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Abstract—Identification of correct number of clusters and
the corresponding partitioning are two important considera-
tions in clustering. In this paper, a new fuzzy quantization-
dequantization criterion is used to propose a cluster validity
index named Fuzzy Vector Quantization based validity index,
FVQ index. This index identifies how well the formed cluster
centers represent that particular data set. In general, most of
the existing validity indices try to optimize the total variance
of the partitioning which is a measure of compactness of the
clusters so formed. Here a new kind of error function which
reflects how well the formed cluster centers represent the whole
data set is used as the goodness of the obtained partitioning.
This error function is monotonically decreasing with increase
in the number of clusters. Minimum separation between two
cluster centers is used here to normalize the error function.
The well-known genetic algorithm based K-means clustering
algorithm (GAK-means) is used as the underlying partitioning
technique. The number of clusters is varied from 2 to v N
where NN is the total number of data points present in the
data set and the values of the proposed validity index is noted
down. The minimum value of the FV(Q index over these v/ N —1
partitions corresponds to the appropriate partitioning and the
number of partitions as indicated by the validity index. Results
on five artificially generated and three real-life data sets show
the effectiveness of the proposed validity index. For the purpose
of comparison the cluster number identified by a well-known
cluster validity index, XB-index, for the above mentioned eight
data sets are also reported.

Index Terms—Unsupervised classification, cluster validity
index, fuzzy vector quantization

I. INTRODUCTION

Clustering [1] is a core problem in data-mining with
innumerable applications spanning many fields. The two fun-
damental questions that need to be addressed in any typical
clustering scenario are: (i) how many clusters are actually
present in the data, and (ii) how real or good the clustering
itself. That is, whatever may be the clustering technique, one
has to determine the number of clusters and also the validity
of the clusters formed [2]. The measure of validity of clusters
should be such that it will be able to impose an ordering
of the clusters in terms of its goodness. In other words, if
Ui,U,, ..., U, be the m partitions of X, and the corre-
sponding values of a validity measure be V1, V5, ... V,,, then
Vit 2 Ve > ... Vi, Vei € 1,2,....m, ¢ = 1,2,...,m
will indicate that Ugy T ... T Uky,. Here ‘U; T U;’ indicates
that partition U; is a better clustering than U;. Note that
a validity measure may also define a decreasing sequence
instead of an increasing sequence of Vi1,..., Vim. Several
cluster validity indices have been proposed in the literature.

These are Davies-Bouldin (DB) index [3], Dunn’s index [4],
Xie-Beni (XB) index [5], I-index [6], CS-index [7], etc., to
name just a few. Some of these indices have been found to be
able to detect the correct partitioning for a given number of
clusters, while some can determine the appropriate number
of clusters as well. Milligan and Cooper [8] have provided a
comparison of several validity indices for data sets containing
distinct non-overlapping clusters while using only hierarchi-
cal clustering algorithms. Maulik and Bandyopadhyay [6]
evaluated the performance of four validity indices, namely,
the Davies-Bouldin index [3], Dunn’s index [4], Calinski-
Harabasz index [6], and a new index Z, in conjunction
with three different algorithms viz. the well-known K-means
[1], single-linkage algorithm [1] and a SA-based clustering
method [6].

Cluster properties such as compactness (or variation) and
separation (or isolation) are often considered as major char-
acteristics by which to validate clusters. Compactness is
an indicator of the variation or the scattering of the data
within a particular cluster, and separation is an indicator
of the isolation of clusters from one another. In this paper
a new approach has been adopted to validate the clusters
formed. Here a fuzzy granulation and degranulation criterion
proposed recently in [9] is used to validate the partitioning
obtained. In the fuzzy granulation-degranulation criterion [9],
the vectors in the code book are used to encode the original
data in terms of the membership values. During decoding, a
given vector is expressed as a function of the membership
values and the cluster centers. The dissimilarity between the
actual vector and the approximated vector at the decoder side
is called the quantization error. In this paper the idea of fuzzy
quantization-dequantization is used to measure how well the
cluster centers, formed by a particular clustering algorithm
for a data, represent the whole data set. Here these cluster
centers are regarded as the representatives of the entire data
set. Next, the final membership values of the data points
present in the data set with respect to these cluster centers
are calculated. Now based on these membership values and
the cluster centers, each data point is approximated. The
Euclidean distance between the approximated point and the
original point is the error for that particular point. The
average error (V) of the entire data set represents how well
the partitioning is. It is easy to understand that with the
increase in the number of clusters this quantization error
decreases. Thus a normalization is done in order to get rid of
the monotonically decreasing property of this error function



thereby yielding a fuzzy vector quantization based validity
index, referred to as FVQ index.

The well-known genetic algorithm based K-means clus-
tering technique (GAK-means clustering technique) [10] is
used as the underlying clustering algorithm. The number
of clusters is varied from K,,;, t0 K,.z. As a result,
total (Kpae — Kmin + 1) partitions will be generated,

Koins Uk, o1 -+ - Uk, with the corresponding validity
index values computed as Vi, .., Vi, ..+1...VKk,.... Let
K* = argopt,_y x [Vi]. Therefore, according to
index V, K* is the correct number of clusters present in
the data. The corresponding Uy may be obtained by using a
suitable clustering technique with the number of clusters set
to K*. The tuple < U., K* > is presented as the solution
to the clustering problem. The effectiveness of the newly
proposed cluster validity index, FVQ index, compared to a
well-known cluster validity index, XB-index [5] is shown in
identifying number of clusters from five artificially generated
and three real-life data sets of varying complexities.

II. THE Fuzzy VECTOR QUANTIZATION METHOD

In fuzzy vector quantization [9], the code book is formed
of some vectors {vq,va,...vk}. These are obtained by
optimizing an error function after application of some op-
timization techniques. In general, code book consists of the
elements of the data which approximate the whole data set
appropriately. In [9], particle swarm optimization is used as
the underlying optimization technique. The following discus-
sion is based on the fuzzy vector quantization-dequantization
approach proposed in [9].

A way of encoding a particular data point T in the data set
can be represented by the collection of membership values
to the different clusters. We require that the corresponding
membership degrees u,;(Z),i = 1,2, ... K are confined to the
unit interval and sum up to 1. The membership values are
calculated by minimizing the following performance index

K
Qi(2) =Y u"(z) |z — 7l M
i=1

subject to the following constraints already stated above, that
is

K
ui(T) € (0,1, Y w(@) =1 ©)

The distance function is denoted by ||||?. The fuzzification
coefficient (m,m > 1), shown in the above expression is
used to adjust the level of contribution of the prototypes
to the result of representation. The collection of K weights
{u;(Z)}, i =1,... K along with the cluster centers are used
to represent a particular data point 7.

The minimization of Equation 1 is straightforward and
follows a standard way of transforming the problem to
unconstrained optimization using Lagrange multipliers. After
rewriting the Equation 1 by accommodating the constraint in

the form of the Lagrangian multiplier ()\), we obtain

K K
Qi(@) =Y _ul' @[T —* = AQ_w@-1) @)
i=1 =1

The resulting system of equations leading to the minimum
of Q comes in the form

aQ 0 dqQ

dx 7 duy(T)
After solving the equations with respect to A and w;(T), the
resulting weights (membership degrees) become

_ 1
u; (T) = T — —
i (7 =il /| — ]2/ tm =)
where 7 = 1,2,... K. Here, the fuzzification coefficient, m
is chosen equal to 2, though the importance of its proper
choice is studied in [9].

Thus each data point is represented by the K membership
values u;(T), i = 1,... K computed by Equation 5 and with
the help of K cluster centers.

Now, these computed membership values and the clus-
ter prototypes are used to approximate each data point 7.
Approximation is based on some aggregation of the cluster
centers and the associated membership grades u;(T). The
way of forming z" is accomplished through a minimization
of the following expression.

=0 “)

)

K
Q2(a") =Y w2’ = (©6)
i=1

If the Euclidean distance is used to measure the distance
between the prototypes and z’, the problem of unconstrained
optimization leads to a straightforward solution expressed as
a convex combination of the prototypes

where the corresponding prototypes are weighted by the
membership degrees. Then the total error due to clustering
is calculated as follows.

N

quan_error = Z Iz — 42 (8)

i=1
where NV is the total number of points in the data set. It is
shown in [9] that the quality of reconstruction depends on a
number of essential parameters of the scheme including the
size of the codebook (i.e., here the number of cluster centers)
as well as the value of the fuzzification coefficient (m).

III. PROPOSED CLUSTER VALIDITY INDEX

In case of clustering, the codebook consists of the cluster
centers formed by a particular clustering technique. The
membership values of the data points to different clusters
are calculated using these cluster centers. Then, each data
point is supposed to be well-represented by using these
membership values and the cluster centers formed thus far.



If the obtained cluster centers are able to present global
view of the data set, then the quantization error would be
small. This error function is used here to validate a particular
partitioning. But due to monotonically decreasing nature of
the error function, here another factor is also taken into
consideration, i.e., the minimal separation between any two
cluster centers.

The proposed cluster validity index is defined below: Let
the cluster centers of K clusters are represented by v;, ¢ =
1,...K. Let C;, i = 1,... K represents the set of points
which are in ith cluster and N represents total number of
points in the data set. Then FVQ index is defined as follows.

quan_error
N(min; g—1,... iz de(Ts, Uk))
Here quan_error is computed by Equation 8. The total
quan_error is divided by the total number of points, N
in order to obtain the average quantization error. d.(7;, Uy )
represents the Euclidean distance between two cluster centers
v;, and Ty, i.e., the denominator of the obtained cluster
center represents the minimum distance between any two
cluster centers. The most desirable partition (or, an optimal
value of K) is obtained by minimizing FVQ index over
K=23,... Knaz-

FVQ =

©)

A. Explanation

As formulated in Equation 9, FV(Q index is a composition
of two factors. These are the average quan_error (the term %
is used to find the average quantization error over N number
of data points) and Dy = min; k=1, K izk de(Zi, Z). The
first factor denotes the average quantization error obtained
due to representation of the data points using the cluster
centers and the membership values. A minimum of this value
indicates that the formed cluster centers represent the whole
data set properly. This decreases as the number of cluster, K
increases. But as FVQ needs to be minimized for obtaining
proper number of clusters, so it will prefer to increase the
value of K. Finally the second factor, D, measuring the
minimum separation between a pair of clusters, decreases
with increase in the value of K. In an ideal partitioning, the
cluster centers should be well-separated. As the proposed
FVQ index needs to be minimized, so it will prefer to
increase the value of Dg making the minimum distance
between any two cluster centers high. Thus as the two factors
of the proposed FVQ index are complementary in nature,
so they are expected to compete and balance each other
critically for determining the proper partitioning.

IV. GAK-MEANS: CLUSTERING ALGORITHM USED FOR
SEGMENTATION

GAK-means [10] clustering algorithm is developed in
order to get rid of the limitations of the well-known K-means
algorithm to get struck at suboptimal solutions. Here the
searching capability of GAs has been used for the purpose
of appropriately determining a fixed number K of cluster
centers in RY; thereby suitably clustering the set of N
unlabeled points. Each string in the population of GA is a

sequence of real numbers representing the K cluster centers.
These cluster centers are initialized to K randomly chosen
points from the data set. The fitness computation process
consists of two phases. In the first phase, the clusters are
formed according to the centers encoded in the chromosome
under consideration. This is done by assigning each point
x;, 1 =1,2,...N, to one of the clusters C'; with center v;
such that ||z; — vj|| < ||z — v, p = 1,2,... K, p # j.
After the assignments are done, the cluster centers encoded
in the chromosome are replaced by the mean points of the
respective clusters. The clustering metric, M is calculated as
M = Zfil > wec, ||z —wvil|. The fitness of the chromosome
(fit) is calculated as: fit = ﬁ The objective of the GA is to
maximize this fitness function in order to minimize the total
variance of the partitioning. Roulette wheel selection is used
to implement the proportional selection strategy. Single point
crossover with a fixed crossover probability is used. Each
chromosome undergoes mutation with a fixed probability.
Each gene position in a chromosome is mutated with a value
lying near to it. Elitism has been incorporated in GA. The
processes of fitness computation, selection, crossover, and
mutation are executed for a maximum number of generations.
The best string seen up to the last generation provides the
solution to the clustering problem.

V. EXPERIMENTAL RESULTS

Several artificially generated and real-life data sets were
used to experimentally demonstrate that the FVQ index is
able to find the proper cluster number for different types of
data sets. Here results have been shown only for three real-
life and five artificially generated data sets. In this section at
first the description of the data sets used for the experiment
are provided in brief. Finally the results are discussed in
detail.

A. Data Sets Used

The data sets that are used for the experiment are divided
into 2 different groups.

1) Group 1: Consists of five data sets. These data sets are
used in [11].

a) Datal: This data set consists of 250 data points
distributed over 5 spherically shaped clusters in 2-
dimensional space. The clusters present here are
highly overlapping, consisting of 50 data points
each. This data set is shown in Figure 1.

b) Data2: This data set consists of 400 data points
in 3-dimensional space distributed over 4 hyper-
spherical disjoint clusters. Each cluster contains
100 data points. This data set is shown in Fig-
ure 2(a).

¢) Data3: This data set consists of 76 data points
distributed over 3 clusters. This data set is shown
in Figure 2(b).

d) Data4: This data set consists of 500 data points
distributed over 10 different clusters. Some clus-
ters are overlapping in nature. Each cluster con-



sists of 50 data points. This data set is shown in .

Figure 3. ’

e) Data5: This data set consists of 300 data points |
distributed over 6 clusters in 2-dimensional space.

The clusters are of the same sizes. This data set 9 i

is shown in Figure 4. TooERT

2) Group 2: Consists of three real life data sets. These are
Iris, Cancer and Newthyroid data sets. B R e e T R !

a) Iris: Iris data set consists of 150 data points
distributed over 3 clusters. Each cluster consists
of 50 points. This data set represents different
categories of irises characterized by four feature SR
values [12]. It has three classes Setosa, Versicolor
and Virginica. "

b) Breast Cancer: Here we use the Wisconsin Breast £
Cancer data set consisting of 683 sample points.
Each pattern has nine features corresponding to
clump thickness, cell size uniformity, cell shape !
uniformity, marginal adhesion, single epithelial R
cell size, bare nuclei, bland chromatin, normal
nucleoli and mitoses. There are two categories in
the data: malignant and benign. The two classes
are known to be linearly separable.

¢) Newthyroid: The original database from where it
has been collected is titled as Thyroid gland data
(‘normal’, ‘hypo’ and ‘hyper’ functioning). Five
laboratory tests are used to predict whether a pa-
tient’s thyroid belongs to the class euthyroidism,
hypothyroidism or hyperthyroidism. There are a
total of 215 instances. Total number of attributes
is five.

Fig. 3. Data4

Fig. 4. Data5

B. Discussion of Results

The recently developed genetic algorithm based K-means
clustering technique (GAK-means) is used as the underlying
partitioning technique. The parameters of the genetic clus-
tering algorithm (GAK-means) are as follows: population
size is equal to 100 and maximum number of generations
is equal to 30. The crossover and mutation probabilities are
chosen as 0.8 and 0.01, respectively. The number of clusters
(K) is varied from 2 to /N, where N is the total number
of data points present in the data set and the variation of
the FVQ index is noted down. Its minimum value indicates
the appropriate algorithm and the appropriate number of
clusters. For the purpose of comparison, the performance of
o D Tt a well-known cluster validity index, XB-index [5], is also
’ W . tested on these eight artificially generated and real-life data
sets. Table I shows the optimum values of both the validity
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TABLE I
OPTIMAL VALUES OF FVQ INDEX AND XB-INDEX IN THE RANGE OF
K =2,...v/N FOR ALL THE EIGHT DATA SETS. HERE OC DENOTES
THE CLUSTER NUMBER CORRESPONDING TO WHICH THE INDEX ATTAINS
ITS OPTIMUM VALUE. AC DENOTES THE ACTUAL NUMBER OF CLUSTERS
PRESENT IN THE DATA SET.

Fig. 1.

Datal

IR

IR

IR

5| IR

asl % * +

PR Data AC FVQ index XB-index
aeoror eree set OC | Value OC | Value
ul . OSDON Datal 5 5 50.23 1 0.1388
e caea Data2 1 1 0.149 1 0.052
’ P Data3 3 3 0.0845 3 0.033
o Datad 10 | 10 | 0.189449 | 4 0.148
(b) Datas 6 6 0.158 1 0.043
Tris 3 3 0.027863 | 2 0.066
. Cancer 2 2 0.178842 | 2 0.15
Fig-2. (a) Data2 (b) Data3 Newihyroid | 3 | 4 | 0.634777 | 4 | 0.1946




indices, FVQ index and XB-index, and the corresponding
number of clusters obtained after application of the GAK-
means clustering algorithm on different data sets.

Figures 5, 7, 6, 8 and 9 show, respectively, the partition-
ings obtained by GAK-means algorithm after application on
Datal, Data2, Data3, Data4 and Data5 with the number
of clusters identified by the proposed cluster validity index,
FVQ index. It can be easily seen from Table I that the
proposed FVQ index is able to detect the proper partition
number from all the artificial data sets. The identified parti-
tions are also perfect as seen from Figures 5, 6, 7, 8 and 9,
respectively. XB-index is able to detect the proper number
of clusters only from Data2 and Data3 (refer to Table I). For
the other three data sets, it is not able to identify the proper
partitioning and the proper number of clusters.

For the real-life data sets, no visualization is possible as
these are higher-dimensional data sets. For both Iris and
Cancer data sets, the proposed index is able to detect the
proper partition number. In order to measure the goodness of
the partitioning, the Minkowski Score [13] is calculated after
application of GAK-means algorithm. This is a measure of
the quality of a solution given the true clustering. Let T be
the “true” solution and S the solution we wish to measure.
Denote by ni; the number of pairs of elements that are in
the same cluster in both S and T. Denote by ng; the number
of pairs that are in the same cluster only in S, and by n1( the
number of pairs that are in the same cluster in T. Minkowski
Score (MS) is then defined as:

MS(T, S) = /2oLt mo
’ ni1 +nio

For MS, the optimum score is 0, with lower scores being
“better”. For Iris and Cancer data sets, MS scores of the
partitionings corresponding to the optimum value of FVQ
index are 0.602 + 0.003 and 0.367 £ 0.003, respectively. For
Newthyroid data set, the proposed FVQ index is unable to
detect the proper partition number. It wrongly detects 4 as
the proper cluster number. The MS score corresponding to
this partitioning is 0.62 +0.02. The well-known XB-index is
able to detect the proper cluster number only for Cancer data
set (refer to Table I). For Iris data set, it identifies & = 2 as
the proper number of clusters, which is also often obtained
for many other methods for Iris. Table I shows that XB-index
is also unable to identify the proper number of clusters for
Newthyroid data set.

Figures 10, 11, and 12 show, respectively, the variations
of the proposed FVQ index over the number of clusters
for Datal, Data3, and Iris data sets, for the purpose of
illustration.

(10)

VI. DISCUSSION AND CONCLUSION

In this paper a new cluster validity index, named FVQ
index, is proposed which uses a new error function to
validate the obtained partitions. Thus this index is capable
of detecting both the proper number of clusters as well as
the proper partitioning from a data set. The numerator of

this validity index is based on the fuzzy vector quantization-
dequantization criterion. This error function gives a quanti-
tative measurement of how well the obtained cluster centers
represent the whole data set. As like the fuzzy vector
quantization, all the data points are represented by using
the obtained cluster centers and their membership values.
Then the Euclidean distance between the original data point
and the approximated point provides the total approximation
error of that particular data point due to clustering. The total
average approximation error intuitively gives an idea how
well the obtained cluster centers represent the whole data
set. As this error function is monotonically decreasing with
increase in the number of clusters, minimum separation be-
tween any two cluster centers is used to normalize this error
function. Thus minimum value of the proposed validity index
FVQ which is the ratio of the average quantization error and
the minimum separation, corresponds to proper partitioning
and the proper partition number. The effectiveness of the
proposed index as compared to the well-known XB-index is
shown in detecting proper partitioning from five artificially
generated and three real-life data sets along with GAK-means
clustering algorithm.

Future work includes use of some other distances in place
of the Euclidean distance while calculating the membership
values of different points to different clusters, so that the
proposed index is able to detect some non convex/ convex
symmetrical clusters other than hyperspherical ones.
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Fig. 5. Clustered Datal after application of GAK-means for K = 5

Fig. 6. Clustered Data?2 after application of GAK-means for K = 4
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