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1. INTRODUCTION AND MAIN RESULT

Let (¥1n, ..., ¥ n) be a triangular sequence of random variables. Let M, =
max{Yin,. .., ¥im.n |- The question of convergence in distribution of M,, with linear
normalisation has been addressed under a variety of conditions.

The classical case s when there is one sequence of iid random variables {Y¥;}
and M, = max{¥y,....¥,}. In this case, necessary and sufficient conditions for
the convergence are known. See for example, de Haan (197, Fisher and Tippett
{1928), Gnedenko (193). In particular, it follows from these results that if {¥;}
are i.i.d. Poisson or i.i4d. binomial with fixed parameters, then M, cannot converge
to any non degenerate distribution under any linear normalisation (cf. Leadbetter
et al., 1983, pp 24-27). On the other hand (cf. Leadbetter et al., 1983, Theorem
1.5.3), if ¥; are ii.d. standard normal variables then

lim P[M, < a,z+ 3, =exp(—e™*),

where i
n = 1.1
s v2logn (L4
and

loglogn + log(dw)
Fe =/ 2logn — ; 1.2
) al 2,/ 2logn (2)

General triangular schemes under various suitable conditions have been consid-
ered by several authors. The classical large deviation results due to Cramér (cf.

Petrov, 1975, pg 218) play an important role in the proofs of these results.

Consider, for example, the case where ¥, = I[El‘_:jﬂ'"lu U; — m,,_{.ﬂ.}l;"{mn}.m]
and [J; are iid. with mean p and standard deviation o, Assuming that UV; has
a finite moment penerating function in an open interval containing the origin and
logn = ol[ms:qﬂm R'H‘]] for some integer B = 0, Anderson et al. (1997) showed
that

im_ P{M, < aq + 8% = exp(—e~)

for a,, as in {1.1) and some suitable sequences 4.
They also consider the following case. Suppose m,, = n and for each n, ¥, »,
are independent Poisson with mean A, such that for some integer B = 0, logn =

}.EFH]HRH‘]:I. Then again

lim P[M, < A+ A28 4 0,2)] = exp(—e™*),

TE—+00

o

where o, and _S,':,R] are as before. In particular, in the above results, if B =0 then
we can choose o, as in (1.1) and _{iE."] = 3., given by (1.2).

In this paper we consider the following dependent situation. Suppose ¥V, =
(Yin, - - s ¥or) follow multinomial (my,; 1/n, ... 1/Mm) distribution and define M, =
MAX <<y Vi 10 be the maximom of the n cell variables. If m, tends to infinity
fast EEE{}_IIEJ'L_ then the sequence M, after a snitable linear normalization, converges
to the Gumbel distribution. We summarize this result in the following theorem:

Theorem 1.1. Suppose Y ,, is distributed as multinomial (m,; &, 1) and M, =
AN < < Yiu* _.Tf
fi logn

re— a0 I fﬂ- =ﬂ {l-:ﬂ
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holds, then, for z € R,

p M, — (my/n) — Boy/mg/n
o \,.l"r'lT!.,”l'Iﬂ-

where o, 8 as in (1.1) and 3, is the unique solution of

= ;r"l — exp(—e ), (1.4)

1 L it
log z + = 2° —In (27) + =
& 2 el = '-l+l +2) (\.i'i?l."g"ﬂ

in the region 3, ~ g .

) = logn (1.5)

2. Proors

We first give an outline of the proof. Fix z, a real number. Denote
Y =T /Ty 1+ G fn 4 (e, fn), (2.1)

and

T =w =, T + 3, ~ V2 logn, (2.2)
Vi, fn

using (1.2,

Then for any fixed I, for sufficiently large n, wing inclusion-exclusion principle
and the identical distribution of the marginals from the multinomial distribution,
we have,

a-1
yaln—1)--(n—k+1) ;
M mEm PO {Yin > ya})
<Py {Yin < yu})
2
yn—1)---(n—k+1)
<1 - E{—l)“ < PN {Vin > wa})- (2.3)

For each fived k, we are poing to show that
'il].k_Pl:I_]:r:l{K" = 1&.}) _:"E'_kzn {2—1)

where y,, and r are related as in (2.1).
Combining (2.3) and (2.4}, we get for each fixed [,

al—1 ke
g Z{ 1) k+1‘° <liminf P(N_ {¥in < 9 })
2l F—kz
Llimsup PN {¥in € g }) €1 — Z{—l]“‘l .F;' .
E—r o -
which gives the desired result {1.4) since { is arbitrary.
Towards establishing; (2.4), let {2y, Z4...., Z¢) has multinomial {l ";k, Syiiny )

distribution. Denote by F,, the distribution of (£, — i, s E — II Note that F,,
has mean vector 0 and its covariance matrix is given by ((a;;]), ﬂ.“ = 1/n —1/n?,
ay =—1/n2i#j. Let U = (U, ... U, 1 €i <my, beiid. F,.
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Define X, = (Xiny - 1 Xien) = 2005 U, Using these notations (2.4) becomes
-F:l:k = Fr" =-P[X1rl = Ty mrl.l'llﬂw I Xkrl P v My f'll'"']

] =
=f f dF* ™ {1y, o up) ~n e (2.5)
xS e 4 S

As a first approximation, we shall show existence of v, = v, () ~ 2logn ~ z,,,
such that, for each fixed & and =,

n* B, 1= n* P[X 10 > vav/ma/n, .o Xin > ta/mafn) — €7 (2.6)

holds.

To show existence of v, , we first simplify (2.6) assuming the existence of v, ~
v2logn, see (2.35). We apply Esscher transform or exponential tilting on the
distribution of X, and then approximate it by a k-variate normal distribution
with i.id. components having marpginal mean and variance same as that of the
tilted distribution.

Let W, (#;,...,#;) be the cumulant penerating function of F,,:

t t 3
Uoltr, ... bx) =—u+|ﬂg(1+” s -l _k). (2.7)

mn "

Let s, be the unique solution of

M Wols, . oo, 8) = g/, fn. (2.8)

The following lemma on the rate of growth of w, = ™ — 1 will be useful later.
Here and for almost all of the discussion that follows, the specific form of v, is not
important, but we shall always crucially use the fact that

vy~ 4/ 2logn. (2.9

Lemma 2.1. [fv,, satisfies (2.9) and if i, satisfies (1.3) given bylogn = o{m,, /n),

we have
Tae l l Un
= Tl (”‘5’ ) +fi’(“—mgn))- =

Proaf. Note that the first partial of ¥, is

1 el

'al";‘ru{fl'u-unufkj=—a +F_'!| +...+.Efk +'i|1.—kt

Hence, using (2.8), we have

W _ (=R —1)  (n— ke (2.11)

\m T on4 ket —1) n+ ku,

Solving, we get,

EX I T T
¥y = T 1 -
1, ( ﬂ.) ( n—k \;’m) VT 1

and, the result follows using —22— ~ /29" . from (1.3). O

ey, St m, n
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Next we define the exponential tilting for the multivariate case as
dv, {'”?1-. s 1,”;,::' = g~ Vnlfn...on) o8nlun +-..+um—]dE! {1"11 o -.‘wp;:l. {112)
Then, the m,-th convolution power of V,, is given by
AV ™y, ) =€ L . Y P +"'+u-"rr]dFr:'"lrJ {(wr,...,u),

in terms of which P, in (2.6) becomes

= o0

EI — __m"'ilul:rr"....:s"] f ___f E--“n|:ﬂ’1+"'+ﬂ?k]dlfr:""rd {“-'lllu-tt'\u“;k:l*
tray Tt 10 L
(2.13)
Ve has mean vector .1 and covariance matrix ¥, = a,{p — b, Ji., where 1; is
the k-vector with all coordinates 1, Iy is the & x & identity matrix, J is the b = k

matrix with all entries 1 and p,, a, and b, are given as follows:

1 e

Hi =31"1"1-={5u-.~u15u:| = _E =k m

(n— ke — 1) (m— k&, Uy,

— 'ili.{';l].+ A:{,E“u —_ l:|:| oyl “{“ +k11-":| ol g {2.14)

E?sn
b‘l‘l = —3132"111-.{-%1 ey S":| — {“ = k{E“n - l:I:Ig
1+u, \° 1
- (ﬂ + Fm..) R (2.15)
T? = O _b" = ;}1‘3.‘1‘["{&! ------ 5 rl:l — Esn{ﬂ- =& = {k i l:le-“"j

(n+ kle= —1))2

_(I+up)in—k+(k—-1)(1+uy)) a2
_ e =, (2.16)

where the asymptotics hold by Lemma 2.1, as v, ~ 2logn = o{/m./n), us-
ing (1.3). Then using (2.8) and (2.14), we have from (2.13),

;- ﬁm""l'nir‘u:----#u]f . f B—wuI:ul+"'+“‘=]dlr’r:’""‘{1r,1.,.. oupls (217
Mg fin i fin

Now we replace V,, by a k-variate normal with mean vector p, 15 and covariance
matrix 721y (i.e., independent coordinates). The result of this change of distribution
leads to the approximation (for B, ), given hy

B k
i '|-rt"'\:|:'"|:r\rn ..... nrn]] —H y_m'l'lﬂ"l'l dy
ha R U:,, e e ( T /T ) in mu] (18]

B k
(5l ) U d,{;je—-'fui"tn:-c"+zrn\.’Lr_rln]dz]
[

1
=E‘rrlnI:'yr,—k.'i'r;_r-!n]ﬂk{s"q-" \,-"{ﬂ'!-_.-j. {2.19)

where v, = V{5, ...,5,) and p{t) = If“xﬁ_z'dﬁ{:]d: = (1—®{t)) and ¢ and &
are the univariate standard normal density and distribution functions respectively.
We shall prove the following.
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Proposition 2.1. If v, satisfies (29), namely, v, ~ 2logn and m, satis

fies (1.3) given by
. lopn
lim ——

=}
re—sou Ty, /1

1

then

1 fo e 3 '
Apy 8 — kz, - ; 2,20
g {:"m]k g g (i+ l] ( ﬁ) ( )
where z, = /i, /.

Proof. We first treat the exponent in the first ﬁl{"t{}l‘ of the expression (2. 1‘-]:| for
Ay, Since 7, = —Es, +log(l + E(e» — 1)) = —Elog(l + u,.) + log(l + £uy,)
using (2.7}, it follows from expression (2.14) for p,,

M| o — KSnfin)

n k o k(1 4+, ) log(l + u,
=111|{)g (]_ + 11,") L { + :' {}E..{ + u, :I
T

n 14 11,,

My

T (1 ; 5) = [{n + R 6 (1 i Ez,) — (k + k) log(1 +u..:|]

n

() BT ()]

=2
kg kR omgul
=—= +—
2 n 2n n
g ©a ] — r+1
Mgy ; 1 I3 I3 .
EE Hiliar i-isi —17 T S ] i 1 el E
n Zl{ ) Z (et ]_j{r +2) (n) (ﬂ) ] o
kin,,u '.m,,'u,ﬁ i i L B0 4 By (2.21)
— 9 n — ?' m l “’rl " ] =
where, wsing (2107,
Er”] K 1_11“111 o d2 log 1 — 0 (2.22)
211 i n

and

s = 2 S [ S e () ()

el |

i*-:: bounded by §; + 82, where, using the fact, from (2.10) and (1.3) that m,u? /n ~
2 ~ 2logn,

eSO e ()
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o lB”, i—l b - £ )
n e d)(r+2) n e

since the sum is finite, and

2k ke
5y < TEn Z (—11,,) ~ 2logn—u, — 0.
n

n n

i=1
Hence, we have
Bt g, (2.23)
Thus, using (2.21)-(2.23), we have

k el M2 — {—l:l"
ihiiciar, (RIS i e
3 2.

n n {1. + l]{ + 2]“ Hnlh)

1“1!{"."'" S ksrlp'u:l "

and hence, wsing =, = w, /. /n, we have,

by [ ra— K fin ) _ i Zn ;
" ~ eXp . (2:24)
Zl "i'-+l 7-+2:| (1|'-]n"2"-“_)

To complete the proof of the proposition, we consider the second factor in (2.19).
Using asymptotic expression (2.16) for 7, the fact w, = €™ — 1 ~ 5,, we have

TreSpaf My ™ U 3/ Ty Hlln = In

2
Also, we know that p(t) = E'%r{l — D)) ~ !_J"E as t — oo (cf. Feller, 1968, Lemma
2, Chapter VII). So, the proof is completed using
1
ke
L N ] 2.25
o s (225)
and (2.24) in (2.19). O
It turns out that A, is a good approdmation for F,. Let &, 4 denote the
fk-variate normal distribution function with mean vector g and covariance matrix
A. Then nsing (2. lT:I and (2. lH:I we easily see that

P.— A,
L Rl — gy [y - - n
ES T un—]d{vrm ‘h;:tlk rﬂ;kj{“’h-“ ~.“1L-I|~
LLLEY LU

E Y

Denote the distribution function of the signed measure V™= — ‘ll;'l':‘r”k by H,..

Then, wing Theorem 3.1 in Appendix and (2.19), we have
[P — A, | € 2¥|| Hy| o™ Om—Fonbin) = 9% A, g snrno/in)| Hallses  (2:26)
using {E.lﬂ:l, where |H, |« i the sup norm. Hence, using (2.25) and the fact that
o \Mm, 1, wsing (2.10), we have
b,
A,
Finally we study |H,|w. We write H, as sum of two signed measures by

introducing the normal distribution with covariance matric, ¥, same as that of

Vi

=1+ 0 (v*]|H, =) . (2.27)

H" — {l'irm" . ‘I}ﬂu" {‘I’ﬂrt" :hﬂrl:n ]_ {2.28)

F1 I EH pale . En Enlp, 21
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We estimate the first part by Berry-Esseen theorem and handle the second part
directly, which comes next.

Lemma 2.2, Recall V,, is the ezponential tilting defined i (2.12) with mean vector
iy 1y, covariance matriz £, and marginal variance 72. Then

"‘I}*rrl” — it "1 =Ol:ll,l'l'ill-:|

F1I% I 1'1 I

and if, further, v, satisfies {EQ] then

IIn'n | el ':Il;‘:'l"k 2l lloe =00 (2.29)
Proaf. Observe that
| ‘I';rr:lluk s :I);:fluk _ i ‘I}u:r;*E" — Po 1y | e

which is estimated easily using Slepian’s inequality (see, for {ﬂmmplf- Leadbet-
ter et al., 1983, Theorem 4.2.1). Observe that T"_'EE,, = %o [, — Jp, us-

iy — It "rJ_I"

ing (2.15) and (2.16). Hence, from Slepian’s inequality and asymptotic behavior of
iy and b, in (2.15) and (2.16), we have

121, 2, — Tt ranl= = [P0 25, —Poill=
1 k(k—1) by,
B E 2 \r’l{'ﬂ'rl 'ﬂ'rl = rl G{lfn:l-
If v, satisfies (2.9) and hence, 1::: = o(n], then (2.29) follows. O

Next we study the first term of (2.28).

Lemma 2.3. Recall V,, is the exponential tilting defined in (2.12) with mean vector
fie Ly, covariance matriz £, Assume v, satisfies (2.9), and hence by (1.3), v, =

o/ /n). Then

lim_ o V™= — 8577 o [l = 0. (2.30)

—t fin L,

Proof. Suppose Ej are i.id. ¥, with mean p,1;, covariance £,,. Then

-Vr:rrrtn {11'11'- ukj [ *"bl"k E"{'il.t]_ 11’!::':'
"Iu i — 'ilTl-"j'i"lk 1 — 'inufi"]-k
— P ply) £ ———| — @ S ==
fﬁﬁ_ e VT uz"( Ul )

and hence, by multivariate Berry-Esseen theorem, (see, for example, Bhattacharya
and Ranga Rao, 1976, Corollary 17.2, pg. 165)

[v!l_ Z — pnly) = H] —®yx, {“]‘

Cz Ko
.,.-"m,, )..ﬁ*"z
where w, = E|&, — _u.,,lk":z . (the norm being Euclidean one),

}'rl e kb" el i\ {2.32)
n

" 'L_!*"I:" ‘P*ﬂllk E "1 o "“]'P

Fira
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by (2.15) and (2.16), is the smallest eigenvalie of £, = o, — b, J, and O3 & a
universal constant. So, to complete the proof we need to estimate k,. Using the
definition of V,, (2.12), we have,

Mo =E_"I"T" f"'\/"ﬁ”rll:uj+-..+u:‘r]{Zj:I{“-j _I“l'fljlﬁjlsfﬁd.l.c:u{ﬂl\n..111-k:|.

Recall that F, is the distribution of the last & coordinates of the centered multino-
mial (1;(n— &)/n,1/n, ..., 1/m) distribution, which puts mass 1/n at each of the
ki vectors which have all coordinates —1 fn except the ith one being (n — 1)/n, for

i=1,....k and (n —&)/n at (—1/n, ..., —1/n). Thus,

_Itf- 1, k n—klep ]. ‘3 l 2
Matngg, = K b ki( +_u") L [{k—l](—+;¢,,) +(l———_u.,,) ]
n n n

mn

k]
E

Since, from (2.14) we have g, ~ =2, and by (2.10), we have 5, = log(l + u,) ~
g, — (),

o o g Mnn 2
e r! L
n

Thus, using (2.31) and {2.32), we hawve,
k
"'l.u-rrl: ‘hﬂr!"k 5 "1 E k{-‘? . g Ma¥n_ {E.H:ﬂ
Finally, from (2.7}, we get, for fived &,
ke, Eie®s —1
Mnfn = My ‘I"r{ iy v e e s Srl:l i ‘?n" i + 1My I{]Er [l + Q]
= "[ Elog(l 4+, ) + nlog(1 + Eu,,ﬂ ki::'u‘i ~ %1::‘: — o0

using {2.10). Hence, the result follows from (2.33). O

Comhining Lemmas 2.2 and 2.3, under the assumption that v, ~ 2logn, we
get,
im vf||Hylee =0

Thus, under the assumption v, ~ +2logn, we get from (2.20) and (2.27),

oo

P, ~exp | —k k}ga.+§k>ﬂ{?"’j+_: Z 1+l (\fnufﬂ)

=1

(2.34)
Modifying Lemmas 1 and 2 of Anderson et al. (1997), wecan find 2, = a,x+ 3.,
such that

1o, agn () ’
=z, + z, _ —logn —= =
2 = (E+ 1 +2) V‘f'iln,,g'l'ill b

will hold. Note that the referred lemmas require a polynomial instead of a power
series in the defining equation. However, the proofs work werbatim in our case
due to the specific form of the coefficients. Also using (16) and (17) of the same
reference, we have @, ~ (2log '.nL:I_é and 3, is the unique solution of (1.5) satisfying

logz, + = |{}E{ETT:I
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By~ (2 I{}gﬁ.:l’i‘. Observe that, @, and 3,. and hence, z,, will be free from & Then
using {2.11), we obtain v, which satisfies (2.6). Also, by (2.10),

Uy ™ Uy 1/ My [T = 2y ~ 4/ 20N, (2.35)

as required. However, the only problem that remains is v, would be dependent on
k, as is evident from (2.11). The convergence in (2.6)

_ -1
kP ming <<k Xin s (H{“—U cpe Y8 L ) ] — ek (2.36)

Vg Vg fn n—ka,z+ 3,

i= locally uniform in z, since the left hand side is monotone non-incressing in r and
the right hand side & continuous in z (cf. Resnick, 1987, pg. 1).
Now, take o, = +2logn as in (1.1) and, further, define £, through

1 _kfin—k) n 1

= ; 237
O, T+ _;"3" m n—*Fk 'ﬁ'f:‘fr! o .S'fl { :I
Solving (2.37), we get
]- l = L‘- = a2 .Srl
|f" _ &_ - { rlkjl ; s .ﬁ" . ﬁ_m-':.-" + —[{:" — ]_].. {2.:58)
" r—r"z+.|"]n R e " g
where
1— £yt -
Cn = % ) 1 flogn )
1 — - teiin n\ myin
e :,.:mmu"rl

Sinee @, ~ o, = (2logn)~! and 3, /a, ~ 2logn, we have, from (1.3) and (2.38),
£p — x,using (1.3). Hence, using { 2.37) and by local uniform convergence in (2.36),
we have

ﬂ'k-Prl — “‘kP[;{Irl = {ﬂﬂm + .lrirl:l W mrl.l'll“1 CRCN 1;(1 ] = {ﬂuiﬂ + ﬁu:l W 1nr|.l'llﬁ'|

min X; -1
b | 156k Efin—k) n 1
= Pl —== =y T +.S'fl o + =
- Vo fn s ( VT n— & @&nfn + O
i E—kz

L]

as required in (2.5).
The above analysis also provides a similar result for the maximum of i.id. Bi-
nomial random variables.

Corollary 2.1. Let {Y, : 1 < i < n} be a triangular array of independent Binomial
random variables, with Y1, having Binomial (my,; 1/n) distribution. If we have
logn

n—os Wiy /1 :
then we have
R.f" e {1n‘rn'lllﬂ':| B ‘riu Tn"rlu'lllﬂ' -

g 1T T

where ”E =1/n—1/n® and o, and 3, are chosen as in Theorem 1.1.

P

— exp(—e™"),
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Proof. We have, from (24), with & =1,
—log {P[Yh, < y,,]]" e nPYi, = g — €7,

where g, 5 as in (2.1). The result follows immediately. O

3. APPENDIX

Finally, we prove the result on integration by parts, which was uwsed in approxi-
mating the error between B, and A,_, see (2.26). Let H be the distribution function
of a finite signed measure on R*. For any subset I of 11,...,k} and o € B, define,

yf={;‘ :z;, forl <i< £k,
H(g31,-..,5¢) = H(gl, .- 01)
and
HlgsieN=Hy,...,m)
considered as a function in coordinates indexed by I only.

Theorem 3.1. Forl1 <1< kand I C{1,...,1}, we have,

f f .—*rl:ﬁrj+ +“rk]dH{1 ..... ”-{ _.__L1yk:|

> (ilslem st i gy, )i - dye (3.1)

The bound (2.26) then follows immediately by considering { = k.

Proof. We prove (3.1) by induction on . For { = 1, (3.1) is the usual integration
by pa.rt:-: formula. Assume (3.1) for {. Then

= Z {_l:ll.” / ___f SIE_M:“”+“'+£'"][E_MJHI\J{I-l-l}{ﬂ:m._....1'1”_-:|
I a 4:

f se” -+t [ (g-qp .~Jk:|dy;+1:|d1 - ey

= / f ool ) 1

Ic{1,..,
[{—13'” protny @y w0 + (D) Gy, ) |y dus

where we use the induction hypothesis for the first step and the usual integration
by parts for the second step, and the final step is the required sum, since any subset
of {1,...,1 4+ 1} either contains [ +1 or does not and the remainder is a subset of
11,...,1}. This completes the inductive step and the proof of the theorem. O
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