities with 3T-index and is named as NST-free. NST-
tree corresponding to the sample DAG (Fig.6) is illustrated in
Fig.8. Inthe NST-tree for the sample Structural DAG each internal
node represents an anchor node. Here also, each node
maintains pointer(s) to its child node(s). Howeverin NST-index,
apair of ancestor and descendent nodes is related as,
ancestor.start > descendent.slart and ancestor.end =
descendent.end

"
.20 [2.101 ==l

215 .93 7.5 —‘

[11.1=] e

(12,13 [17

T
T

1]
1l

o

Figure §. N5 T-tree for sample DAG

For example, the intervals [2,15] and [16,19] are covered by the
interval [1,20] of their commaon ancestor. Here the intervals are
the search keys. Leal nodes of ST-tree follow the structureof a
B+ tree.

NST-index

This new index structure, proposed in this paper, is for
accessing anchor nodes. By definition [2], an anchor node may
have more than ane ancestar and hence a non-tree node. This
structure has similarities with STindex and is named as NST-
free. NST-ree corresponding to the sample DAG (Fig.6) is
illustrated in Fig.8. Inthe NST-tree for the sample Structural DAG
each internal node represents an anchor node. Here also, each
node maintains painter(s) to its child node(s). However in NST-
index, a pair of ancestor and descendent nodes is related as,

ancestor. start = descendent.start and ancestor.end =
descendent.end

For example, both [11,14] and [17,18] are the ancestors of [4,9].
S0, [4,9] represents an anchor node and maintains the above
ancestor-descendent relationship. Here again, the intervals are
the search keys. Leaf nodes of NST-tree also follow the structure
of a B tree. While all nodes of the DAG are presentin the 5T-
tree, only those nodes that are connected by non-tree edges as
well, will appear in the N3T-tree. So, with each node aflagis
maintained to indicate whether it is present in the NST-ree.

5.1 Structural Query Operators

Thissection considers a set of new structural operators required
far a social network. These operators are classified as
Fundamentaland Derived. They are shown in Table 1and Table
2 respectively. The relevance of these operators, their definitions,
completeness and minimality have already been established in

(10].

Operators
Ancesfor (<)

Purpose
Ta find all ancestor structures of a
referenced structure

Descendant (=) | Tofind all descendant structures of a
referenced structure

Tofind all possible paths from
source node

Path (p)

Table 1. List of fundamental operators

Operators Purpose

Comnrtrt ot _
Ancestor g0 To find all ancestors common

between two structures

To find all descendants common
between two structures

Comnrtan_
Descendanii Y)

Belongs_To (B}

To find all structures of a particular type
that are ancestors to a specific type

To find all structures of a particular type
that are descendants to a specific type
To find all possible sub-paths

between any two nodes

Membership { j)

Enumeration (E )

To return trie if a node is
reachable from a specified node

Reachability (R)

Table 2. List of derived operators
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Legend : G = Graph, H-2 = Hatengenaous Hypar-node, H-1 = Homogeneous Hypar-node,
He-1 = Hyper-adga, G-1 = Cyche [1-2-3-1), C-2 = Cyole (2-3-4-2), C-3 = Cycle (23-2)

Figure 9. Structural DAG forthe sample Social Network

5.1.1 Evaluation of Operators

Caonsidering the index structures defined above it is necessary
to explain how the proposed set of structural operators exploit
them during query processing. First, the operators that are used
ta farm the queries to analyze the different structural
relationships between the graph objects are considered. In order
to explain the operators, structural DAG for the sample social
network shown in Fig.1 and subsequently compressed inFig.2
and Fig.3 is considered. This structural DAG is shown in Fig.9.
A query is always is placed on the DAG generated after the
compression process as explained in Fig.1 through Fig.3.
However, the query may need to percaolate down ta the original
graph to satisfy any node-based predicate. This percolation
process needs to access the structural DAG asshown in Fig.9
for the sample social network.

Ancestor: Ancestor operator finds all the structures that are
ancestor to a referenced structure as defined in complex
structural object hierarchy of Fig.4. For example, the ancestor
operation an cycle(2-3-2) (inFig.1) represented by C-3 in Fig.9
returns cycles C-1 and C-2, hyper-nodes H-1 and H-2 and the
original digraph (&) as the result set as shown in Fig.9.

A query may ask for all nodes that satisfy the predicate p and
communicate with node x. So the query processor needs (o
access all the structural objects that are ancestors to node x.
Breaking the encapsulation of those abjects, the ariginal nodes
are then retrieved. Out of these nodes, the result set retains
only those that satisfy the predicate p. Ancestor retrieval
algarithm that exploits the ST and NST tree is detailed below:

Ancestor retrieval algorithm

procedure ANCESTOR(n, v)
i finds all ancestor structures n of the given structure v as obtained
from the structural DAG
! list of the ancestors of structure v,
initially empty
int startinode), A start number of anode in structural
DAG following the interval encoding
scheme explained in Fig.6
intendinode): /f end number of a node in structural DAG
following the interval encoding
scheme explained in Fig.6
int out-count(node); /f stores the current value of out-
degree for each node

a_list =empty

int ST-outd({node); //out-degree of a node in the ST-tree
nstinode ) = true or false; //aboolean flag associated with each
node. It is true if the node has an entry
in the NST-tree, otherwise false
/! a boolean flag for each node nin the
DAG. Initially false, turned true when
visited
/ algorithm starts from the root of the structural DAG representing
the entire graph for the social network and the default ancestor
for all nodes in the DAG
for an ancestor nof v do # starting from root in order traversal
visits the nodes in ST-tree
begin
out-count(n} = 5T-outd(n};
while out-count{n) <=0 do
begin
out-count( np =out-countin}-1:
visit descendent d of node n;
if n<=d and visit(d} = false then
begin
if start(d) < start( v) and end(d) = end(v) then
add d o a_list;
if nstid)= true then
begin
if start(d) = start(v) and end{d) = end(v) then
add d o a_list;

visit(node) =false;

end;
AMNCESTORI(d, v):
end:
Feturns a_list as the list of ancestors for structure v;
end:

Descendant: Descendant operator finds all the structures that
aredescendant to areferenced structure as defined in complex
structural object hierarchy of Fig.4.

For example, the descendant operation on cycle(2-3-2) (in Fig.1)
represented by C-3 in Fig.9 returns nodes 2 and 3 and other
associated edges as its descendants.
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Descendant retrieval algorithm

procedure DESCENDANT(n, v)
i finds all descendant structures n of the given structure v as obtained from the structural DAG

d_list= empty M list of the descendants of structure v, initially empty
int start{node ), A startnumber of a node in structural DAG follow ing the interval encoding scheme explained in Fig.6
int endinode); M end number of a node instructural DAG following the interval encoding
scheme explainedin Fig. 6
int out-countinode ), i stores the current value of out-degree for each node
int ST-outd(node): i out-degree of anode in the ST-tree
int NS T-outdinode); N out-degree of a node in the NST-tree
nstnode) = true or false, i a boolean flag associated with eachnode. It is true if the node has an entry in the NST-tree, otherwise
false
visitinode) = false; i aboolean flag for each node nin the DAG Initially false, turmed true when visited

i starting from the given structure v, through inorder traversal, al gorithm visits all the descendant nodes in
the ST-tree and augments the d_list
begin
if ST-outd(v === {) then
begin
starting from v, in order traversal through ST-tree returns all the descendants of v in 8 T-tree;
descendants obtained by the tree traversal are added tod_list:
end;
ift nst{v) = true and NST-outd{ v} <== () then
begin
starting from v, in order traversal through NST-tree returns all the descendants of v in S T-tree,
descendants obtained by the tree traversal are added tod_list:
end:
Returns d_list as the list of descendants for stucture v;
end;

Since both ANCESTOR and DESCEN DANT algorithms are tree search algorithms, considering minimum degree of the tree being t, complexity
of the algorithms would be (log n).

Comman Ancestor Algorithm

procedure COMMON_ANCESTOR (uv) i finds the common set of ancestors between the structures u - and v
begin

ANCESTOR (n . u):

ANCESTOR (n,. v):

CommonAncestors_list=[n, | C [ n,]
end;

As explained earlier, ANCESTOR algorithm would have a complexity of O{log | n). After getling the a_list for each structure u and v,
asetintersection would provide the required of list of commaon ancestors. However, an intersection usually has acomplexity O(n®).
To reduce this complexity, the second ancestor algorithm ANCESTOR (n_. v) has been modified. For each new ancestor retrieved
for structure v, it is checked against the ancestor list already obtained for the first structure u. If a common member is found, it is
pushed into the comman_ancestor list. Since the members to a_list are added by tree traversal, they are ordered and so the
complexity reduces tolinear order, ie.n +n_.

Common Descendant Algorithm

procedure COMMON_DESCENDANT (u,v) ¥ finds the common set of descendants between the structures u and v
begin

DI:'SCI:'ND.-‘\N'I'{HI. ul,

DESCENDANT ( n, v}

CommonDescendants_list = [ n | Cl n,|
end;

Implementation strategy for intersection operation is similar to the implementation done for Comman Ancestaor algorithm.
Belongs To Algorithm

It finds all structures of a particular type that are ancestors 1o a specific type. It runs the ANCESTOR algorithm and then selects a
particular type out of them. For example, the ancestor operation on cycle(2-3-2) (in Fig.1) represented by C-3 in Fig.9 returns cycles
C-1 and C-2, hyper-nodes H-1 and H-2 and the ariginal digraph (G) as the result set as shown in Fig.9. Now, if Belongs_To operation
searches for hyper-nodes only, the result set will include only H-1 and H-2 discarding the others.
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procedure BELONGS_TO (u, v)
ancestors of u that are of type v

i searches for the

begin
ANCESTOR (n. ul;
i returns all the ancestors n of u
Select from n, where n-type = v-type:
end

Complexity of ANCESTOR algorithm has been discussed earlier.
Selecting a specific structure ty pe can be done in linear time.

Membership Algorithm

It find all structures of a particular type that are descendants to
a specific type. Itruns the DESCENDANT algarithm and then
selects a particular type out of them.

For example, Membership operation an hyper-node H-1 will first
find all the descendant structures under it as shown in Fig.9.
However, if Membership operation searches for cycles, the
resultant set willinclude anly C-1, C-2 and C-3.

procedure MEMBERSHIP (u, v) / /
searches for the descendants of u that are of type v
begin
DESCENDANTS (n, v},
i returns all the descendants nof u
Select from n. where n-type = v-type;
end;

Complexity of DESCENDANT algorithm has been discussed
earlier. Selecting a specific structure type can be done inlinear
tirme.

Reachability Algorithm

It finds whether a particular node in the DAG is reachable from
anather node. Reachability infarmation is abtained from the node
numbers. The encoding scheme is such that from the [start,
end] values of two nodes the reachability information can be
derived.

procedure REACHABLE (uv)
Reachable = false: /f boolean flag that is set to “true’ if node vis
reachable from node u;
A Initially it is set to “false”.
begin
if v is an ord inary node then
begin
if the interval, [ start, end] associated with node v lies entirely
within the interval, [start. end] associated with node u ie.
wstart < v.start and vend >wvend then
Reachable = true;
end
else
if v is an anchor node then
in-degree > |
begin
if v.start < w.start and vend < u.end then
Reachable = true;

A here an anchor node has

end;
end;

Path Search

Graph compression process for a social network converts the
original graph to a DAG as explained from Fig.1 through Fig.3.
As aresult, the paths present in the ariginal graph are altered.
S0, the path search process should be able to generate the
ariginal paths from the compressed DAG This process of path
storage and retrieval has beendiscussed in detail in [2]. Path
search process returns all the simple paths in the graph.

Enumeration

While path search operation returns all the simple paths,
Enumeration operator returns all paths between any two nodes
u andv, where u and v are not necessarily asource and a sink
respectively. It follows the same process as path search and
the detail is given in [10].

6. Conclusion

This paper explains in detail the index structures for a object-
relational data model designed fora Web graph used as a social
netwark. This paper primarily addresses the different structural
elements present in a Web graph. For ease of storage and
retrieval, the graph is compressed to a DAG generating different
structural elements like hy per-nodes, hyper-edges, cycles etc.
These structural elements canthen be arranged in a hierarchy,
which pravides an built-in index structure. Extending XB-lree,
two types of tree index have been proposed. Following the
method described in [1], ST-tree indexes the minimum tree
cover for the structural DAG while NST-tree indexes the nodes
thraugh non tree edges. Different structural query operataors are
then studied to show how these operataors are executed using
the index structures. Complexity of the algorithms has also been
studied.

However, this paper considers only a snapshot of a Web graph
representing a social netwark. A social network is an evolutionary
graph and its structure changes with time. Data modeling for
suchtemporal changes will be considered later.
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