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1 Introduction

We begin with the statement of the Riemann-Roch theorem ([F]), without
denominators, for Chow groups of zero cycles.

Theorem 1.1 ([F, page 297]) Suppose X is a non-singular variety of
dimension n. Let F*Ky(X) denote the subgroup of the Grothendieck group
Kol X) generated by points in X and CH"(X) be the Chow group of zero
cycles. Let ¢ 1 FPEy(X) — CH"(X) be defined by p(x) = ¢*(x), where
c™(x) is the n—th Chern class of ¥ and let ¢ : CH™(X) — F"Ky(X) be the
natural map.

Then o = (=1)" Y n — 1)Ud and py = (—=1)" ' (n — 1)!1d.

In this paper, we prove an analogue of this theorem for weak Euler classes.
Weak Euler classes take values in weak Euler class Groups.

The definitions of the weak Euler class group and weak Euler classes were
achieved by relaxing the definitions of the Euler class group and Euler classes.
The original definitions of the Euler class group and the Euler classes, for



smooth affine algebras over fields, were given by M. V. Nori. For background
literature we refer to [Mal], [MS], [MV],[BRS1], [BRS2|, [Mu2].

For noetherian commutative rings A, with dimAd = n > 2 and a line
bundle L on Spec(A), the weak Euler class group £y(A, L) has been defined
in ([BRS2]) as the quotient group Ey(A, L) = Go/Hy(L), where Gy is the
free abelian group generated by the set of all primary ideals N of height
n such that N/N* is generated by n elements and Hy( L) is the subgroup
of Gy generated by the set of all global L—cyeles in Gy (see the section on
preliminaries for details).

Now assume that the field of rationals @ is contained in A. For pro-
jective A—modules P with rank(P) = n and det(P) = L the weak Euler
class ey(P) € Ey(A, L) of P has been defined in [BRS2] (see the section on
preliminaries for details).

For a noetherian commutative ring A with dim A = n, we define

FTKy(A) =
{[A/I] € Ko(A) : [ is local complete intersection ideal of height n}

In fact, F*K,( A) is a subgroup of Ky(A) ([Ma3]). It was also established
in [Ma3] that, for a reduced affine algebra A over an algebraically closed field
k, F*Ky(A) is the subgroup of Ky(A) generated by the smooth maximal ide-
als of height n. This subgroup was investigated by Levine ([L]) and Srinivas

([St]).

When @ C A, the weak Euler class induces a group homomorphism
w1 FPE(A) — Ey(A, L).
Conversely, there is a natural homomorphism
Vi Eo(A, L) — F"Ky(A).

One of our main theorems is the following analogue of the Riemann-Roch
theorem.

Theorem 1.2 Let A be a Cohen-Muacaulay ring of dimension n = 2. As-
sume that A contains the field of rationals ). Then oy and oy are group
homomorphisms. Further,

opp = —(n— 1}!IriE-¢,LA,L}
ared
tpwr = —(n = 1)Udpag,iay-



It is known ([BRS2]) that, for any noetherian commutative ring A of
dimension n = 2 with @ € A and line bundles L on Spec(A), there is a
natural isomorphismn

LI Eﬂ{‘qﬂ. ‘4-} — -E’}P{A L}

We also prove that ¢r and ¢4 behave naturally with respect to 5. That
means @, = nriga. We give examples that such a natural property fails when
we extend @ to a larger subgroup F? Ky(A) of Ky(A). Similar examples also
show that such an extension of ¢ fails to be a group homomorphism.

It was observed by S. M. Bhatwadekar that kernel(t’4) is a torsion sub-
group of Ey(A, A). This result is a direct consequence of the theorem stated
above. Our investigation on Riemann-Roch type of theorems on weak Euler
classes originated out of a discussion on this result.

Assume that A is smooth over a field & with char(k) =0 and dim(A4) =
n > 2. Recall ([BRS3, 2.5]) the natural map w4 : Fy(A, A) — CH"( A) that
sends that cyele (J) € Ey(A. A) of a local complete intersection ideal J of
height n to the Chow cyele [J] € CH™(A). The map is well defined because
the Chow cyele [J] =0 when .J is a complete intersection ideal. Following is
a well known open question ([BRS3], [Mu2]).

Question 1.1 ([BRS3, Remark 3.13], [Mu2, Question 5.3]) Let A be a
smooth affine domain over an infinite field k and dim A =n = 2. Let CH™(A)
be the Chow group of zero cycles of X = Spec(A) and 7wy : Ey(A A) —

C'H™A) be the natural homomorphism. Is 74 an isomorphism?

Note that m, is surjective. This question has affirmative answers when
the field & is algebraically closed ([Mu2, page 163]) and when k = E ([BRS3,
Theorem 5.5]).

It follows from our main theorem that, for a non-singular affine algebra
A over a field & with char(k) = 0 and dimA = n > 2, the kernel of the
natural map w4 : £y(A, A) — CH"(A) is (n — 1)!— torsion. In particular,
QR E)AA)=QRCH"(A).

In section 2, we discuss some of the preliminaries and set up some def-
initions and notations. In section 3, we discuss the natural behavior of ¢4
and @p with respect to nr. In section 4, we prove our main theorem on
Riemann-Roch and the consequences.



All rings we consider in this paper are noetherian and commutative with
dimension at least 2. All modules we consider are finitely generated.

The authors would like to thank Craig Huneke for his support and en-
couragement. Thanks are also due to S. M. Bhatwadekar for many helpful
discussions.

2 Preliminaries

In this section we give definition of the weak Euler class group and the weak
Euler elass of projective modules. We also aceumulate some of the results on
K —theory and complete intersections that we use.

2.1 Definition of the weak Euler class groups

Let A be a noetherian commutative ring with dimA =n > 2. Let L be a
projective A-module of rank one. Bhatwadekar and Raja Sridharan ([BRS2])
defined the weak Euler class group Ey( A, L) and weak Euler classes ey(P) €
Ey(A, L) of projective A—modules P, with rank(P) =n and det(P) = L, as

follows.

Definition 2.1 Let A be a noetherian commutative ring with dim A =n = 2
and let L be a rank one projective A—module. Write F = L@ A™!

1. Let Gy be the free abelian group generated by the set

S ={N: N is a primary ideal of height n, and uy(N/N?) = n.}

(The minimal number of generators of a module will be denoted by )

2. Let J be anideal of height n and p(J/J?) = n. Let J = Ny Nan- - NN
be an irredundant primary decomposition of J. Then p( N;/N?) = n and
NieS fori=1,....k Let(J) denote the element Z:";, N; € Gy We
say (J) is the (weak Euler) L—eyele determined by J.

3. A eyele (J) € Gy is said to be a global (weak Euler) L—cyele if F maps
onto .J.



4. Let Hy(L) be the subgroup of Gy generated by all the global (weak Euler)
L—eyeles.

Define Ey(A, L) = Gy/ Hy(L). This group is called the weak Euler closs
group (relative to L). Elements in Ey(A, L) will also be called weak
Euler L —cycles. We use the word "cvele’ in analogy to eyveles in Chow
groups.

i

6. Notation: The image of a cyele (J) € Gy, determined by an ideal .J,
in £4(A, L) will be denoted by the same notation (.J). It will be clear
from the context, whether we mean (J) in Gy or in Ey(A, L).

7. Now assume that the field of rationals Q C A. Let P be a projective
A—module with rank(P) = n and det{P) = L. Let f : P — .J be a
surjective homomorphism. where J is an ideal of height n. Define the
weak Euler elass eo(P) of P aseg(P) = (J) € Ey(A, L). In fact ([BRS2,
page 207]), this association ey(P) = (J) is well defined.

We quote the following theorem from [BRS2].

Theorem 2.1 ([BRS2, Theorem 6.8)) Let A be a noetherian commutative
ring of dimension n = 2 such that the field of rationals ( is contained in A.
Then the natural map

1 Eo( A, A) S Eg(A, L)
is well defined and is an isomorphism of groups.
We now quote the following lemma from ([BRS2] or see [RS]).

Lemma 2.1 ([BRS2, Proposition 6.7]) Let A be a noetherian commuta-
tive ring and P, be two projective modules of rank n such that P& A ~
() A Then there evists an ideal J of A, with height(.J) = n. such that .J
is surjective image of both P and ().

Proof. Since P& A =~ () $ A, we have an exact sequence

{]—)Q;)P&E'AEA—)D.

Let J = f(P). By a theorem of Eisenbud-Evans ([EE| or see [Ma2]), we may
assume that J has height > n. Let g: P& A — A be defined as g(p. x) = x.
One can easily check that gi(Q) = f(P). In other words, ) maps onto .J.

The following follows immediately from the above lemma.

35



Lemma 2.2 ([BRS2]) Let A be a noetherian commutative ring of dimen-
sionn = 2 with @ C A and L be a line bundle on Spec(A). Ky A) wnll
denote the Grothendieck group of finitely generated projective A—modules.
Suppose P and () are two projective A—module of rank n with det(P) = L.
If [P] = [Q] € Kol A) then eo( P) = eo( Q) € Eu(A, L).

Proof. We have rank(P) = rank()) = dim A. We have P and () are stably
isomorphic. Since rank n + 1 projective modules are cancellative, by Bass
cancellation theorem. it follows that P§& A = ) & A. It also follows that
det(P) = det(€)) = L. Now, by the above lemma, there is an ideal .J of A of
height n such that .J is surjective image of both P and ). Therefore, it is
clear from the definition of the weak Euler elass of a projective module that

eo(P) = e9(@Q) in Ey(A, L).
2.2 On the Grothendieck Group and the Chow Group

In this subsection we set up some notations and definitions regarding the
Grothendieck group and the Chow group.

Notation 2.1 Let A be a noetherian commutative ring of dimension n and
X = Spec(A).

1. As usual, Ky(A) (resp, Ky(X)) will denote the Grothendieck group of
finitely generated projective A—modules.

2. F'Ky( A) will denote the kernel of the rank map e : Ky(A) — Z.

3. Define
F2Ky(A) = {z € F'Ky(A) : det(z) = A).

4. Define
FrEy(A) =

{[A/I] € Ky(A) : [ is a local complete intersection ideal of height n}.

It was established in [Ma3, Theorem 1.1] that F™Ky(A) is a subgroup
of Ky(A).

]



5. When n = 2 the two notations for FZKy(A) agree with each other.
This follows from the fact that any unimodular row (a,b) of length 2
is first row of a matrix o € SL,(A).

6. We also write Ky(X) = Ko(A), F1Ky(X) = F'K,(A), F?K,(X) =
F2K,(A).

Lemma 2.2 can be used to see that weak Euler classes define maps on

F2Ky(A).

Definition 2.2 Let A be a commutative noetherian ring of dimension n = 2
with @ € A and L be a line bundle on Spec(A). Write F = L @ A",
Given any x € FPKy(A) we ean write x = [P] — [F] where rank(P) =n and
det(P) = L.

Define ®p(x) = ey( P).

It follows from the lemma 2.2 above that

&y, : F2Ky(A) — Ey(A, L)

is a well defined map.
We will be more concerned with the restriction map

o1 : F*Ky(A) — Eo(A, L)

of &; to F™I( A).
Both the maps ¢, and ¢ will be called the weak Euler class map.

Remark 2.1 Insection 3, we will see that w4 and ¢ behave naturally, with
respect to the natural isomorphism ng @ Ep(A, A) = Ey(A, L), in the sense
that wr = nrpa. We will give examples to show that &4 and & fail to have
the same natural property with respect to nr. In section 4, we will also see
that . is a group homomorphism, while @, is not.

Following are some standard notations regarding Chow Groups and Chern
classes that will be useful for our later discussions.

Notation 2.2 Let X be a non-singular algebraic scheme of dimension n over
a field k.

=1



1. The Chow group of codimension r cycles will be denoted by CH™(X).

2. CH(X) =al'_(CH"(X) will denote the total Chow ring.

Hp={}

3. For x € K,(X) the rth Chern class will be denoted by ¢"(x). Note that
c(x) e CH"(X).

4. efx) =1+ x) + - -+ + ™(x) will be called the total Chern class of .

For general reference on Chow groups and Chern classes we refer to [F.

2.3 On Complete Intersections and A —theory

In this subsection we recall some of the key ingredients from complete inter-
sections and K —theory. The first one among these results is the following
theorem of Suslin ([S] or see [Ma2]).

Theorem 2.2 ([S]) Let A be any commutative ring and (ay, ..., a,_;,a,) be
a unimodular element. Then there is an invertible matric o € GL,(A) such
that first row of « is (ay,. ... rr.,,_11rr.£:’_'}!}.

Boratynski ([B] or see [Ma2]) used this theorem of Suslin to prove the
following theorem.

Theorem 2.3 ([B]) Let R be any commutative ring. Let I be an ideal in R
ond I =k e Jol + 1% Wele I = fiyein fra1)+ I~ Then J is

image of a projective R—module P with rank(P) = n.

This theorem of Boratynski served as a central motivation for some of
the developments in this theory and of some techniques. We introduce the
following notation.

Notation 2.3 Let I be an ideal of a ring A such that I/17 is generated by
n elements. Suppose I = (f1,---, fa) + 7. Let

B(I) = B(L,f) = B(I, f1,-- - Ja) = (f1s- -, far) + I,

We quote the following from [Ma3].

Theorem 2.4 ([Ma3, page 445]) Let A and I be as above. Further, as-
sume that A is Cohen-Macaulay.



1. Then I is a local complete intersection ideal of height n if and only if
so is B(I, f).

2. If I is local complete intersection of height n then

[A/B(L, f)] = (n — 1)[A/]]
in Ky(A).

The following version of Boratyuski's theorem, due to Murthy ([Mul]), is
crucial for our later discussions.

Theorem 2.5 ([Mul, Theorem 2.2]) Let A be a noetherian commutative

ring and I C A be a local complete intersection ideal of height r. Suppose
I =(fr.- )+ P and J = (fi.-- -, feoa) + 17"V Assume fi,....f. is

a regular sequence. Then there is a projective A-module P of rank v and «

surjective homomorphism P — .J, such that [P] — [A"] = —[A/ 1] € Ky(A).

We give the proof of Murthy’s theorem to capture some of the technical
details that will be useful in later sections.
Proof. It follows that (1+s)f C(f;,....f,) forsome s € I. So, 31, fig; =
$(1 + s). Let

A= Z[X X Vs Y 21/ XY = 2(1 4+ 2))

Consider the map
A, — A

that sends X;, Y:, respectively, to fi. g and Z to s.
By Theorem 2.2, there is an invertible matrix 3 € G L. ((Ar )14z ) whose
first row is (x1.. ... 2,1, 27"V, Let o be the image of 7 in GL(As114).
Now, P be the projective A—module defined by the following fiber prod-
uct diagram:

P = Al

Al — AT, = AT,
Here t =1 + s. Then P maps onto J and [P] — [A"] = —[A/]].
The main technical point is, since & comes from (A,) . .). we have [P] —
[AT] = —[A/T].
Also note that, if » = 2 then the determinant of the projective module P
above is trivial. This follows from the fact (see [Sw]) that Pic(A,) = 0.

9



3 The Natural Property

In this section we prove that the maps w4 @ FP"Ry(A) — Ey(A, A) and
wr  F"Ky(A) — Ey(A, L) behave naturally with respect to the natural
isomorphism 5z, : Eg(A, A) = E(A, L).

Theorem 3.1 Let A be a commutative noctherian ring of dimension n = 2.

Suppose J is a local complete intersection ideal of height n and
J=(fi.for oo o)+ J? where fy. fo. ..., [n is a regular sequence. Let I =
(fisfasenos faq) + 7V Assume that L is a projective A—module of rank

1. ¢) maps onto |
2 Q] - [L® A" = —[A/]] in Ko(A).
& ANY = E:

Proof. Since dim A = n = height(.J). we can assume that L is an invertible
ideal and J+ L =A. Find t, =1+ s € 1+ .J such that t,.J C (f;..... [.)

Alsolet ty =1+sy€ (1+J)NL. Let t =tyty = (L+ 8, + 8o+ 5189) = 1+ 8
wheret € L,se J Wehave t.J C (fi,....f.).- S0, L = (fi. o faoy, fin-UY),

Let I

An =Z[X1, ..., 20, Yao -, Yo, Z) /(3 XYi — 2(1 + Z))

There is a natural map A, — A, as described in the proof of Theorem 2.5. By
the theorem of Suslin (theorem 2.2) there is a matrix o € M, (A)NGL,( Ag)
such that

1. o is image of a matrix in M,(A,) NGLL({ An)zi142) )
2. the first row of v is (fi...., fa_1. fi" V') and

3. det(a) = (st)* for some integer k > 0.

Now consider the following fiber product diagram.

10



\ T A?r\;fﬂ\
Here P is the projective A—module obtained by patchmg AP and A? via
. The homomorphism g, is given by (fi..... fa_1. fI") and g, is given
h}.« (L300 00 0).
Emmme of the arguments given in the proof of theorem 2.5, we have
[P] — [A™] = —[A/J] and A"P = A.

Let h : L& P — A = L+ I be the surjective map defined by h(l,p) =
[ —gi(p). Let Q@ = kernel(h). Then the following sequence

0-Q—-LaPH A0
is exact. So, Q@ A= L& P and also
Q={(.p) LD P:l=g(p)}

Let ¢ : ¢ — L be defined by ¢(l, p) = 1. Then ¢ : @ — LI is a surjective
homomor phisimn.

Write ' = L & A™ ! and let ¢ : F — L be the projection to L.

Let K = A" ! and K’ = ker(y). Then sequences

(RS RPATL S0

andd
D= K =Q5%IL S0

are exact.
We will see that there is a homomorphism 7 : (Q — F, such that

1. 7. is an isomorphism,
2. =1m.

11



Now, we will split the proof into two parts. In Part-1 of the proof, we
assume the existence of a homomorphism 5 as above and complete the proof
of the theorem. In Part-1I, will prove the existence of the homomorphism 5
with the above properties.

Part-I: Some of the arguments in this part of the proof are similar to that in
[Mul]. It is enough to prove that there is a surjective map f: F@Q — IG F.
To see this, suppose there is such a surjection f. Let @' = f~'({). Then @'
mapsonto I and Q' § F = Q& F. So, [Q'] — [F] =[Q] — |[F] =[P] - [A"] =
—[A/J]. Also note that det(Q') = L.

Therefore, we will construct such a surjection f: F@Q — I @ F.

Let M = ¢~"(LI). Then there is an exact sequence

0-M-sIgFL5A-0

where the last map v is defined by ~(x, p) = 2 —¢(p) and the first map sends
p e M to (y(p), p).

So. we will prove that L@ A" @ @ maps onto M. Look at the following
diagram of exact sequences:

0—K' —= Q@ —2+ 11 0

- .

0—=K—+M—=IL—0

Note ¢ = ¢n. It follows that K/n(K') = M/n(Q).

Since 17, is isomorphism, it follows that K, = n(K’),. So, s"K C n(K")
for some integer r = ().

The map K/(s"K) — K/n(K') is surjective. Since, t =1+ 35 € L, we
have L/s"L = A/s"A. So, K/s"K = (L & A"=)/(s"(L & A" ?). Therefore
there is a surjective map L & A" % — K /n(K').

Now K/n(K") = M/n(Q). 1t follows that M is surjective image of
() @ L & A" 2. This completes the proof of Part-1.

Part-I1: In this part. we establish that there is a homomorphism ) — F as
deseribed above. We write (0 = () and ()2 = (J..
First. note that

QL ={(l,zy,....2) €L @AY 2 i +. ..+ oy far + 2 f0 =1}

12



and

Define
m:h — F

as follows:
We have Fy = A}. Since o € M,(A), it defines a map o : A} — A}, Let
(l,z1,...,2) € @ and write oz, ..., 2.)7 = (21,22,...,2.). We define
ml,z1,. ... 2a) =, 2,...,2.). Infact, m(l,21,...,2) = (21,22, .- - , Zn)-
Define
w:Q:— F,

as Mol d, iy s tn) = Yoo yn) Infact, ma( oy, oo ooth) = (W ¥ec 00 0):
Consider the fiber product diagram:

le . Q‘!t

NN
F F,—~F.

Here & is the restriction of fd; & o

We want to see that n.d = .
Lot (§, 205 o0 52%) € (Q1)se Lot (yg; 2o, 0)F = ey oo 20)°
Then (L, ... oxn) = (e« s ¥n) = (Lyas ..o Yn)- S0, 128 = 1.

The homomorphism 5 : @ — F'is given by the properties of fiber product
diagrams. Since 1 is isomorphism, so is 1.

Note that n(l,q) = (I, 22,...,2) for some 2....,2,. So, ¢ = ¢m. This
completes the proof of the theorem.

Remark 3.1 The assumption in Theorem 3.1 that height({) = n = dimA
was used only to arrange that L is an invertible ideal with L +.J = A. The
proof of the theorem shows that the Theorem 3.1 is also valid for any local

13



complete intersection ideal J = (fy,.... f.) + J* of height r < dim(A) and

invertible ideals L with J + L = A,

As a consequence of the above theorem the natural property of ¢, follows.

Corollary 3.1 Let A be a commutative noetherian ring of dimension n = 2
with @ C A and L be a line bundle on Spec(A). Then g = nrypa, where
wa : FPKo(A) — Eg(A A) and g : FPKy(A) — Ey(A, L) are the weak
Euler class maps, as defined in Definition 2.2 and ng - Ey(A A) — Ey( A, L)

is the natural isomorphism.

Proof. Let # = —[A/J] € F"Ky(A) where J is a local complete intersection
ideal of height n. We can write J = (fi, ..., fu) + J* where fi. ..., fais a

regular sequence. Let I = (fi,..., fa1) + J=1 By theorem 3.1, there are

projective A—modules P, Q) of rank n such that
1. Both P and () map onto [,
2. [P]=[A"]=—[A/J] =z and [Q] = [LBA™ | = —[A/J] = x in Ky(A),
3. det{P) = A and det(Q) = L.

By definition, w4(x) = (I) in Ey(A. A) and pp(x) = () in Ey(A, L). So, it
follows that @ (x) = gpal(x). This completes the proof of the corollary.

Contrary to the above corollary, @ and @ 4 fail to behave naturally like-
wise. To give an example, we recall the construetion of Mohan Kumar ([MEK])
below.

Example 3.1 (The Examples of Mohan Kumar [MK]) Let &k = Q(t),
where ¢ is a transcendental element. Let p be a prime number and f(7T") =
T? — t, where T is a polynomial variable. Note that f(T%") is irreducible
polvnomial for all integer r = 1. Mohan Kumar defined homogeneous poly-
nomials F,, € k[Ty,...,T,)], inductively, such that Fy(T;,,T;) = F(T, Th) =

T ) snd By=F(Fy, .f,“"]'f:_, where u, = ZT;}} 7.

It follows that F, is an irreducible polynomial of degree p®. So, 5, =
V(F,) is an irreducible hypersurface of the projective space B*(k). Let X, =
P2 Y\ S, be the afline open subset £ # ().

We recall some generalities regarding Chow groups ([F]) and summarize

some facts from [MK]:

14



1. X, is an afline smooth variety over k, with dim X, = n.

2. Let { € CHY(P}) denote the codimension one cyele defined by a linear
equation. Then C'H(P}) is generated, as a Z—algebra, by (.

3. The restriction map j : CH(P}Y) — CH(X,) is a surjective ring homo-
morphism.

4. Let a = j({) € CHYX,). Then CH(X,) is generated by a as an
algebra over Z.

Therefore, CH"(X,) = (a") is generated by a'.

6. CH"(X,) = Z/pZ is nonzero.

on

7. Therefore a™ £Qforr=1,...,n.

Following example shows that ¢4 and ¢ do not behave naturally with
respect to the natural isomorphism 5.

Example 3.2 Let X = X3 = Spec(A) be the smooth affine 3-fold over a
field k = @(¢), as in the above example of Mohan Kumar. We will show that
npd4 # ¢ for some line bundle L.

Let CH(X) = &?_,CH"(X) be the total Chow ring of X.

There is a line bundle L on X such that the first Chern class ¢'(L) = a.

Let P=Lp L 'dAand Q = LEL 1@ L. The total Chern classes of P.Q
are given by C(P) =1—a® and C(Q) = C(L)*)C(L™Y))= (1 +a)*(1 —a) =
1 +a—a®—a* So, AP) = 0 and Q) = —a’. Since a* # 0, we have
A(P) £ Q).

There is a natural homomorphism wy, 1 Ey(A, L) — CHYX) (see [Mu2]).
Then *(P) = (—=1)*ma(®a(x)) and Q) = (=1)*7(Pr(x)). Also note that
A = WLIL-

Let x = [P] — [A%]. Then x € F?Ky(A) and also x = [Q] — [L & A?]. We
claim that npd4(x) # $p(x).

There is a surjective homomorphism P — .J where .J is a local complete
intersection ideal of height 3. Since det(P) = A, by definition & 4(x) = (J)
in Ey(A,A), and 5@ 4(x) = (J) in Ey( A, L).

We claim that &, (x) # (J). For, if &;(x) = (J). then
CHQ) = (—1)eycle(J) = C(P), which is a contradiction. Therefore, &; #
T '1111'



4 Results on Riemann-Roch

In this section, we discuss our results on Riemann-Roch. First, we have the
following lemma on classes of ideals in Ey(A, L).

Lemma 4.1 Let A be a noetherian commutative ring of dimension n = 2
and J be a local complete intersection ideal of height n. Let J = (fi.. ... [a)+

Jand o= (fi,ooo fust) I fiooo [ s @ regular sequence, then the

class (J.) =r(J) in Ey(A, L).

Proof. We will write f, = g,. There exists a local complete intersection
ideal K, of height n such that JnN K, = (fy,..., fo_1:gn) and J+ K, = A.

By induction, we can find, for i = 1, ..., r, elements g; € J and local

complete intersection ideals K; of height n such that

3 J+K;=Aand K;+ K; = A, for i # j.

We will indicate the proof of the inductive step. Suppose we have picked
G1s -+ +» G- We will pick gg. 4. Let Py = {p € Spec(A) : K;N---NK,, C p}and
let Py be the set of all associated primesof (f;,.. ., fn_1). Write P =P, UP,.

Let o, ... @1 1415 -« - + 9 De the maximal elements in P. Assume f, € o
fori=1toland f, € g fori =I+1tom. Pick X € IN(NL_ )\ (U1 804)-
Write gry1 = fo + A This completes the proof of the inductive step.

Let ‘overline’ denote mod ( fi, ..., fr-1).
Then J, K; -+ K, =T K;--- K, =[I(JK;) =91~ G-
So, s NKi...NK, = (f1, fo,.-.5 fr=1,9) where g = gig2- - - g».

Therefore, it follows that (J;) = — X (K;) = r(J) in Ey( A, A).

Also, since the natural map nr : Ey(A, A) — Ey(A, L) is an isomorphisin
(Theorem 2.1), it follows that (J.) = r(.J) in Ey( A, L). This completes the

proof of the lemma.

Before we state our next theorem, we define a map in the opposite direc-
tion to that of the weak Euler class map or @ F*Ky(A) — Ey(A, L).
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Definition 4.1 Let A be o Cohen-Macaulay ring of dimension n = 2. Define
g Eg(A, L) — FPEKy(A) as the natural map that sends the class (J) of an
ideal .J to the class [A/J]. Since J is locally n generated and A is Cohen-
Macaulny, it follows that that J is a local complete intersection ideal and
[A/J]) € FPKy(A).

It follows immediately that 1 = nria.

We will see that ¢p is a well defined group homomorphism in the following
theorem. Following is the statement of our main theorem.

Theorem 4.1 Let A be o Cohen-Macaulay ring of dimension n = 2 that
contains the field of rationals Q. Then,

1. the maps pr @ F'Ko(A) — Eo(A L) and o1 - Ey(A, L) — FTKy(A)
are well defined group homomorphisms.

prr = —(n— 1)Udg, a1y

arel

't,if[,;l.:'L = —{Ti', - ].}”rjl.pnhh[g}.

Proof. Write F' = L & A" ! and Ey(A, L) = Gy/Hy(L) as in the definition
2.1. First, we want to establish that ¢y is well defined. Clearly, since A is
Cohen-Macaulay, the assignment that sends the class (J) € Gy of an ideal
J to [A/J] € FPKy(A) defines a group homomorphism Gy, — F™K,( A).
Now suppose that there is a surjective map F' — .J where .J is an ideal of
height n. Since A is a Cohen-Macaulay ring, .J is a local complete intersection
ideal. It follows that [A/J] = X7 (—1)"[A"F] = 0 in Ky(A). Therefore,
it Eg(A L) — F"Ky(A) is a well defined group homomorphism. (Note
that we did not use the hypothesis that  C A to prove that g is well
defined.)

We have already seen that the weak Euler class map g is well defined.
We will prove that ¢ is a group homomorphism. First, we will prove that
wa: F'Ry(A) — Ey(A, A) is a group homomorphism.

Since the weak Euler class ey(A™) = 0, it follows that ¢ .4(0) = 0. Now let
x,y € F'Ky(A). We can write & = —[A/]] and y = —[A/J], where I,.J are



local complete intersection ideals of height n. We can assume that [ +.J = A.
Let I =(fi,.... F)+IFand J = (gq,-- -, g,) + J*. Write r = (n — 1)! and

FoL R ST Fac)) + I and J. = (g4, -, g._1) + J7. By Theorem 2.5,

there are projective A—modules P, P’ of rank n such that
1. There is a surjective map P — I, and [P] — [A"] = —[A/]] = 2.
2. There is a surjective map P’ — J, and [P] — [A"] = —=[A/J] = ».

We have,
palz) +paly) = eo P) + eo(P') = (L) + () =r(L) + r(J)

in Fy(A, A).

Let K = InJand K = (hy, ..., h,)+ K% Write K, = (hy,... . h,_ )+ K"
Again, by Theorem 2.5, there is a projective A—module ) of rank n such
that [)] — [A"] = —[A/K]| and there is a surjective map Q — K.

So, [Q] — [A"] = —[A/K]| = —[A/I] = [A/J] = 2 + y. Therefore,

palz +y) = e(Q) = (K;) = r({K) =r(I) + r(J) = palz) + paly).

Therefore, 4 is a group homomorphism. Since ¢p = npp,, it follows
that yy is a group homomorphism for any line bundle L on Spec(A).

Now we prove that vy = —(n — 1) dg,4 4. Let x = () € Ey(A, A),
where [ is an ideal of height n with p(f/17) =n.
Let I = (fy....,f.) + I°. Since A is a Cohen-Macaulay ring, we can

assume that f;, ..., f, is a regular sequence. We can write (f,,..., f,) = InN.J,
where .J is a local complete intersection ideal of height n and 1 +.J = A.
So, Ya(z) = [A/I] = —[A/J). Then J = (f1,.... f.) + J° Write B(J) =
(fieeeosfai) + JP= 1 By Theorem 2.5, there is a projective A—module P
of rank n such that [P] — [A"] = —[A/J] = ta(x) and P maps onto B(.J).

By definition (i a(x)) = pa(—[A/J]) = eo(P) = (B(J)). Now it follows
from Lemma 4.1 that the class (B(J)) = (n — )I{J) = —(n — 1)I({) in
Eo(A, A).

So, pa(talz)) =e(P) = (B(J)) =—n-1(I) = —(n —1)!z.

We shall now prove that apa = —(n — 1) dpnag,a). Let z = —[A/J] €
FT"Kp(A). Again, let B(.J), P be as above. Then pa(x) = eo(P) = (B(J)).
By theorem 2.4, we have 4 (B(J)) = [A/B(J)] = (n—1)1[A/J] = —(n—1)x.
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This completes the proof of the theorem when L = A,

In the general case, i = nr(patta)yr' = —(n— L) d g, 4,r) Similarly,
ppr = Vinppa = vapa = —(n — 1) dpag, 4y. This completes the proof of
the theorem.

Following corollary is a partial answer to Question 1.1 stated in the in-
troduction.

Corollary 4.1 Let A be a regular ring containing the field of rationals ) and
dimA=n>=2 Letw,: Ey(A A) = CH"(A) be the natural homomorphism.
Then kernel(my) s (n — 1)!—torsion. So, Q @ Ey(A, A) = Q& CH™(A).
Also.in particular, if kernel(my) has no (n — 1)!—torsion. then w4 is an
isomorphism.

Proof. Let { : CH"(A) — F"Ky(A) be the natural homomorphism. Let
wal(x) = 0. Since that (74 = t)4, it follows that ¢ a(x) = 0. So, (n — 1)lx =
—gatra(x) = 0. This completes the proof of the corollary.

The following result was orally communicated to one of the authors by 5.
M. Bhatwadekar. The result is a consequence of theorem 4.1,

Corollary 4.2 (Bhatwadekar) Let A be a Cohen-Macaulay ring of dimen-
sionn = 2 that contains the field of rationals . Then. kernel(ia) is (n—1)!
torsion.

Following is also a corollary to Theorem 4.1.

Corollary 4.3 Let A be a Cohen-Macaulay ring of dimensionn = 2 contain-
ing the field of rationals Q. Then, the image op (F"Ky(A)) = (n—1)1Ey(A, L).

Proof. It is enough to prove g (F"Ky(A)) = (n — 1) Ey( A A). Let 2 =
waly) be in the image @ ( F"Ky(A)), where y € FP"Ky(A). Note that the
map 'y : Eg(A A) — F"Ky(A) is surjective. So, t4(z) = y for some
z € Ey( A, A). Therefore, £ = p4(y) = pa(ta(z)) = —(n — 1)1z is in (n —
1)1 E4(A, A).

Conversely, let x = (n — 1)I(I) € (n — 1)1Ey(A, A), where [ is an ideal of
height n and 1 = (fi...., fn—1, fa) + I7. Since A is Cohen-Macaulay, we can

assumne that f1...., fn—1. [a I8 a regular sequence. Write J = (f1,..., fac1)+
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Im=U Then 2 = (J) and by Theorem 2.5, x is in @ 4(F™Ky(A)). This com-
pletes the proof of this corollary.

The following example shows that @ fails to be a group homomorphism.

Example 4.1 Let X, be the affine open subset of P} in Mohan Kumar’'s
example 3.1 and X; = Spec(A). Let a be the generator of CHY(A), as given
in the example. Then we know that a* # 0. Let L be a line bundle on X,
such that the first Chern class ¢'(L) = a.

We shall see that @4 is not a group homomorphism on FZK,(A).

Let P=P =L@ L '® A%. We can write P P’ = Q) & A* for some
projective A—module ) of rank 4.

So, the total Chern classes C(P) = C(P') =1-a* and C(Q) = 1—2a* +
a®. So, the top Chern classes ¢'(P) = ¢'(P') =0 and ¢'(Q) = a # 0.

Let = [P] — [AY,y = [P'] — [AY]. Then z + y = (@] — [A']. We have
0 = (P)4c*(P') £ e(Q).

Let wa @ Ey(A, A) — CHYA) be the natural map. We have ma®4 =
(=1)%" on F?Ky(A). Therefore, it follows that ®a(x +y) # ®a(x) + Pa(y).

So, ¢4 is not a group homomor phism.
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