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EQUIVARIANT MORSE RELATIONS
MAHUYA DATTA ann NEETA PANDEY

( communicated by Ronald Brown)

Abstract

For a finite proup &, Costenoble and Waner defined a cel-
lular (co- homology theory for Gespaces X, which is praded
on virtual representations of the equivariant fimdamental
groupoid w5 (X). Using this homology, we associate an infinite
(Morse) series with an equivariant Morse function f defined
on a closed Riemannian G-manifold M. Wasserman has shown
that when the critical locos of f is a disjoint union of orbits,
M has a canonical decomposition into dise bundles. We show
that if this decomposition ‘corresponds’ to a virtual represen-
tation v of mo( M), then the Morse relations are satisfied by
the ~th homolopgy groups’. For semi-free G-actions, we char-
acterise the Morse functions which naturally give rise to such
representations v of wo( M), We also show that correspond-
ing to any equivariant Morse function on a Zs-manifold, it &
always possible to define virtual representations ~ so that the
Morse relation is satisfied by the ‘~+th homology groups’. In
particular, the Morse relation is satisfied by Bredon homology.

1. Introduction

Let & be a finite group and M a closed Riemannian G-manifold. A natural
generalisation of a Morse function in the equivariant context is a smooth G-map
f: M — R whose critical locus is a disjoint union of non-degenerate critical orbits.
Such functions are dense in the space of all G-equivariant smooth real-valued fune-
tions on M [10]. Morse theory of these functions has been discussed by Wasserman
as part of a more general study (see [10]). If f is an equivariant Morse function
of the above type on M, then M is equivariantly diffeomorphic to (N, f) Uy,
[Nz, fIUy, --- Uy, (Ni, f), where (N, f) are handle-bundles over orhits, that is,
the N; are of the form G x g, (DV; x DW,) for some orthogonal H;-representation
spaces V; and W, These handle-bundles are attached soccessively along
G xg, (DV; = W) by the equivariant maps g;. Thus M has the equivariant homo-
topy type of (G x g, DWi) Uy, (G xg, DW2) Uy, - -- Uy, (G x g, DW) ([10]). The
dise-bundles (& = g, DW,) will be called Morse cells associated to f and the above
decomposition will be referred as the Morse complex of f.
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In our earlier paper (5], we tried to establish Marse relations for equivariant Morse
functions on M using Bredon cohomology. The Bredon homology and cohomology
theories do not support the above type of cells. Therefore, it is not surprising that
we can not explain Morse theory completely in terms of Bredon cohomology.

A more general cell structure which includes the dise bundles over orbits as
cells has been introduced by Costenoble and Waner [3]. These cell structures on a
(F-space X are parametrised by ‘admissible’ virtual representations + of the equiv-
ariant fundamental proupoid 75 (X). A representation ~ of dimension n essentially
associates to each G-map r: G/H — X a cell of the form & xgyg DW for some
n=dimensional H-representation space W so that corresponding to each morphism
in (X ) there & a G-disc bundle map over the corresponding orbits [2]. A repre-
sentation ~ then determines ‘admissible’ cell structures which are called G-CW ()
structures on X. This concept can be canonically extended to admissible virtual
representations of 7o (X)) If ~ is the zero-dimensional trivial representation, then
the corresponding cell structure consists of Bredon cells. With this new definition
of G-CW complexes, Costenoble and Waner have defined an equivariant cellular
homology and cohomology theory graded on RO{x5( X)), the set of isomorphism
classes of virtual representations.

In this paper we try to explain Morse relations for an equivariant Morse func-
tion on a Riemannian G-manifold in the light of this RO(7g(X))-praded homol-
ogy theory. After discussing the notion of generalised G-C'W-complexes and the
Rz (X))-graded homology and cohomology theory in Sections 2 and 3 respec-
tively, we prove the following in Section 4:

Let f: M — B be an equivariant Morse function on a Riemannian G-manifold
M whose eritical locws & a digjoint union of G-orbits. If the Morse complex deter-
mined by f is a G-CW(~)-complex for some admissible virtual representation ~
of (M), where each Morse cell occurs a8 a cell of the v-complex, then the ~th
homdlogy groups, Hf_'_",n £ &, explain the Morse relations for f.

Moreover, when the G-action is semi-free, we characterizse the Morse functions
which naturally give rise to such admissible virtual representations ~ of 7o (M.

In Section 5, we show that if M is a Ze-manifold, then it is always possible to
choose an admissible virtual representation ~ of 7 (M) so that the Morse complex
is 4 (G-UW(~)-complex, each Morse cell being a subcomplex of it. In particular we
may choose ~ to be trivial to get a Bredon cell structure. We also show that the
Morse relation is satisfied in this case.

2. Generalised G-CW-complexes

In this section we shall briefly discuss the basic concept of generalised G-CW-
complexes introduced by Costenoble and Waner in [3].

A cell of type G/ H is a space of the form G x g D(W), where D{W) is the unit
dise of an orthogonal H-representationspace W. Thus a cell is canonically associated
with an orthogonal G-vector bundle over an orbit. Hecall that an arbitrary G-
vector bundle over an orbit G/ H is always of the form G xyg W — G/H. The
dimension of the cell is defined to be the dimension of the representation space W.
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The canonical inclusion map G/ H — G x g D{W) is called the centre of the cell.

A cell compler is a G-space obtained from a collection of such cells via equivari-
ant attaching. If X is a cell complex, then the centre of a cell of X defines a G-map
x: G/H — X that is, an element of 75(X). Recall that the equivariant funda-
mental groupoid 75( X)) is the category of G-maps from orbits nto X. A morphism
fromz: G/H — X toy: G/K — X in this category is an equivalence class of a
pair {7, w), where o: G/H — G/K is a G-map and w is a G-homotopy from = to
yoo[l]

It follows from the above that each cell complex X determines a map which takes
an x: 5/ H — X (which corresponds to the centre of a cell) onto a vector bundle
over &/ H ., which in turn is completely determined by a representation of M. This
motivates the following:

Definition 2.1. Let X be a G-space. An l-dimensional representation ~ of mo( X)) is
a functor that assipgns to each element z: G/ H — X of the groupoid an orthogonal
G-bundle over G/H of dimension . Any morphism (o,w): 2 — y in 75(X) maps
onto the homotopy class of a G-bundle map ~(7,w): v(z) — ~+(y), the homotopy
being through orthopgonal maps, so that equivalent morphisms in 74 X') are mapped
onto the same homotopy cliss of G-bundle maps (3, 2|.

The representation is orientable if for any two objects z: G/H — X and
y: G/ K — X of 7g(X) and any two morphisms (o, w), (o, w’): z — v in 7g(X),
Aw) = (o w) (2]

A G-space X with a representation ~ of its equivariant fundamental proupoid
will be denoted by (X, ~).

An l-dimensional representation v is said to be frivial if it assipns the trivial
bundle G/ H x B! to each z: G/H — X . Also, for any morphism (o, w): z — ¥ in
Tal(X), viow) =0 % idg.

It & known that a representation is orientable if and only if it has an orientation
in the sense that there & a map from it to the universal orientable representation [2].
We will assume that all representations considered here are oriented.

Ezample 2.2,

i} If V' is an orthoponal representation space of a group (5, then given any -
space X we can define a representation (which we also denote by V' by an
abuse of notation) that takes an element r: G/H — X in 75(X) onto the
vector bundle G/ H x V.

fii) If £ is a vector bundle over X, then it defines a representation £ of 75(X) by
associating the pullback bundle z*£ to an element z: G/ H — X

Definition 2.3. Let + be a representation of 7o(X) for some G-space X. Let
@: ¥ — X be a G-map. The mnduced representation ¢®y on 7o(Y) is defined by

@*(v){z) = v(doz), where 2 € (Y.
(Mhservation 2.4,

(i) Let X be a G-space such that the fixed point set X ¥ is simply connected for
each subgroup H of & (for example, if V' is a G-representation space, then
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the fixed point sets of V' are linear subspaces and hence simply connected ).
Then a representation of mo( X)) factors through a representation of the orbit
category G of G,

fii} If V' 15 a G-representation space, then its tangent bundle 7 is isomorphic to

the product bundle V' x V over V. Hence, 7 is the same as the representation
defined by V' on mg(V) (see Example 2.2(1)).

fiti} If p: £ — X is a G-vector bundle, then ;i_;;:‘.f = p*t.

fiv) Consider the G-vector bundle p: G xg W — G/ H, where W is an orthopo-
nal H-representation space. We shall denote this bundle by £y in any fur-
ther reference. The tangent bundle 7 of the total space is isomorphic to
GxpgTW =G xg (W x W) = p*&w. Thus it follows from the above ohser-

wvation that the representations T and p*fy are equivalent.

v} If a Gespace X & G-homotopy equivalent to a G-space V. then their equiv-
ariant fundamental groupoids are equivalent. Hence, if p: £ — X & a G-
vector bundle, then any representation v of mo(£) is equivalent to p*i*~, where
i: X — £ is the zero section.

In particular, a representation v of 757 x g D{W)) is completely determined
by ~v{zg), where zg: G/ H — & =g DW & the centre of the cell.

Definition 2.5. Let ~ be a representation of 7 (X)) of dimension [, A G-CW({~)
structure [4] on X consists of a filtration X € X! C --- C X which satisfies the
following:
1. The O-skeleton XV is a disjoint union of orbits z: G/H — X such that
~{z: G/H — X)) is the trivial bundle G/H x B! over G/H.

2. The n-skeleton X = X" U, | e?, where e, are cells of dimension n and

e “re

11, is the attaching map. Let ¢ : ¢ — X denote the characteristic map of

[

e . Let z be the centre of a n-cell €,. if n <[, v(a% o z) has a codimension

n trivial summand and e, = D(+(¢" ox) R i n = 1, & = D(v(¢" o
.'?'II e Ru—fj_

A G-CW{~) structure on X will also be called a ~ structure on X for brevity.
Often, X will be referred as a G-CW-complex, suppressing the representation -,

Remark 2.6, If ~ is a trivial representation of any dimension, then G-CW/(~) struc-
ture means the Bredon cell structure. In fact, if v is an arbitrary representation and
& is a trivial representation, then a G-CW({~) structure on X is also a G-CW(~ + #8)
structure on X and vice versa.

Remark 2.7, Let G xg D(W) be a cell of (X.v) and ¢: G xg D(W) — X be
its characteristic map. Then G x g W = ~(¢ o zg) © B* for some k, where zo: G/H
— (7 % iy D{W) is the centre of the cell. By Obserwation 2.4(iv), ¢*(~) is completely
determined by ¢*(+)(zo) and hence i equivalent to &y, Explicitly, if z: G/K —
5 2y DW & a G-map, then ¢*(~){z) = a*v{zy) = G x -1 5, W, where a € (7 is
such that z(eK) = alf. Thus the induwced representation of a cell in o G-C'W-
compler is its canonical representation.
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Remark 2.8, If X is a G-space and if ~ is a representation of 75 (X)), then X may
not admit a G-CW(~) structure; eg if X & a point and if v is any non-trivial
representation of mo{ X) then X does not admit a G-CW{~)-structure. However, it
can be proved that given a pair (X, ) there exists a G-CWi{~)-complex I'X such that
(TX.~) — (X, ~) is a weak G-homotopy equivalence. Here the representation + on
I'X means the induced representation on it by the weak homotopy equivalence [3, 9].

Remark 2.9, Every smooth G-manifold M admits a G-CW (7 )-structure, where
Tar 15 the tangent bundle of M [4].

Ezample 2.1 Let V be an orthogonal G-representation space and let SV denote
the unit sphere in V. Let € SV and let H be the isotropy subgroup of z. The rep-
resentation space V decomposes into the orthogonal direct sum V = {z) & T,.(5V)
as an H-space, where T,.(5V) is the tanpent space of 5V at z. Since the I action on
{2} is trivial, G xg V = G xg TL.(8V) & G/ H =« R Therefore, by Remark 2.9(i{),
SV admits a G-CW(V) structure.

Ezample 2.11. We have already observed that any representation ~ of 7o (G/H)
is defined by a bundle p: G x g W — G/H for some H-representation space W.
Hence if X = G/H, we may take ['X = & g DW. Indeed, since p*y is equivalent
to the tangent representation on 7o (0X) (see Observation 2.4{iv)), it follows by
Remark 29 that T'X is a G-CW(p*y) complex. The relative structure on (G x5
DW .G x g SW) consists of exactly one cell of dimension dim W.

3. RO(n;X)-graded homology and cohomology theory

Let X be a G-space and let RO{75( X)) denote the set of isomorphism classes
of wvirtual representations of m5(X). We shall not go into the detailed description
of virtual representations here but refer the reader to [3]. If X is compact, then
R{7wn( X)) can be characterised as the Grothendieck proup of the monoid of the
isomorphism classes of representations of 75( X)),

In this section we shall recall the salient features of the equivariant cellular homol-
ogy and cohomolopy theory praded on a subelass of RO(7g( X)), namely the set
of Bomorphizsm classes of ‘admissible’ virtual representations of 7o X)) following
Costenoble and Waner [3].

Let X be a G-CW/(~)-complex. Costenoble and Waner defined a chain complex
(X, ) where for each n 20, O (X, ~) is a 75(X) proup, ie. a contravariant
functor from 75(X) to Ab, where 75(X) is the associated stable category. The
boundary maps are canonically defined natural transformations (see (3]).

One way of describing Oy (X, ) is Cu( X, v)(z) = 37X (2, 2¢), where the sum
runs over the centres xg of the n-cells of X. Here 71X (x, 7p) denotes the morphisms
from x to xp in the stable category.

If Ais a G-CW(+) subcomplex of (X,~), then the relative chain complex is
defined by CL (X, A ~) = Cu( X, )/ Co{ A, ).

Given a stable local coefficient system (that is, a covariant, additive functor)
T: rg(X) — Ab, define abelian groups Co(X, v T) = Cu (X, ) @501 T, which
are obtained by taking the categorical tensor product of the functors O (X, ~) and T'
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over T (X)), The categorical tensor product of two functors as above is obtained by
taking the quotient of the nsnal tensor product of the functors under the equivalence
relation

ffa@b~aaT{fib
Here f € Mor (z,¢) in 75(X ), a € Cu( X, ~)y), b e T{x).

For a contravariant functor T': 75(X) — Ab, the cochain complex can be de-
fined as the group of natural transformations C* (X, ;T = Hom (C, (X, ~), T).

Definition 3.1. Let (X.~) be a G-CW{~)-complex. Define H?_,_"{X:T:I as the
(|7 + n)-dimensional homology groups of C(X,v:T) and HE'™(X:;T) as the
(7] + n)-dimensional cohomology groups of C*{ X, ;T respectively.

The homology and cohomology groups of a G-CW/(~) pair (X, A) can also be
defined in a similar way.

Definition 3.2. If X iz a Gspace with a representation ~ of its fundamental
groupoid, then we define

HG

G (X T) = HE

el T T, (1)
where (I'X,~) & a G-UW/(~)-complex which is weak G-homotopy equivalent to

(X, 7).

Definition 3.3. The reduced homology groups of a based space X with the hase
point + can be defined by H 4 (X:T) = H, (X, +;T) for all n = 0.

In general, the sbove homology and cohomolopy theories satisfy all the Steen-
rod axioms except the dimension axiom. If v = (0, then the resulting homology
and cohomology groups reduce to Bredon homology and cohomology proups with
twisted coefficient system. Thus the homology and cohomology defined above when
eviluated on orbits in integer grading reduce to Bredon homology and cohomology
groups of the orbits and hence satisfy the dimension asdom.

Definition 3.4 (Suspension Isomorphism). If V' is a Gerepresentation space,
then for any G-CW/(~)-complex X with a base point there is a natural (suspension)
isomorphism

HG

G (X;T) = HES

S vl BV X T) (2)

for all n = 0. Here £V X denotes the smash product of X and the one-point com-
pactification §Y of V [7].

More penerally, we have an isomorphism
a: HE (X, A:T) — HS v (X, A) x (DV,8V): T),
where the product of pairs (X, A) and (V. B) is defined as (X x ¥ X x BU A= ¥);

on the right hand side ~ should be interpreted as the representation induced from
~ on (X)) via the projection map p: X x ¥ — X In fact, the isomorphism can
be proved at the chain level itself.

We have similar isomorphisms in cohomolopy as well.
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Definition 3.5. For any representation v of 75( X)) we can define
HS ((X;T):= HE(TEX;T),  HIHXGT) := HY(EZ*XT),

where ¥ X = X A 5% is the kth suspension of X for k = 0. This extends the grading
to virtual representations of the form ~ — B*. We shall call such virtual representa-
tions ‘admissible’.

Let 4 = v — B* be an admissible virtual representation of 75(X). We will say
that X & a G-CW(d)-complex if X iz a G-CW{~)-complex (see Remark 2.6).

4. Morse Relation

Definition 4.1. Let G be the stable orbit category of ¢ and 7 75(X) —s G
the canonical functor. Let T: ¢ — Ab be a covariant additive functor such that
TG/H) = k for all subgroups H of 7, where k & a fixed field. All morphisms are
field homomorphisms. Consider the stable local coefficient system T o 7 on 75(X)
which we denote by T for brevity.

If, for a fived representation ~ of 7o (X)), the equivariant homolopgy proups

Hf_'_x{X;T:I are finite dimensional, then we define the formal Poinoaré series cor-
responding to -y as
P(X;T) =Y 1+ dim HY, (X T). (3)
kcE

Morse Series. Let M be a cosed Riemannian G-manifold, and f: M — B an
equivariant Morse function on M. If N & a non-degenerate critical submanifold of
f then we can decompose the normal bundle vy of N as u$ & vy, where uﬁ, Yy
are the subbundles of vy on which the Hessian of f is positive and negative definite
respectively. The index of N is defined to be the dimension of vy,

It can be proved that M is equivariantly diffeomorphic to

{DUEI w Duh_.-ﬂ:l g, {Du$| w DEJR;III Ly m - - g {DVR;.- i Du;,'_:h

where Ny, Np, ..., N, are the critical submanifolds of f. The bundles Duﬁ_ w Dy
are attached successively along Dvl x Svy; by the equivariant map g; [9].

Given a representation -y of mg(M) we define the Morse series M. (f) by the
formula

U_'r{f:l = Z P,:,Ni (Dvy.,Svy.:T), (4]
=)
provided the relevant Poincaré series are defined. Here vy, denotes the representa-
tion ¢y on mg(Dvy ) induced by the characteristic map ¢;: Dvy — M.
If N; is an orbit of type G/H; then vy, is of the form G =g, (Vi & W), where
G xg, W, = vy, Hence if fis an equivariant Morse function whose critical locus
is the disjoint union of non-depgenerate critical orbits, then M has the structure of
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a cell complex. In particular, it has the equivariant homotopy type of
G g, DWo Uy, Gxg, DW0U--- U, G xg DW,, (5]

where the cells 7 x g, DW; are attached successively along G x g, SW; by the equiv-
ariant maps g;, and dim W; is the index of the critical orbit G/ H; — X.

We will refer to (5) as the Morse complex corresponding to the map f, and each
g, DW,, 0 = i< ras a Morse cell associated to f.

Observation 4.2, In peneral, a Morse complex need not be a G-CW/{~)-complex
where each Morse cell occurs as a cell of the n~complex. For example, consider the
Zs-action on §? given by the reflection in the yz-plane, and the function f: 52 — R

defined by filz, gy, z) = =

If (5) is a G-CW-complex then we obtain Morse relations. We first prove the
following lemma.

Lemma 4.3, Let £ = G xyg W, Then

2

T(G/H) if k=0
HE (G xy DW,G x g SW: T) { (G H) o

0 if k0.

Proof. Let (X, A) denote the pair (G x g DW .G 2y SW) and let n = dim W. Then
X iz a G-CW(£)-complex and A is a subcomplex of X. Moreover, there is exactly
one n-dimensional cell in the relative complex (X, A). Therefore, for & < dim W,
CL X8 =CLA 8, and for & =dim W, CL{X,£) is zero, as there is no k-cell.
Hence for & # dimW, €3 (X, A, £) = 0. Thus Hep o (X, A) = 0 for all & # 0. Further
note that (A £) = 0 and C (X, £)(z) =2 71X (x, z0), where zp denotes the centre
of the n-cell of X. Thus

He(X, AT) = Cu(X,6) @ax T = Y #X(zx,70) @ Tlwx) ~ = T(xq).

P

Here rx denotes the centre of a cell of X of the form & x5 DV, The isomorphism
is defined on the penerators by F: f @a — T fi{a) and then extended canonically.
First note that F is well-defined. Let f € #X(zg, zg) and h € X (2, zg). Then
F(faT(h)(b) = T(f)(T(h)(b)) = T(fh)(b) = T(h* f)(b) = F(h*f @ b).

F is onto becanse for any a € T(zy), Flid ®a) = T(id) ® a = a. To show that
F is one-one, take f@a € 7X (zg.xp) @T(zg) and g be 7 X(zp, z0) @ T (21
and suppose that T(f){a) = T{g)(b). Then id @ T(f){a) = id @ T(g1(b) which is

the same as f ® a = g ® b under the equivalence relation. O

Theorem 4.4, Let f: M — R be an eguivariant Morse function whose critical
locus is the disjoint wnion of non-degenerate critical orbits Ng, Ny, ..., N, having
indices Mg, Aq, ..., A respectively. Suppose that the Morse compler (5) defined by
f s a G-CW{~)-complex for some zero-dimensional virtual representation ~ of
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(M), Then
dim Hf_'_k{ﬂrf;T:I £ T,

where iy denotes the number of critical orbits of index k. Purther,

M) = Y6,

=il

EL'I;{fj - P_:.{ﬂrfjl = (1 +£)Q(t)

for some polynomial QUE) with posttive coefficients,

FProof. Let M* denote the half space {z € M|f(z)<a}lin M foracR. If a; <
aa < --- < dy, are the critical values of the function f, then M*% is obtained from
M®i—1 by attaching finitely many handle bundles, one handle bundle for each crit-
ical orbit. Moreover, these handles are attached disjointly to M®-1. Let N, i =
mj—1 +1,...,m; denote the critical orbits of f corresponding to the critical value
a; in f~'a;_1,a;]. Since each N; is an orbit and + & zero-dimensional, we have
v + BY =p* vy, fori=0,1,...,7 (see Remark 2.7). For brevity, we denote the
representation p*oy of ma(vy ) by vy . Thus we get
Hf_'_k{ﬂrf“-", M- T) =@." Hf_'_k{DuRr‘_, Svy: T)

:'=m;I _1+1

m; G I —
e $i=rr|j_1 +1 "II:.»;E—LE+k{DyN:" SVN:" T:I'

Since N; is an orbit, the homology group # f_ (N;; T is nontrivial if and only
N

—hit+k
if \; =& (Lemma 4.3). Now the first inequality follows from the subadditivity of
dim Hf_,_*{—;T:I [8], namely

dim Hf_'_k{ﬂf; T) = Zdim Hf_'_k{j'l\_fha M1 T).

i=l

It is clear from Lemma 4.3 that M';{_f:l i defined in this case, and

Mi(f) =) P, _, (Dvy, Svy:T)

=il

= z Zf_k dim Hf;._li Dy, Svy s T)
=il & i

= Z t*  (by Lemma 4.3).
=l

To prove the last statement ., consider a G-CW/{~)-complex X and a subeomplex
Y of X such that X =Y Uy e, where ¢ = & xyg DW and v i a virtual represen-
tation of 75 (X ) of dimension zero so that ~|. + B* = &y, A being the dimension
of W. Then H, (X, ¥ T) = Hey 3G xg DW .G xg SW; T)=2T(G/H) =k

when k = A and zero otherwise. Let us denote the generator of H,(X,Y;T) by [e].
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It follows from the homology long exact sequence of (X, Y,
O O T B s O e B e e =2
Hip a2 B (X T) =0,
that if d[e] = 0, then
dim H, (A(X; T) = dim H,1,(Y;T) +1

and

dim Hy 5 (X T) =dim H, 5 (¥ T).
On the other hand, if 8[e] # 0, then it follows that
dim Hy (X T) = dim H, (YT

and

dim Hy 15 (X T) =dim H, 1 (¥;T) — 1.

Therefore attaching a cell amounts to an increment of +* or —+*~! in the Poincaré
polynomial. On the other hand, attaching a cell of dimension A contributes * to
the Morse polynomial.

Since M is obtained by successive attachment of cells it follows from the above
discussion that MI( f) — PY(M) = (1 + #)Q(t) for some polynomial Q(t) with posi-
tive coefficients. O

In the rest of the section we restrict ourselves to semi-free G-action on M and
characterize Morse functions which satisfy the hypothesis of Theorem 4.4,

Note that a representation v of 75 (M) determines a unique (up to equivalence)
(F-representation space for each component of the G-fixed point set of M. When
the G-action is semi-free, the converse is also true. We have the following result.

Theorem 4.5. Let (7 act semi-freely on a smooth manifold M and let f: M — R
be an equivariant Morse function whose crittcal locus s a disjoint union of orbits,
A necessary and sufficient condition for () to represent a G-C'W{~)-complex for
some representation « is the following:

If p is a G-fired critical point of f, then the isomorphism class of v & (0] )i

depends only on the path component of p in MY,

Proof. There are only two orbit types in this case. We define a zero-dimensional
orientable virtual representation v of wo( M) as follows: Let us choose a ficed critical
point pe in € for each component € of MY containing a critical point of f. If
x: G — M iz a G-map, define ~{z) = . Any morphism betweenz, zog: G — M
is mapped to the bundle map induced by g. On the other hand, if z: G/G — M%,
then there are two cases. If  maps into a component C' of M containing a critical
point of f, then define +(G/G — C) =1, © Rrrc, where A, is the index of f
at po. Any morphism between z, ¢ /G — ' is mapped to the identity virtual
bundle map on v & R*c . Any morphism between z: G — M and y: G/G —
(', where ' is a component of M containing a critical point of f, maps to the
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bundle map mduced by the action G x B**c — v~ . If  maps into a component
' that does not contain any critical point of f, then define ~(G /G — ) = 0.
The effect of v on the rest of the morphisms is obvious. Thus + is an admissible
orientable virtual representation of 7o (M) and (5) & a G-CW [~)-complex.

The necessity of the condition follows from the functorial property of . O

Observation 4.6. The hypothesis of Theorem 4.5 is satisfied in the following cases:
l. G is the trivial group so that v, = {u;:l"”’.
2. The G-action is free.
3. The G-action is semi-free and G-fixed set M© is discrete.

Corollary 4.7. Let G = Zy and let f: M — R be as in Theorem 4.5 Let A,
denote the index of f at a G-fivred critical point p and let ,"..f denote the dimen-
sion of {u;:l"r". If the value of My — ’.H? depends only on the path component of p in
M, then there exists a representation v of mo( M) such that the cell complez (5)
defined by f is a G-CW{~)-complex in which the Morse cells appear as cells of the

compler.

Proof. Every action of (7 = &3 & semi-free. The proof now follows from Theorem 4.5
with the observation that there are only two irreducible representations of G, namely
the trivial representation and the antipodal representation. O

We now give an example of functions which satisfy the hypothesis of the above
corollary.

Ezample 4.8. Consider the manifold M = §°7' and the function f: R" — R de-
fined by flzy, 2a,...,2,) = u.pr:? + - +r1,,.'r:i, where ) < ay < as < --- < . The
restriction of f to 57! is a Morse function.

Let &; denote the unit vector in B" having the jth coordinate equal to 1. For
each j=1,...,n, f has two critical points, namely e; and —e;, which are both
non-degenerate (since a; # a; for ¢ # 7) and f has the same index j — 1 at these
two points. The mnmber j — 1 corresponds to the mumber of a;’s which are strictly
less than a;.

Let (¢ = B act orthopomally on 577! so that the fixed point set is the inter-
section of 5! with the subspace spanned by e;,e,41,...,e; for some integers
j.k = j. Then for the critical point e;, j < ¢ < &, A, is equal to the dimension of
the subspace {e;,..., e} while J'.ﬁ = dim{ge;,...,ei—1 ). Thus for any critical point
pin (8™ 1% A, — J'.f = j — 1 and hence the hypothesis of the above corollary is
satisfied.

5. Morse theory on a Z,-manifold

In the previous section we proved that sn equivariant Morse function f: M —
E whose critical locus is a digjoint union of orbits satisfies the Morse relations
{ Theorem 4.4), provided the Morse complex associated to f gives rise to a G-CW-
complex in which each Morse cell appears as a cell of the complex. In general, this
condition is not satisfied.
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In this section, restricting ourselves to a Eo-manifold, we canonically define a
virtual representation v of 7o (M) associated to a Morse function f. It turns out
that the Morse complex determined by f is a G-CW/(~)-complex where each cell of
the Morse complex appears as a subcompler. Next, we fix a coefficient system T' and
prove Morse relations with homology groups Ho . (M; T'). We also observe that the
Morse relations are satisfied by Bredon homology.

Throughout this section ¢ = Zs. Let p, denote the antipodal action of & on
E*, as well as the corresponding representation of £, on B". Let 8, be the trivial
representation of dimension n. The only linear represent ations of Zs are of the form
P

We shall first describe a class of admissible G-CW structures on the generalised

cellk when 7 = Ea.

Ezample 5.1. Tt iz clear from the definition of a G-CW-complex that there can not
be any gy structure on X = D{pg & 8,) for & =[. However for & <1 there & a
prestructure on X; we give an explicit description of such a structure.

o First of all, for 0 < p < &, we attach successively one p-cell e, of type G/e
which pives a pp-structure on S{py).

o Then for & < p £ k& +m — 1, we attach two p-cells, g,, &, of type G/G which
pives a pp-structure on S pp & 8, ).

o Next, we attach a (k + m)-cell e, of type G/ whose interior & mapped
homeomorphically into the interior of the disc X to obtain a pp-structure on

D py. & B ).

o Finally, for each p, &+ m < p < m +1, we attach first a p-cell &, of type G/e
which lies on the boundary and then a (p+ 1)-cell ﬁ;r_'_l of type /e whose
interior is mapped into the interior of X.

Definition 5.2 (Definition of ~). Let M be a G-manifold and f: M — R a Morse
function whose critical locus is a disjoint union of orbits. Let € be a component of
M® containing critical points of f. There can be only finitely many critical points in
a component. Let Ao = min{h, — J.;f: pis a critical point in C'}. There & at least
one critical point po in C' for which Ay, — J'.fr = MAp. Further we observe that the
bundle v & (v, )¥ is isomaorphic with py_.

Ifz: G — M is a G-map, define v{z) = . On the other hand, if z: G/G —
M, then there are two cases. If  maps into a component ¢ of MY containing
a critical point p of f, then define 7(G/G — C) = pa. S B, If z maps into a
canponent O that does not contain any critical point of f, then define +{G/G —
') = 0. Then ~ & an admissible virtual representation of 7o (M), becawse if pis a
(-fixed critical point of f. then by definition the isomorphism class of v{p: G/G —
M) depends only on the path component of p in MY, It & worth noting that the
restriction of 7 to the Morse cell corresponding to a critical point p & py_ © R,
where € is the component of MY contaiming p. As explained in the above example,
the Morse cell D(v ) admits a py_ structure since Ao £ Ay, Consequently, the
Morse complex admits a G-CW/(~) structure with each Morse cell as a subcomplex.
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Remark 5.3, 1t is possible to define other G-CW (~) structures on the Morse complex
so that each Morse cell is a subcomplex. This can be simply done by choosing each
Ao less or equal to min{\, — J'.f: p is a critical point in C'}. In particular, we may

take Ao =0 for all ' to get a Bredon cell structure. In the subsequent discussion,
~ will be any of these virtual representations.

Definition 5.4 (Coefficient System T"). Let ¢ = ;. We define a coefficient sys-

tem on G, the stable orbit category of G whose objects are G/e and G/G [3]. In

the following, the arrows will denote the morphisms in the orbit category G.
G(G/e,G/e) is generated by the equivalence classes of the morphisms

$:G—G—G, geq,

where the right arrow & the identity morphism and the left arrow is g.
GG /e /() is generated by the equivalence class of the morphism

o Gle — Gle = GG,

where the morphism G /e — /e & the identity map.
GG /GG e) is generated by the equivalence class of the morphism

a: GG — Gle — Gle,

where & is the dual of .
GlG/G, GG is generated by the equivalence class of the morphism

¥: GG —Gle— GJG

and the class of the identity isomorphism.
The morphisms satisfy the following composition relations:

(a) @yton = Pgin, (b) ¢ya = &,
(c) agy =a, (d) ¥op = Byea ¥,
(&) o = Byea by, (F) cxcx = vy,
(g) Ya = Byec a, (h) &y = Byeq @.

We fix a coefficient system T which assipns to both G/e and /G the field Zo.
Further, T{g,) =1 for all g € G (so that T{G /e) is a trivial G-module), T{a) = 0,
T{a) =0 and T(y) = 0.

Proposition 5.5. For any pair of G-C'Wecomplezres (X, Y,
HE(XV:T) = H(X/GY/GUXE L)@ H (X5 Y5 Z,).

Proof. First observe that the coefficient system T defined as above B naturally
equivalent to the direct sum of two coefficient systems. Let 7] be the coefficient
system such that T(G/e) = e, T (G/G) =0, Th(¢,) = 1 for all g € & and T} maps
all other morphisms to (. Let T5 be the coefficient system such that Th(G/e) = 0,
To((7/(G) = &a, and Th maps all non identity morphisms to (. Then T is naturally
equivalent to the direct sum of T and T5.
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This implies that
HY(X,Y;T) = HE(X,Y;Ty) @ HE(X,V; Th).
On the other hand, H.(X/G.Y/G U X%; Z3) defines an integer graded ordinary

equivariant homology theory on pairs (X, Y. Its walue on orbits is the same as
the value of H5{—:T}) on orbits. By the uniqueness of Bredon homology it fol-

lows that HE (X, Y1) = H(X/G,Y/GU X%;Zs). A similar argument shows that
HS(X,Y;Th) = H,(XC, Y% Z,). |

Lemma 5.6. With the coefficient system T as above,

Lo forall m<igi+m

0 otherwise.

HE (D(pr @ 6 ), S(p1 @ 0,); T) =2 {

We shall give a proof of this lemma in the next section.
Corollary 5.1. The pp-homology of (Dipy & 8,0, 5(pr & 8,00, for 0 <k <1, is giv-
£T s

HE (D @8,),5(p @ 0,):T)V=2Es, foralm<i<i+m—k,

meti
and zero otherwise. Hence the corresponding Potncaré polynomial is
I+t
PLAD(p @ 00), S(p1 @ 0, T) = Y 1
=kt

Proof. Tt is enough to note that by the Suspension Theorem,

H.E::"“'{ D{FI & HTFI) 5 S{FI & E"I :I: T:I =-FI;?;_+¢' {EP* D{Pf—k & Hrrl :|1 iy S{FI— k@D &m :I: T:I
2HE(D(pr—i B Oun), S(pr—i @0 ); T).
The result then follows from the above lemma. O

Theorem 5.7. Let M be a Zs-manifold and f: M — B an equivariant Morse
function whose critical locus is a disjoint union of orbits. Let T and ~ be as defined
above. Then f satisfies the Morse relation MI(f) — PL(f) = (1 + £)Q(t), where Q(t)
is a polynomial with positive coefficients.

In particwlar, the Morse relations are satisfied in Bredon homology.

Proof. Let D{p & 8,,) be attached as f passes through a critical point p, and let ~
restrict to pp & B* on D{p & 6,,) where k < [. We have seen, in Example 5.1, that
the relative pp-structure on (D{ g & 8,,), S(p; & #,)) is given by one (m + &)-cell
Emak Of type G/ and one i-cell e; of type Gleforall m+ E+1 i<+ m.
Suppose the cells are attached one by one in the order of increasing dimension.
As we noted in the proof of Theorem 4.4, attaching a cell of dimension n canses
an increment of £° or —#"~! in the Poincaré polynomial. Thus for each n, m+ & £
n < m+ I, attachment of the cell g, contributes an increment of af™ — W* ™! in
the Poincaré polynomial, where (a.b) is either (1.0) or (0, 1). Summing over all
n between m+ & and m+ [ we get the value of ﬂ,,{P;:I, the increment in the
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Poincaré polynomial while f passes through the eritical point p. On the other hand,
it follows from the sbove corollary that the contribution to Morse polynomial is

Z::::!_'_k " for the same critical point p. Therefore Ay( M’;{_ﬂ - P;:I = (1 4+ £1C¢)

for some polynomial CJ(t). O

6. Proof of Lemma 5.6

Proof of Lemma 5.6. Letus denote S{g @& 8, )by X, forally 20, Then Dip & 6,,)
is a cone over X, and we denote it by CX,.. Thus we need to compute the relative
homology groups of (X, X,).

Let v = 0. The cone O X, over X, is contractible. Hence by the Bredon homology
long exact sequence of (O X, X,.), we pet

HE(CX,, X,;T)= HE (X;T) foral iz 2 (6)

Thus we need to compute the homology groups HE (CX,, X,:T), HF(CX,, X,:T)
and HE(X,:T) for i = 1.

First, observe that (CX,)% = D" and (X,)% = 57!, while X3 =0 by conven-
tion. By using Proposition 5.5 we obtain

HE(CX,;T)= 03Z; foral r20

Eap ) if r =1}

HE (X TV = 0@® (2 ®Es) ifr=1 (7)
0@ s if r =2
] ifr=1

BE(OX o X T = {Hzﬁ i e

We write the homology in split form to indicate that the components correspond
to the splitting mentioned in Proposition 5.5.
Next, considering the exact sequence

0 — HE(CX,, X,; T) — HS (X3 T) 5 HS (CX,;T) — HE(CX., X3 T) — 0,
we obtain that

Ey ifr=0,1
0 ifrz2

HEOX, X.-T) = { (8)

It now remains to determine the homology groups of X, Since the suspension
EX.of X, B X, for all v 20 by the suspension isomorphism, we pet

Hf_"{X,.:T:I ol HEI{X,._l:T:I forall 1 22,7 = 1.
Therefore
HE(XT) = {HE,_{XH:TJ if izr+l
‘ HE(X,_i1:T) f 1gi<r+1.
The G-action on X is free and X,/ = RP'~!. Hence by Proposition 5.5,
HE(XgT)=Zoforall 0 i <1 1. (10
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