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The use of kemel density estimates in discriminant analysis is quite well known among scientists and
engineers imerested in statistical pattern recognition. Using a kemel density estimate involves properly
selecting the scale of smoothing, namely the handwidth pammeter. The bandwidth that is optimum for
the mean integrated square emor of o class density estimator may not always be good for discr minant
analysis, whene the main emphasis is on the minimization of misclassification rates, On the other hand,
cross-validation—based methods for handwidth selection, which try to minimize estimated misclassifica-
tion rates, may require huge computation when there are several competing populations. Besides, such
methods usually allow only one bandwidth for each population density estimate, whenzas in a classifica-
tion problem, the optimum bandwidth for a class density estimate may vary significantly, depending on
its competing class densities and their pior probabilities. Therefore, in o multiclass problem, it would
he more meaningful to hove different bandwidths for a class density when it is compared with differ-
ent competing class densities. Moreover, good choice of bandwidths should also depend on the specific
ohservation to be classified. Consequently, instead of concentrating on a single optimum bandwidth for
each population density estimate, it is more useful in practice to look at the results for di fferent scales of
smoothing for the kemel density estimates. This article presents such a multiscale approach along with
a graphical device leading to 2 more informative discriminant analysis than the usual approach based
on a single optimum scale of smoothing for each class density estimate. When there are more than two
competing classes, this method splits the problem into 2 number of two-class problems, which alloas
the Aexibility of using different bandwidths for different pairs of competing classes and at the sume time
reduces the computational burden that one faces for usual cross-validation—based handwidth selection in
the presence of seveml| competing populations. We present some benchmark examples to illustrte the
usefulness of the proposed methodology.

KEY WORDS: Mujority voting: Misclassification mtes; MISE: Optimal bandwidths: p value-type mea-
sure:; Pairwise coupling: Posteror probability: Weighted posterior.
INTRODUCTION

a nonparametric classification method called kernel discrimi-

Classification based on kernel density estimates has been
widely discussed in the hiterature on pattem recogniton and sta-
tstical learmng (see, e.g.. Duda, Hart, and Stork 2000); Hastie,
Tibshiran, and Fnedman 2000 for some recent reviews). The
basic problem in classification or discriminant analysis is w for-
mulate a decision rule, dix) : B4 — {1,2, ... J}, for classifying
a d-dimensional observation X into one of J competing classes.
For mstance, the optimal Bayes ruke assigns an observation 1o
the class dg(x) =7* such that j* = arg max;mfi(x), where the
;s are the prior probabilities and the fj(x)’s are the probabil-

These probability density functions are wvsually unknown in
practice and can be estimated from the tmining sample us-
ing some parametne or nonparmetne methods. Kernel den-
sily estimabion (see, eg., Muller 1984; Silverman 1986; Scoll
1992; Wand and Jones 1995) 1s a well-known method for con-
structing nonparametric estimates of population densities. If
Xj1: X2, ... Kjy, are d-dimensional observations in the train-
ing sample from the jth population (j= 1,2, ... .J), then the
kemel estimate .E;-JEI{E} of the jth population density is given
by fim(x) = n ' 0| Kih (% — X)), where the kernel
function Ki{-) is a d-dimensional density function and fy =0
15 4 smoothing parameter commonly known as the bandwidth.
These kernel density estimates are plugged into dg(x) to form

nant analysiy (see, ¢z, Devver and Kitder 1982; Hand 1982,
Coomans and Broeckaen 1986; Hall and Wand 1988; Ripley
1996; Cooley and MacEachem 1998; Duda et al. 2000; Haste
el al. 2001). Using a single bandwidth parameter rather than
separate bandwidths for each of the 4 dimensions requires some
preliminary transformation of the data 1o make the variabil-
ity approximately equal in each dimension, which can be done
by standardizing the dataset wsing the sample dispersion ma-
trix. The Gaussian kemel Kit) = {2.-1']!_"r'“l.-:"_t't"'1 15 a4 popular
choree for the kemel function K{-), and we use it throughout
this article.

Clearly, the pedformance of this nonparametric classifier de-
pends critically on the values of bandwidth parameters. Many
different techniques for choosing optimal bandwidths from the
data are available in the literature (see, eg., Hall 1983; Stone
1984; Silvenman 1986; Hall, Sheather, Jones, and Marron 1991 ;
Sheather and Jones 1991 Scott 1992; Wand and Jones 1995;
Jones, Marron, and Sheather 1996). But, instcad of minimiz-
ing the misclassification mate, most of these bandwidth selection
methods target o minimize the mean integrated square ermor
(MISE =E[f{}j-h{x}l —.fj-{.\r.}l}: dx]) of the class density estimate.
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As g resull, they may lead to rather poor misclassification rates
for the resulting classifier. For discriminant analysis using ker-
nel density estmates, Hall and Wand (1988) proposed a band-
width selection rule by minimizing the MISE of the estimate
of difference of class densities. It has been observed by Ghosh
and Chaudhuar ( 2004) that sometmes the bandwidth minimiz-
ing misclassification rate might be much larger that the band-
width minimizing MISE. 1tis well known that with mereasing
values of bandwidth, the bias of a kemel density estimate in-
creases while its variance decreases. A detailed discussion of
the effect of this bias and vadance on misclassification rates
was provided by Friedman (1997).

On the other hand, popular V-fold cross-validation (see, ez,
Stone 1977; Ripley 1996) and similar methods for selecting the
smoothing parameter in a nonparametric classification prob-
lem may not guide one very well in choosing bandwidths
in practice, because of the piecewise-constant nature of es-
timated misclassification probability functions with infinitely
many muinima. Further, all such cross-vahdation-based tech-
nigues require a huge computation when there are several com-
peting classes. Three other important points to keep in mind in
the case of discriminant analysis using kernel density estimales
are the following:

1. The choice of bandwidths should depend on the specific
observation 1o be classified as well as on the population
densities.

2. Given a specific observation to be classified, one needs to
assess the strength of the evidence i favor of one pop-
ulation or the other for varying choices of bandwidths
for density estimates corresponding to different compet-
g populations.

3. In a multclass disenmination problem, mstead of using
a single bandwidth for each population density estimate,
it is more meaningful to vse different bandwidths for a
class density estimate when comparing it with different
competing class density estimates for classifying a spe-
cific observation.

In this article, for each population we consider a fam-
ily of density estimates {fy :hj € H;} over a wide range of
bandwidths o carry out a multiscale version of kemel discrim-
mnant analysis. Owver the last few years, multiscale methodol-
ogy has emerged as a powerful exploratory and visualization
tool for statstical data analysis. Minnotle and Scott (1993)
and Minnotte, Marchette, and Wegman (1998) used multiscale
technigues for finding modes in univadate and bivanate den-
sity estimation problems. Chaudhun and Marron (1999, 2000)
and Godtliebsen, Marron, and Chaudhurt (2002, 2004) used
similar methods 1o find significant features in regression and
density estimates. Simultaneous consideration of different lev-
els of smoothing is expected to yield more useful information
for classification than that obtained in an approach based on
a single optimum bandwidth for each class densily estimate.
The results of multuscale analysis are presented vsing two-
dimensional plots, which are specific v an observation to be
classified, and there one can visually compare the strength of
the evidence in favor of different competing classes over wide
ranges of smoothing parameters. Statistical uncertainties at var-
ious locations in the plots are also quantified on the basis of ap-
propriately estimated misclassification probabilities, and they
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too are displayed using some two-dimensional plos o facili-
tate the decision about classification. OfF course, the final clas-
sification of an observation must be done by some judicious
combination of all information obtained at different levels of
smoothing, and we discuss some appropriate ways o do this.
In the presence of more than two competing populations, we
follow the same procedure, taking each pair of classes and then
using the method of majority voting (see, e.g., Friedman 1996)
or pairwise coupling (see, e.g., Hastie and Tibshiran 1998) 1o
combine the results of these pairwise comparisons.

2. MULTISCALE VISUALIZATION OF
DISCRIMINATION MEASURES

Suppose that X1, Xz, ..., Xy are training sample observa-
tions from the jth class, where 1 = j = J. To classify an
observation X into one of the J classes, we first need 1o oblain
the density CHLimHlChlﬂ]}}{i} at the pomnt X forall j=1,2, ..., J.
As we pomted oul in the previous section, belore computing the
class density estimate, we can standardize the data ponts in a
class using an estimate of the class dispersion matrix o make
the data more spherical in nature and thereby further justify
the use of a common bandwidth fi; for all coordinate vadables,
The density estimate for the orginal data vectors can be ob-
tained from that of the standardized data vectors using the sim-
ple transformation formula for a probability density function
when the random vectors undergo a linear transformation. For
a given pair of competing classes, say, class 1 and class 2, and a
fixed pair of bandwidths i and fiz for the two class density esti-
mates, there is an ordering between the functions ..F'I.ﬁ, (%) and
.Tr:_f-'_r,-,z{x}l that determmines which one of the two classes 18 more
favorable. We now consider some measures for the strength of
this evidence in favor of one class or the other.

2.1 Posterior Probability

In a two-class problem, for a given observation x and a given
pair of bandwidths fiyp and fz, a posternior probability estomate
for the first population is given by

Irl.?"m,{i}
Irlf'm, (x) +Irz.f'1n3'[-'¢}'

We can use & wide range of values for iy and hz to compute
these estimated posteriors, and plot these using gray scale ina
two-dimensional diagram, where O cormesponds o black (1e.,
the lowest possible posterior for class 1) and 1 corresponds 1o
white (.., the highest possible postenor for class 1),

To demonstrate our methodology, we consider an example
datasel from Ripley (1994) populardy known as the “synthetic
data.” This dataset 1s related 1o a two-class problem, where both
classes are equal mixtures of two bivariate normal populations
differing only in their location parameters. This dataset con-
tains a training sample of size 230 (125 from each class) and a
test sample of size 100D (500 from each class); it is available
at hrtpffwwwlib stat.emuedu. Scatierplots for the training and
test samples of synthetic data are given n Figure 1, where the
dots (-) and the crosses ( x ) represent the observations from the
Lo classes.
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Figura 1. Scatterplols for Synthetic Data. {a) Training set: 250 obsarvations. (b} Test sel: 1,000 obsenations.

We have chosen three observations (indicated by o in Fig. 1)
from the test set and labeled them as A, B, and C. These three
points are purposely chosen from three different parts of the
data. Observation A hies well within the cluster of observations
from population 1, whereas C cleardy belongs to population 2.
The observaton B 1s taken near the class boundary, where both
populations have more or less equal strength. We performed
usual linear discrminant analysis (LDA) and quadratic disenm-
inant analysis (QDA) on this data to classify the entire Lest set
observations using the training sample. Some observations wen:
misclassified by both methods; B is one of these. Although B is
ongimally from population 1, both LDA and QDA gave deci-
sions in favor of population 2. OFf course, both A and C were
correctly classified by both the linear and the gquadratic classi-
fiers. We used a wide range of bandwidths for both populations
to evaluate the postenor probabilities T’,.h Jn(1]x) for different
levels of smoothing. Because there are equal numbers of obser-
vations in these two classes, prior probabilities for our analysis
are taken o be equal.

The wp mow of Figure 2 gives the gray-scale representation
of posterior probabilities for the three cases, where the nat-
ural bogarithms of the bandwidths of the first and second pop-
ulations are plotted along the honeontal and the vertocal axes.
Here, white (high postenor) indicates the regions in favor of the
first population, whereas black (low posterior) points toward the
other population. The intensity of color varies with the magni-
tude of the posternior probabilities, which helps us determine the
regions for strong evidence in favor of one of the two popula-
tions. As expected, we observe a dominance of light-colored
regions in the case of observation A and dominance of dark re-
zions in the case of observation C. However, for observation B,
which lies near the class boundary, the evidence 15 not so clear
in favor of either of the two populations.

22 A pValue-Type Discrimination Measure

In two-class kemel discriminant analysis, we classify an ob-
servation X into population 1 af m fm]{\r.]l = .n'ﬂf-r,},{'n‘.}l For a
given observation X, consider the probabality

Py nixi= Pl= % (x) = H:,Fﬁh{!}':”}-

Cleardy, high values of this probability give a decision in fa-
vor of population 1; low values, in favor of population 2. For
fixed hy and fiz, becanse the density estimates are averages of
iid random variables and density estimates for different popu-
lations are based on independent sets of observations, we can
convemently use nommal approximation 1o evaluate the forego-
ing probability with a great degree of accuracy for even mod-
erately large training sample sizes. Note that for a fixed value
of iy, this asymptotic normality follows from the standard cen-
tral limit theorem for an iid sequence of mndom variables. One
can also let fiy — ) as ny — o0, bul in that case one requires
the condition ::J-I:’-'l — o0 as 1 — oo for asymptotic normal-
ity of kemel density estimates (see, ¢.g., Lindebarg’s condition
for the central limit theorem for triangular arrays in Hall and
Heyde 19807, Using such a nomal approximation with esti-
mated means and varances, we gel

{1 ELfin, (0] = mEL o, (%) |x]) )
/i varl fug (0)1x] + 723 var{ far, (0)1x]
{1 fin, () — 72, (%)) )
?."r.-'r F.\'%hj{x};'::| +.|T11.‘|'§m{1::| /nz 1
where @ is the standard normal distrbution function 1y and ro
are the trining B..lmplL stzes Tor the two classes, and i iy (X)/ny

Py pa(x) = @

=i

15 the variance of fJ,} (x)(j=1,2), which can be estimated from
the training sample using the sample variance of hy "I.‘({I:_I
(X1 =X}, .o KR (X — X))

An alternative interesting inlerpretation of the foregoing nor-
mal approximation of Py g, (X) can be given as follows. For a
given observation x and a pair of bandwidths by and Az, let us
Hnagine a puir‘ul‘ hyp-ulhusus,‘ Hy:m E{fip(X)} = m2E] fap(x)}
and Ha:mE] fig(x)} = maE{ fapix)}. If the raming sample 15
used Lo test these hypotheses using kernel density estimates,
which can be viewed as statistics ke sample means used in
two-sample problems, then the foregomg normal approximi-
tion can be taken as the one-sided p value associated with that
testing problem. This s why we have chosen o call ita p value-
Lype measure of the strength of discnmination.
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Fgure 2. Multiscale Analysis of Synthelic Data.

The botom row in Figure 2 shows these povalues o wo-
dimensional plots for the observations A, B, and C using gray
scales for varwus chowes of fip and fin. As before, the white
region comesponding o high values of Py, (X)) Tavors popu-
lation 1, whereas the black region corresponding o low val-
ues of Py, p,(x) favors population 2. Once again, the plots give
some dea for classilying observations A and C, but not for B.
For observation B, the nearly equal spread of white and black
regions gives an indication of nearly equal strength of evidence
for cach of the two populations depending on different chowces
of bandwidths.

One noteworthy feature of the plots in the two rows in Fig-
ure 2 15 that the plots comesponding to povalues at the bottom
are much sharper than those corresponding o posterior prob-
abilities at the top. Thus the plots m the bottom ow provide
easier visualization of the strength of evidence in favor of one
of the two populations for different choees of bandwidths. The
following theorem explains the reason for such a difference in
sharpness for the two sets of plots,

Theoprem 1. Suppose that for a given observation X,
E[.‘(I{I:J._'{x — X1 )}x] = o¢ for j = 1.2, Further, assume that
N =L (j=12)asN=n +n — o<k, iz =<l
Then,

@) [Py hy(11%) — gl
2 " 3
.S:I-h}{xj = E{ fj (%)} for j=1.2; and
(B) [Py iy (X) — Hm1Sip, (%) = 7282, (X)) = Op(N~V2 %
e'_f"""}l for some C = 0.

a;'j_.':m' =~ ”Plf'\'r_l "'1]!, where

The mam implication of this theorem 15 as follows. For any
givien X and a given pair of bandwidths (fy, fz), the estimated
posterior probability Tf’,}l_;r:{l X} converges Lo .n'|.5|,.}j{x]ll.-'
[71510, (X)) + m285m,(X)] at a mate (M N~12), but, depending
on Sy (X)), S (x), and the prior probabilities, the p value
P, i (X)) converges Lo either 0 or to 1, also at an exponential
rate. For instance, if m1815,(X) = 728525, (X), then Py g (1)
has a +/N rate of convergence 1o a value <5, but the come-
sponding p value-type measure converges 1o 0at a much laster

exponential rate. Therelore, for any given (fy, fi2), as the train-
ing sample siee grows, afler some stage Py, 5, (X)) will always
give stronger evidence than Ty, 5, (11%) for or against popula-
tion 1.

In practice, the choice of bandwidth ranges in Figure 2 15 an
mmportant ssue. It can be shown (see Thm. 2 and its proof)
that under farly general conditions on population densities
and with the use of Gaussian kernel, as the bandwidths tend
to mfinity, the posterior estimates derived from kemel den-
sity estimates end to 5 near the line ha /) = (72 /) ]l”"r [1e.,
logiha) — logih ) = {log(mz) — log(m)}/d in the logarithmic
scale] mn the plots. On onge of the two sides of this line, with
mcreasing bandwidth, the posterior estmate for one population
tends to be larger, and on the other side of the ling, the pos-
teror estimate for the other population tends o be larger. For
as in the case of Figure 2, this hine s the diago-
nal line. Because this is true imespective of the training sample
and the specific observation 1o be classified, the plot will not
carry any useful evidence for classification purposes in the me-
gion comesponding o very large values of the bandwidths. In
the case of p value plots, which are sharper than the posterior
plots with cach pixel more while or more black than in the case
of postenor plots, one would expect to see mostly black on ong
side of this line and mosty white on the other side of 1t for
very large bandwidths, OF course, the computational cost will
mcrease mpidly with the increasing mnge of bandwidths, Keep-
g all of these 1ssues in mind, here we have adopted a rule of
using an upper limit for the bandwidths that 1s about as large as
the maximum pairwise distance of standardized data points in
a population in the training set. For Figure 2, both upper lim-
is for i [log(h) resp.] wrn oot to be about 6 (1.8 resp.). The
lower bound of the bandwidths must be specified as well. 1If we
use very small bandwidths, then there may not be sulficient ob-
servations in the effective regons around the data points. S0 1n-
cluding those small bandwidths may increase the computational
cost while giving unreliable and possibly misleading informa-
ton for classification. One can take a conservative approach
by setting the minimum Ceeser distances as this lower

T :_T!'I:._'_‘l.
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limit. But in some cases this turns out 1o be 0. We have cho-
sen one-third of the first percentile of the pairwise distances of
standardized data points in a population as the lower limit of the
bandwidth for that class. Using the factor one-third is motivated
by the fact that here the kernel is 8 Gaussian kernel. However,
if this first percentile is smaller than the distance between the
specific data point and its nearest neighbor, then using the fore-
going lower limil makes no sense. In such cases, one-third of
the distance between that data pomnt and s pearest neighbor 1s
taken as the lower limit; see the discussion at the end of Sec-
tion 3.3,

When using plots like those in Figure 2, one must keep in
mind that the evidence at a point (hy, iz} in favor of or against
a class needs o be properly supplemented by the reliability of
the evidence as measured by the misclassification rate at that
point (see Sec. 3). Hence, although the plos in Figure 2 are
definitely useful as the first step for forming a visual evidence
for the multiscale classification results, one cannot just use the
visible sizes of white and black regions in the plots for making
the final classification. Instead, one must carefully weigh the
evidence al each point using appropriate weight functions, as
described in the following section.

3. AGGREGATION OF CLASSIFICATION RESULTS

To arrive at the final classification for an observation, one
must ageregate the results obtained at different levels of
smoothing. A natural way to combine these resulls is 1o form
some appropriate weighted average of the posteror probabili-
ties computed for different choices of (hy, h2). Bagging (see,
ez, Bremman 1996), boostung (see, e.g., Schapire, Fruend,
Bartlett, and Lee 1998; Friedman, Hastie, and Tibshirani 2000)
and arcing classifier (see, e.g., Breiman 1998) are some of the
well-known aggregation methods that adopt a similar procedune
for combining the results of several classification technigues.
They assign different weights o different classifiers based on
their corresponding misclassification probabilities, and those
weights are then used o build up the aggregated classification
rule.

3.1 Misclassification Rates

For any fixed choice of (£, hiz), the average misclassification
probability of a kernel classifier for a two-class problem is given
by

ﬂ{fﬂ,h:}l:ﬂw f .-E‘-N‘::I X,

xRy, by

fix)dx + f

=Ry

where Wy, g, is the set of all X's classified into class 1 by the
classifier and 'Rj.” g 18 the complementary set. Usuoal cross-
validation techniques (see, eg., Stone 1977) estimate this
misclassification rate, Alhy, hz), by some kind of empirical
proportion of misclassified cases, and as a result, they lead o
estimates that are usually piecewise constant even when the
true Affy ha) is a smooth function. This problem was dis-
cussed in detail by Ghosh and Chaudhuri (2004). For varying
chorees of bandwidths, these authors proposed a smooth and
more accurate estimate of the misclassification probability for

et Tewedd on kernel density estimates. Their estimates
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Figura 3. Plotfor Probability of Comect Classification {synthetic data).
The optimal MISE bandwidth pair o) and the oplimal banadwidth pair (=)
for misclassification rate are marked.

use normal approximation to the distribution of a kernel den-
sity estimate, which is an average of iid random variables. In
this article we use the method of Ghosh and Chaudhun (2004)
Lo estimate Ay, fn), and consider the plot of the comespond-
ing probability of correct classification [= 1 — Alhy, ha)] in
a wo-dimensional figure using their gray-scale values. Fig-
ure 3 shows such a plot for the “synthetic data™ discussed in
the preceding section. Here white represents high probability
of correct classification, and black represents the opposite. The
bandwidth pair that minimizes the MISE of the density est-
mates (marked by o), and the bandwidth pair that minimizes
Alhy, ha) (marked by #) are also indicated in the figure. One of
the striking features of the plot is the existence of a wide range
of bandwidth pairs with very low misclassification rates, that
have performance comparable 1o the bandwidth pair marked
by #. Note that as logi(f ) and log(hz ) approach the upper limit,
the plot begins to get darker, indicating less credibility of clas-
sification beyond this limil (see discussion at the end of Sec. 2).
This plot gives a useful visualization of statistical uncertainties
in classification obtained by using the kernel density estimales
for different levels of smoothing, and also demonstrates the im-
portance of looking at a wide range of bandwidth pairs instead
of some single optimal pair.

3.2 Weight Function Derived From
Misclassification Rates

Light colors in vanous regions in Figume 3 cleardy suggest
that these regions are most reliable for classification, and that
the weight function wifiy, ha) should ke higher values there.
We define EQ = mify, j, E{m,h:} and consider wihy, fiz)
to be a decreasing function of Alhy,ha) o, equivalently, of
E{hl,hz}l — E{,. Boosting (see, e.g., Fricdman, Hastie, and
Tibshirani 2000) uses the same idea for aggregation where
w=log{{l —A)/A} is taken as the weight function. Clearly,
this weight function takes higher values for those classifiers
that lead to lower misclassification rates, and it decreases grad-
ually as the misclassification rate increases. Bagging (see, e.g.,
Breiman 1996) of course uses equal weights for all classifiers.
A comparative empircal study of bagging (see, e.g., Breiman
1996), boosting, and other ensemble methods has been given
by Opite and Maclin (1999). Baggmg and boosting  meth-
ods use bootstrap (or weighted bootstmp) technigque w gen-
erate different samples from the training data, and, based on



these different samples, different classifiers are developed. The
results of these classification rules are aggregated using the
weight functions. However, our method does not require any
resampling technigque for generating the classifiers; using dif-
ferent values of (f), fiz) leads o different classification rules,
which are aggregated using some weight function. Bagging or
boosting generally aggregates those base classifiers that have
reasonably good misclassification rates. But for some values
of (fy, ha), the kernel classifier may lead to very poor classi-
fication. One must appropriately downweight these classifica-
tion rules. The log function used in boosting decreases with
misclassification probability at a very slow rate. But if one
chooses a Gaussian-type function, which decreases at a faster
rate, then the poor classifiers would be downweighted appro-
priately. Further, wifiy, fiz) should vanish whenever the comre-
sponding Alhy, h2) exceeds any of the two prior probabilities,
because the performance of the classifier then turns out to be
poorer than that of a trivial classifier, which classifies all obser-
vations into the class having the larger prior. Keeping these in
view, in all our numencal work, we have used a Gaussun-type
weight function,

1 (A, o) — AL
ex —_——— =
il T
E.ﬁ L ha —EQ
,_{I ;} < rand
[Aall — AN

E{hl, hi2) = min{mTy, 72}

wihy ha) =

(}  otherwise.

Here, for N =n| + ma, EQ and E,_,{l — E{,}l,.-'N can be viewed
as estimates for the mean and the variance of the empirical mis-
classification rate of the best classifier based on kernel density
estimates when such a classifier is used to classify & indepen-
dent observations. The constant © determines the maximum
amount of deviation from the minimal estimated misclassifi-
cation rate in a standardized scale beyond which the weight-
ing scheme ignores the bandwidth pair (#), hiz) by putling zero
weight on them. Clearly, T = 0 comresponds o the situation of
putting all of the weights only on the bandwidth pairs (fy, fiz)
for which E{Iu L) = EQ. MNote also that the chowe of the fore-
going Gaussian-type weight function implies that for pract-
cal purposes, there 15 no need w consider a value of © larger
than 3. This choice of the weight function is somewhat sub-
jective, and one may use other suitable functions for the same
purpose. However, it is our empirical experience that the final
resull is not very sensitive Lo the weighting procedure as long as
any reasonable weight function (which decreases appropriately
with misclassification rales) 15 used.

3.3 Superimposition of Weight Function Over
Discrimination Measures

Superimposition of this weight function over the plots of
discrimination measures provides a useful visual device for
classification problems. In Section 2.1 we demonstrated the
use of posterior probabilities and p values for visual compar-
ison between the strengths of different classes. Figure 2 gave
some rough idea about the final classification for observations
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A and C, and it could identify the borderline case (observa-
ton B as well. But in higher dimension, the plot of these dis-
crimination measures often fails o differentiale between the
easier and the harder cases. Superimposed versions of discrim-
ination measures become helpful in such situations.

Let us consider an example with two six-variate normal pop-
ulations diffenng only in their location parameters. Suppose

o= (0.0, ..., 0) and common dispersion matrix I;. We also
consider the prior probabilities for the two classes 1o be equal
(m] =7 = .5) and generale equal numbers of observations
(n = n: = n = 50) from these two classes o construct the
tramming sel Nest, consider an observation X = (o, 0,0, 0,0,0).
Cleary, x; = 0 and x; = 2 give the centers for population 2 and
population 1, whereas xp = 1 represents a point on the class
boundary. Therefore, one would expect 1o have three different
behavior of the classification methodology at these three points.
The plots of the discrimination measures for these three cases
are given in Figure 4, where the upper and the lower limits of
bandwidths are chosen wsing the same rule used in Figure 2.
From this figure, it is clearly evident that both postedor prob-
ahilities and p values (top and middle rows of Fig. 4) fail 1o
reflect the differences in sirength of classification in these three
cases. In these plots, although the white region extends as we
move on from x; = 0 tox; = 2, stll in all of the cases we have
an almost equal split in favor of the classes indicated by while
and black regions.

However, the difference in the classification result becomes
evident if we look at the p values superimposed over the weight
function (bottom row of Fig. 4). The weighted p value that has
been ploted against fy and fiz 15

P}, 1 (X) = 54 [Piy i (0 — Shw*(hy, ho),

where w* is the rescaled version of the weight function that
has minimum value 0 and maximum value 1. From the defini-
tion, 1018 quite clear that when the pair (£, f2) has low weight,
Fﬁj -hg{x} 15 expected to be very close to .5, which 15 indicated
by the gray regions in the plots. However, m more reliable re-
gions (e, pars with high weights), we get stronger evidence as
Py (%) moves away (ineither direction) from 5. When x) =0
(or x; = 2), we observe 4 black (or white) color in this region,
which gives a clear idea of the direction and strength of the de-
cision. Evidence for classification is very strong in these cases.
For x; = 1, we observe some white as well as some black color
of almost equal intensity. Cleary, the evidence is poor in this
case, and the plot gives a clear indication of a borderdine case.
Instead of p values, one may also consider the supenmposed
version of posterior probabilities for visualization, but we use
the p values because of its sharpness.

In the plots of posterior probabilities and p values, sometimes
(specially when the data point 15 in g Sparse region) one maiy
notice a white or a black streak near both axes (see Fig. 2).
This is because, for the given sample sizes, using such a small
bandwidth makes one density estimate very close to 0, and thus
the competing class densily estimate turns oul o be the win-
ner. However, these streaks appear inoa region of the plot where
we have g high misclassification probability. Consequenty, the
weight function becomes Ointhe <oe =" “ch makes the plots
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of Pm i )
also give us an idea of the effective range of bandwidths that

one should look at for classifying a specific observation. Recon-

e from such odd-looking streaks. The plots of PE, e

structing the plots of discrimination measures using that range
may help get rid of odd-looking streaks and provide better vi-
sualization.

34 Aggregation by Weighted Averaging

As il has been mentioned carher, a4 natural way o com-
bine the results of different classifiers is 0 use appropriale
weighted averages of posiedor probabilities. The weighted
 value, ng_h:, defined in Section 3.3 can be used for this pur-
pose, because 1t makes sense o rely more on those bandwidth
pairs, which lead to stronger and more reliable evidence for one
of the two classes. We choose the adjusted weight function

walhi, h2) =w* (hy, h2)| Py (%) — 5| = |P}, 4, (x) — 5]

and wse it o aggregate the posterior probabilities obtaned by
different classifiers. The resulting weighted posteriors, 7% ( jix)
(j=1,2), can be expressed as

DY n-x{m,h:}m,_m{ﬁx}/ D wxlhi,ho).

Iy e Fry e

Note that the adjusted weights wy(hy, f2) depend not only on
the estimated overall misc lassification probabilities, but also on
the particular observation to be classified. This data-dependent
adjustment of weight function provides more flexibility Lo the
classification methodology.

In practice, for finding weighted posterior probabilities, one
must fix the range of bandwidiths as well. Our empirical ex-
perience suggests that inoa two-class problem, if we keep on
increasing the range of bandwidths, then, afler a certain level,
the classification results based on weighted averaging of pos-
terions remain unaltered i almost all cases. Aler standardie-
ing a datasel, one can compute all parwise distances between
the standardized observations in oa class and determine the
ath gquantile, 3, (0 = @ = 1), of these distances. One can use
this quantile as the upper limit of the bandwidth for some large
values of o, hke @ = .9 or 95, In all of our numerical work
for aggregation purposes, we use o = 95 and denote the corre-
sponding upper limits by A gs. Similady, for setting the lower
limits of bandwidths for aggregation purpose, we use A ps/3,
where the factor 1 /3 is motivated by our use of Gaussian kernel.
Note that for visualization purposes in Sections 2.1, 2.2, 3.1,
and 3.3, we used a more conservative rule for settng the upper
and lower limits for the bandwidths. Depending on the length of
the interval, we use 60100 equidistant values of f; (j=1.2)
on its range, and then combine the results for different pairs of
bandwidths to arrive at the final aggregated decision.

We conclude this section by considering once again the “syn-
thetic data”™ for the purposes of illustmtion. When we used
doos = (3.263, 3.258) as the upper limit of the bandwidths, for
observations A and C (see Sec. 2.1), the weighted average of the
posteriors (with © = 3) in favor of the first population tumed out
to be 873 and 189, which give a clear indication of the classes
to which they belonged. Including large bandwidths in aggre-
gation reduces the difference between the weighted posteriors,
but generally does not change the classificatnon resull. For -
stance, if we used (10, 10) as the upper limit of the bandwidths,



then Pry g, (11%) for A and C tumed out to be 778 and 273
However, in the case of observation B, for both chowces of
range '?-"m Jip(1]x) was found 1o be very close o .5 [.482 for A os
and 489 for (10, 10} ], as would be expected in view of the fact
that this observation hes near the class boundary where both
classes have almost equal strength. Note that these postenor ¢s-
timates may not always be very accurate, and one may get bet-
ter estimates using other classification methods. For instance,
in the case of the synthetic data, where it is known that both
the populations are equal mixtures of normal populations, one
should expect o get betler posterior estimates using mixture
discriminant analysis (see, e.g., Hastie and Tibshiram 1996).

3.5 Classification Among More Than Two Populations

In the presence of more than two competing populations, it
becomes computationally difficult to determine the opimum
bandwidths by minimizing the estimate of overall average mis-
classification probability Aify, ha, ..., i), In these situations
we can decompose the multiclass problem into a number of bi-
nary classification problems, taking a pair of classes at a lime
and proceeding in the same way as before. The results of all
of these pairwise classifications are combined together 1o come
up with the final decision rule. The method of majority vot-
ing (see, e.g., Friedman 1996) is the simplest procedure for
combining these results. In a J-class problem, after {.{} pitir-
wise comparisons, this method classifies an chservation to the
class that has the maximum number of votes. But this voling
method may sometimes lead to a region of indecision, in which
more than one class can have the maximum number of voles.
Ome can avoud this problem vsing altemative techmgues hike the
method of parwise coupling (see, e.g., Hasue and Tibshirani
1998}, which combines the estimated posteriors for different
pairwise classifications to determine the final posterdors for dif-
ferent competling classes.

4. EFFECT OF BANDWIDTHS ON
MISCLASSIFICATION RATES: INADEQUACY OF
MINIMUM MEAN INTEGRATED SQUARED
ERROR BANDWIDTHS

As we mentioned cadier, the bandwidths that minimize
MISE of the density estimates sometimes lead to poor
performance in discominant analysis. For example, consider
the classification problem with two six-dimensional normal dis-
tributions as discussed in Section 3.3, Because the population
distributions are themselves sphenical, without any standardiza-
ton one can use a single common bandwidth in all directions.
Moreover, because of the similar dispersion structure of these
two populations, it s guile reasonable 1o use the same band-
width f for both of them. Therefore, in this case the average
misclassification probability can be viewed as a function of a
single bandwidth parameter, f.

In Figure 5 (taken from Ghosh and Chaudhun 2004) we
plot the wue average misclassification probability for varying
choices of h. This figure clearly shows the siriking difference
between the optimal bandwidth for vsual density estimation
imarked by o) and that for the classification problem (marked
by #). The best possible bandwidth for the classification prob-
lem (f) leads to a significantly lower misclassification error
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Figure 8. Average Misclassification Probability and Optimal Band-
width.

rate than that obtamed by vsing the bandwidth (£.) that mini-
mizes the MISE of the density estimates.

We also carned out a4 simulation study taking equal num-
bers of observations from these two classes. We generated a
test set of size 1,000 (500 from each class) and classified them
using 100 waining set observations (30 from each class). The
bandwidth pair that minimizes the estimated MISE of the den-
sity estimates (h,) led 1o a misclassification rate of 22.3%. In
contrast, the kernel classifier with the bandwidth estimated by
minimizing the leave-one-out misclassification rate (hy) (which
relates to the weighted averaging method with ¢ =0) could re-
duce the misclassification rate to 18.6%. In this example, the
optimal Bayes classifier based on true densities wrongly classi-
fied 16.2% of the test set observations. Similar 1o what we ob-
served in Figure 5, in our simulated dataset h, = (4.45,4.30)
was found to be much larger than h, = (.75,.75). In density
estimation problems, wsing large bandwidths generally leads
Lo large bias and hence large MISE for the density estimates.
Therefore, in density estimation, with increasing sample size,
one usually shrinks the bandwidth o 0 o get good perfor-
mance. But this is not necessarily the case for kernel dis-
cnminant analysis. Here, depending on competing population
densites, using large bandwidths may also lead w lower mis-
classification rates in some special situations (see, e.g., Hand
1982; Scott 1992; Ghosh and Chaudhuri 2004). As observed
by Scott (1992), a kernel discnminant function based on the
Gaussian kernel tends to behave like the standard near dis-
criminant function as the bandwidth parameters tend to infinity.
If the competing populations are location shifts of a spherically
symmetric distribution, then this linear classifier coincides with
the optimal Bayes classifier. The following theorem on mis-
classification rates provides some useful insights into the as-
ymptotic behavior of misclassification rates as the bandwidth
parameters lend wo infinity.

Theprem 2. Suppose that fi and f2 are such that f IIKII“" *

Sixdx = o0 for j = 1.2, and the kernel K 15 a d-dimensional

density function with a mode at 0 and bounded third derivatives.
Define a constant Cp = a2 /m) and assume that fy and fz vary
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in such a way that hz /iy = Cp, a constant. Now as iy — oo,
Adhy, fiz) has the following asymptotic behavior:

(a) When C; = C:;r, as ny.nr — oo, Alhy ) — m.

(b)y When C; = C"r, as ny.ne — oo, Alhy, ) — o,

(c) When C; = EL", as nyp. Ry — oo, Alfy, o) tends o the
misclassification probability of a quadratic classification rule
aiven by
1 if CrE, {(x — X)) VEK(0)(x — X)}

= Er {(x— X)'V2K(0)(x — X)}

2 otherwise.

When Cr = O, = 1, the foregoing quadratic classifier actu-
going g
ally tums out to be a linear classifier,

dr(x) = arg min[x'?lﬁ{ﬂ}55{X} - ;.5,:,{3;’?3&{1}}3;}]_
4 F2

If the fi"s are spherically symmetric and satisfy a location shifl
maodel, and if the kernel function K is also spherical [note that
VIK(0) is negative definite], then this linear classifier can be
expressed in a further simplified form,

; .
dp(X) = arg mj_ixl Kpj— 5 pipy I

where p; 15 the location pammeter for the jth population
i{j=1,2). Note that the linear classifier described above is the
optimal Bayes classifier under this setup. Therefore, in this par-
ticular case, using large bandwidth leads to a misclassification
probability close to the optimal Bayes nsk.

But using h, does not necessarly lead to betler estimales
for the posterior probabilities. Figure 6 plots the estimated pos-
terior probabilities for the simulated dataset against the troe
posteriors of different observations. When h,, is used for clas-
sification, the posteriors become more scattered [Fig. 6(c)], but
this chowee of bandwidth leads wo very hittle bias for the postenor
probability estimates. In contrast, for h, [Fig. 6ia)], the scatter
shrinks 1o the horizontal line at the center, indicating a reduction
in variance of the estimates, but the bias of the posterior proba-
bility estimates increases considerably. Using large bandwidihs
reduces the vadance of the kernel density estimate at the cost
of increased bias to preserve the ordering of the tue poster-
ors, as reflected in Figure 6. (A detailed discussion on the effect

of such bias and variance on misclassification error rates was
given in Friedman 1997.) Whereas h, leads to 2 mean squared
error of 046 for posterior estimates, by mereases it to 112, In
this case the method based on weighted averaging of posterior
with T = 3 amounts 10 a compromise between the preceding
two [Fig. 6ib)]. It improves the mean squared error (060) of
the posterior estimates significantly withoul sacrficing much
accuracy in terms of misclassification mates (19.1%).

We have observed the inadequacy of h, as bandwidth for
kernel diseriminant analysis in some real data as well. As an
example, consider the diabetes data reported by Reaven and
Miller (1979). This dataset consists of five measurement var-
ables (Fasting plasma glucose level, steady-state plasma glucose
level, glucose areq, nsulin area, and relative weight) and three
classes of individuals (Yovert diabetic,” “chemical diabetic,
and “normal™). There are 145 individuals with 33, 36, and 76 in
the three classes according o some clinical classification. For
this dataset, if we use bandwidths that minimize the estimated
MISE of population density estimates, we gel a leave-one-oul
cross-validated misclassification rate of 12.41%. This error rate
is higher than that obtained for simple LDA and QDA, which
had leave-one-out misclassification rates of 11.03% and 9.66%.
However, our multiscale analysis followed by the weighted av-
eraging of posteriors ked o leave-one-out cross-vahdated ermor
rates of 5.52% for r =0 and 6.21% for r = 3. Note that this
is a three-class problem, and we have used the method of “ma-
jority voling” 1o combine the results of pairwise comparisons
to arive at the final classification. Fortunately, in this dataset,
majority voting did not lead to any tied case for either T = 0or
T=3.

]

5. CASE STUDIES USING BENCHMARK DATASETS

In this section we report our findings based on some bench-
mark datasets that illustrate the utility of the proposed method.
Eesults of the kemel discrimimant analysis based on band-
widths that minimize MISE and that based on the weighted
averaging of posterors (both with 7 =0 and © = 3) are pre-
sented o compare their performance. For classification prob-
lems with more than two populations, we adopt the pairwise
classification method and combine the results using majority
volting (Friedman 1996), as well as pairwise coupling (Hastie
and Tibshirani 1998). Misclassification emror rates for usual

(a) o) ]
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Figura 6. Estimated Posterior Probabifities for the Simulated Dataset.



LDA and QDA are also given o facihitate wie comedarison. As
we have discussed earlier, ina few cases the voting method may
end up with a ted situation. Here, all of those ted cases are con-
sidered “misclassification” Therefore, the reported resulls on
voling are actually the proportion of misclassifications in the
worst possible cases. The datasets that we consider here have
been analyzed before in the literature, where nonparametric
methods like classification trees (see, ¢.g., Breiman, Friedman,
Olshen, and Stone 1984 Loh and Vanichsetakul 1988; Kim and
Loh 2001 ), neural nets (see, ¢.g. Cheng and Titterington 1994,
Ripley 1994, 1996) and flexible discriminant analysis (FDA)
(see Hastie, Tibshirani, and Buja 1994) based on multivan-
ate adaptive regression splines (MARS) (see Friedman 1991)
were used o classify the observations. We have quoted those
results directly from the available hiterature. Throughout these
experiments, sample proportions for different classes are used
as ther prior probabilities. Apart from the vowel recognition
data, all of the datasets considered in this section are available
at fttp v libustat. comedn.

Svuthetic Data.  Description of this dataset has already been
given in Section 2.1, Ripley (1994) vsed these data 1o com-
pare the performance of different classification algorithms. The
class distributions were chosen 1o have a Bayes risk of 8.0%. In
this dataset, LDA and QDA could achieve test sel error rates of
10.8% and 10.2%. Classification tree (CART) also misclassified
more than 10% observations (see Table 1). The performances of
other nonparametne methods were farly similar, Weighted av-
eraging of the posterior achieved the best error rate when 7 =10
was used.

Vowel Recognition Data. This dataset was created by
Peterson and Bamey (1952) by a spectrographic analysis of
vowels in words formed by an “h™ followed by a vowel and then
followed by a *d.” There were 67 persons who spoke different
words, and the two lowest-resonant frequencies of a speaker’s
vocal track were noted for 10 different vowels. The observa-
tions were then randomly divided into a raining set consisting
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of 338 observations and a est set consisting off 333 observa-
tons. Here the classes have sigmificant overlaps between them,
which makes the dataset a challenging one for any classifica-
ton method. A scatterplot of this dataset 1s mven in Figure 7,
where the numbers represent the labels of the different classes
(0} represents the 10th class).

This dataset has been extensively analyzed by many authors
(see, eg., Lee and Lippman 1989; Bose 1996; Cooley and
MacEachem 1998). Bose reported a test set error rate of 18.6%
for neural network methods when 20 hidden nodes were used,
the lowest ermor rate reported for such methods. Error rates for
LDA and CART were much higher than those for the other clas-
sifiers. For this datasel, the best west sel misclassification rate re-
ported by earhier authors 1s 17.4%, which was achieved by the
k nearest-neighbor algonthm (see Lee and Lippman 1989). In
this dataset, the method based on weighted averaging of poste-
riors with T =3 together with the majority voting rule led to an
error rate of 17.7% and had a clear edge over most of the other
classifiers.

When pairwise coupling instead of majority voling was used
for final classification, we obtained an error rate of 24.6% for
weighted averaging of the posteriors with T = (0. We suspect
that the pedformance of the pairwise coupling method in the
presence of a large number of overdapping populations turns
out 1o be bad because the optimal bandwidth minimizing the
miselassification rate does not always lead w good estimates of
postenor probabilities—as we have seen before. The posterior
estimates may become better when © = 3 15 used instead of
7 = (). Perhaps this is the reason for improved pedormance of
the classifier leading to an error rate of 21.3% when we used
weighted averaging of posteriors with T = 3 together with the
pairwise coupling method.

Sonar Data. This dataset, used by Gorman and Sejnowska
(1988), contains 111 patterns obtained by bouncing sonar sig-
nals off a metal eylinder and 97 pattems obtained from rocks
at varous angles and under vanous conditions. The rans-
mitted sonar signal is a frequency-modulated chirp, nsing in
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Figura 7. Scatterplots for Vowea! Recognition Data. {a) Training set: 338 obsen—tigns. (b) Test set: 333 obsenations
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narnal Kernal jweighted averaga)

Neural
Datasats DA QDA Degree ! DegreeZ CART networks (MISE}) t=0 =43
Synthetic 108 102 93 96 10.1 9.4 9.3 9.0 9.1
Vowel” 252 198 207 19.8 237 18.6 189 189 17.7
Sonar 202 154 221 19.2 202 19.2 17.3 16.3 135

oty voling & used lor fingl clhssiticaton.

frequency. Signals were oblained from a vadety of different as-
pect angles, spanning 90 degrees for the cylinder and 180 de-
grees for the rock. Each observation is a set of 60 numbers in
the range 0 to 1.0, each of which represents the energy within a
particular frequency band, integrated over a certain time period.
To reduce coordinatewise dependence, the data were averaged
in bands of 3, making the number of measurement variables 20.
The dataset was split into training and test sets each of size 104
using a cluster analysis method o ensure even matching.

Resulis for different classification methods on this dataset
were given by Ripley (1994) and Cooley and MacEachern
(1998). QDA performed quite well in this dataset compared
with other classification methods like LDA, FDA-MARS,
CART, and neural nets (see Table 1), The kernel method with
T = 3 led to even better performance.

51 Forensic Glass Data: A Challenging Problem for
Kernel Discriminant Analysis

This datasel contains information on refractive index and
eight other components (weight percentage of oxides of Na,
Mg, Al, Si, K, Ca, Ba, and Fe) for each of the six different
types of glasses. There are 214 observations in the dataset, but
most of them are window float (70) and window nonfloat (76)
zlass. The rest of the classes, namely vehicle glass (17), con-
tainers (13), tableware (9), and vehicle headlamp (29), contain
much smaller number of observations, making this a difficult
high-dimensional classification problem.

Ripley (1996) extensively analyzed this dataset and reported
cross-validated error rates for different classifiers. The best re-
sult was reported for the k nearest-neighbor (see, eg., Cover
and Hart 1968; Duda ¢t al. 2000) method with £ = 1 when
the measurement variables were suitably rescaled. This rescaled
nearest-neighbor algorithm had an emror rate of 23.6%. The mis-
classification error rate for the usual nearest-neighbor method
was found to be 26.6% for k = 1. Neural networks with four
to eight hidden nodes had been reported 1w have emror rates be-
tween 24.8% and 299%. LDA in this dataset led 1o a cross-
vilidated error rate of 379%; QDA was even worse, with an
error rate of 40.2%. CART had error rates ranging from 31%
to 42% for different types of pruning. FDA-MARS (with de-
gree 1) could achieve an ermror rate of 32.2%, which was reduced
to 29% when interactions were laken into consideration. Logis-
tic discriminant analysis (see, e.g., Ripley 1996; Hastie et al.
2001) and projection pursuit (see, ¢.g., Huber 1985) had higher
error rates (36% and 35.5%) than the other nonparametric ¢las-
sifiers.

Because four of the nine measurement variables (oxides
of Mg, K, Ba, and Fe) had a sigr*~anl number of 0's among

their observed values, we dect. - cary oul oar analysis with

the remaining five varables. But even after using this subset of
measurement variables, we could achieve a competitive perfor-
mance for classifiers based on kemel density estimates. Using
the bandwidths, which minimize the MISE of the density es-
timates, for classification led to fairly good performance. The
leave-one-out estimate for the misclassification error was found
to be 31.3%. We oblained even better performance using the
method of weighted averaging of posterior. The error rates for
t=0and r =3 were found o be 299% and 28.5%. when
majority voling was used. When pairwise coupling method was
applied to this dataset after weighted averaging of posteriors,
the aforementioned error rates increased w0 31.3% and 36.45%.

5.2 Effect of Bandwidth Ranges on
Misclassification Rates

In Section 34 we proposed a working rule for choosing
the bandwidth ranges for aggregation purposes. For a given
dataset, & ps/3 and A g5 are taken as the lower and upper
limits of the bandwidihs. Our empirical experience suggests
that for moderately large sample sizes, if we use bandwidths
smaller than 4 gs /3, then the classification result generally re-
mains the same. For almost all observations, either becaose of
the high varance of the densily estimates or because of the
poor misclassification rates of the classifier, the adjusted weight
function wyifiy, hz) becomes vintually 0 in this region. As a con-
sequence, these regions usually have no effiect on the weighted
posterior probabilities of different classes.

In contrast, as we discussed m Secton 3.4, increasing the
upper limit of the bandwidths generally decreases the differ-
ence between the weighted posteriors without disturbing their
orderings. Therefore, the misclassification rate of the weighted
ageregation method remains more or less unaffected. As shown
in Table 2, the misclassificaton rates for different choices of
the upper limit of the bandwidths are almost equal for all of the
benchmark datasets analyzed here.

Tabla 2. Percentage of Misclassifications for Different Choices of
Upper Limits far Bandwidths

Upper fimit Lgs/3  Agsi/2  Ags  Zhgs  Jhgs
Synthetic t=0 9.0 9.0 9.0 9.0 9.0
=3 a1 a1 9.1 a1 9.3
Sonar =0 15.4 16.3 16.3 16.3 15.4
r=3 12.5 13.5 13.5 13.5 14.4
Voweal” t=0 18.6 18.0 189 18.6 19.2
=23 19.2 189 17.7 17.4 17.7
Glass™t r=0 28.0 308 299 25.4 30.4
=3 28.5 209 28.5 30.4 25.4

“ Moty voling & used tar final classification.
F Humbers represent Bava-ona-oul amor rales.
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APPENDIX: PROOFS
Proof of Theorem 1

(1) To make the expressions notationally simpler, let us de-
fine T; = .ﬂ'jf},.»,}, {x) for j =1, 2. Now, because T; is an aver-
age of iid andom wvariables, from the central limit theorem,
it follows that under the assumed moment condition, for large
sample sizes, T; tends 1o be nnrmdlly distributed with mean
T :_.-rJ.S‘g;}{x} and variance v = ol ",r.ﬁ- (x)/n;.

Now define a function (T}, T2) = T} /(T) + T2). Here
Ty and T> are both positive-valued mndom vanables and are
independent. Moreover, the function ¥ is continuously differ-
entiable in T) and T5. Therefore, the usual asymptotic Taylor
expansion leads o

{Wr(Ty . Ta) — iy, T2}

v whene

ey Normal(0, 1),

] o 1,2
2 9 2
Z Uj( s ) .
3 r”':' N=1;.Tx=12

=1

V=

Because nj/N — & = 0 as N — oo (j = 1,2), we have
W (T1, T2) — WriT1. 12)| = Op(N~Y3).

i(b) Without loss of generality, let us assume that 7 > 13,
that is, Iz Sip, (X) = m283, (X)} = 1. Now, for some fixed hy,
fiz, and x, from part (a), it follows that

1
ST - T~ (@ - w)l £, Nomal(0, 1)

as N — oo,
Now define Z, s, (%) = = +H{Tl T2) = 'N{T} — T2)/V,

where V = {n} "m,{x”)'-' + J—rE;,-Ehz{x}ﬂ._l}la'l_ Therefore,
Ziy (%) = Op(N'/?) and —5Zy, 1y (X) — (11 —12)/V =C
isay). For x = 0, using the fact that l¢{t}l =1 —dix) =
{T — —-;}uil{-.}l [where ¢ (-) and (-} denote the pdf and the
cdf of a standard normal distribution], we get 1 — Pry (X)) =

| — @ (Zi, 1y (X)) = Op(N~2e= M),

Proof of Theorem 2
First, note that
Al ho) = mi B {1 iy < m2fon ) |
+ 2B, {I(m1 fin, > 72 fan, )}

From the definition nl‘_jﬂf,:n}{x} i j=1,2),1it is easy Lo see that

- —d i—X
Eglfix)} = E; | K and

fy

& E "
varg | fi (x) } = n; I.’:j T'rva__ré |:.£{

13

Using a Taylor expansion about @, K{{x — X)/f;} can be ex-
pressed as

Ix—x
K
fiy

1 3
} = K(0) + E“"_ X)'VIK(0)(x — X)}

T Z ¥, p; [because VEK(0) = 0],
ﬁIJ ik

]
where ¥i g ¢ = (xi — X;)(xe — Xe)(u — Xp) 5o |o—g for some

intermediate vector £ between 0 and (x — X)/h;. Therefore,

Eg {fin, (0}

4 1 ; _
= b ’[Km} + 52 Bl = X VK@) x ~ X)) + 0] -‘}]
)

and
vary {-fj-"f,' (x) }

= (dnih ) 7 [varg {(x — X) VK 0)(x — X)} + O )],
using the facts that K has bounded third derivatives and
[ IxI%fix)dx < oc.

As the variance of a kernel density estimates asymptotically
converges to O, for any given observation x and a given pair of
bandwidths (f_ h2), the comresponding classifier classifies x 1o
class 1 if and only if

mEy, {-le {t}} - "TIE.@{-E”E {x}}
1 1
- .-T[f!r"l [H{“} + H!—IEI.", Hx —X)'VE(hix— X)!
1

+ r}ua,--‘}]

> mah3* [K{HH i Epl(x— X)'VIK(0)(x — X))
!

+ om,_:-"*}]

= O C _"'|:.‘i’{“}l+ Jl Er{(x —X) VEK(D)(x — X}

+r}ual--‘}]

1
[Hm}+ 7 — Ep [(x = X)' VK(0)(x— X))

+ (}{!:;3}]_

{a) When Cy < Cp?, for large iy and hz = Cyhy, the forego-
ing inequality holds whatever the observation x. Consequently,
the resulting classifier asymptotically classifies all observations
Lo class 1.

{b) Similarly, when Cp = C;;"r, for every x, the resuling

classifier asymptotically al* - ~lassifies it o class 2.
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(e) When Cp = G, for large values of fi; and ha, it is
easy o check that the foregoing inequality holds if and only
if Ci? By {(x —X)'V2K(0)(x— X)} = E{(x— X)'VIK()(x —
X)}. This completes the proof.

[Received fuly 2003, Revsed March 2005}
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