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1. Introduction

Quantum dynamical semigroups (QDS), e, Cp-semigroups of completely positive (CP)
contractive maps on C* or von Neumann algebras (assumed to be normal in the von
Neumann algebra case), are important objects both from physical and mathematical view-
point. It is thus quite matural to look for a nice classification scheme for them. As in
every branch of mathematies, one would like to find one or more computable {prefer-
ably numencal) invariants for QDS with respect o some suitable equivalence relation,
which s by now accepted as the so-called cocyele congugacy ntroduced and studied
in a series of papers by Arveson [1-3], Powers [11], Bhat [5, 6] and others. There has
already been a considerable amount of literatre on this problem as well as the related
{and in some sense equivalent) problem of classifying prodoct system of Hilbert mod-
ules, thanks to the intensive works by a number of mathematicians (see, ez, [1. 4, 14]
and references therein). However, while much is known about QDS on B(H) (where H
15 & separable Hilbert space). and 4 nice numerical invanant (CArveson index’, see, ¢.g.
[2]) is available in this case, QDS on other types of von Neumann algebra are not so
well understood, in the sense that there s not yel any satsfactory numerical {or casily
computable) invanant for QDS (or, equivalenty, product systems of Hilbert modules) on
general von Neumann algebras, In order o construct such invariants, it is reasonable to
first restrict attention to just a single CP map instead of semigroup of CP maps. This is
what we attempt to do in the present anticle for the hypedinite type 11 factor. While we
are not yet able to come up with a satisfactory numencal invariant for an arbitrary nor-
mal CP map on the hyperfinite 1T factor, we do get a nice invanant for an interesting
class of CP maps, namely the *pure’ ones. This invanant, though not numencal, 15 given
by a quadruplet (m. v, by, o) where mois a nonnegative integer (o it can be thought of
as an analogoe of “Arveson index” in this case), v 15 4 measure (with suitable property)
on the two-torus T2, and by, by: T* — M,,(C) are unitary valued v-measurable maps.
Thus, the invariant 1$ in Some sense nol a very abstmet object, and easily computable. It
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can be descernbed at least by a sequence of complex numbers, if we describe the measure
v as well as the bounded functions z — b(k, 1) = (k,)-th entry of bi(z), i = 1,2, in
terms of the Fourer coefficients. Apart from the pure CP maps, we also study in some
detail another class which we call ‘extendible’. We give necessary and sufficient condi-
tions for extendibility, and propose some mvariants for such CP maps, including numencal
invariants.

2. Preliminaries

2.1 Intertwiner module

Let h be a Hilbert space, .4 € Bih) be a unital von Neumann algebra. Given a nommal
unital CPmap T: 4 — A, by Stinespring’s and KSGNS theorems (see [ 10]) we can oblain
a Hilbert von Neumann 4 — 4 bimodule (to be called KSGNS bimodule) £y € Bih, Kr)
for some Hilbert space Ky, anormal representation mp: A — C(Er) © B )yand &7 € Er
such that Tia) = (&, api{alér).¥a € A Hew (& ) := £%5 is the A-valued inner

product on £ and mp (A)ErA s otal in £ which implies that 7 A)Erh is total in K.
Setting pr: A" — B(Kr) by

priaimria)h = myla)éra'h,

we gel a normal representation pp of A" such that mp(.A) and pr{A") commute and the
Hilbert (right) module £ coincides with the intenwiner module I{py, A") (see [9, 13])
of {pr..A"), which is given by

Hor. A )={ReBhKr): Ra' =pr(a)R.¥a' € A'}.
Lemma 2.1, Let T and E7 be discussed av above. Then
Li&r) = (pr(A)).
Proaf LetB € CiEr).Fora e A,a" € A, h € h, we have
Bpria'iwria)erh = Barla) Era'h = pria WBmria)ir)h.

Since w{A)Erhis total in Ky, B € (pridA"
For the converse, let B € (pr( A, Fora” € A" and £ € £ we have

Bta' = Bpria' )t = pria’)BE.
This implies that BE is in the intertwiner module £,

Let us now introduce vardous equivalence relations on the set CP(A4) of normal unital CP
maps. From now on, unless there 15 a specific need o mention, we shall omit the adjectives
‘normal CP unital”.

The following equivalence relation is motivated by the definition of cocycle conjugacy
for CP maps.

DEFINITION 2.2

We say that two elements T, § of CP(A) are equivalent, denoted as T == §, if there exist
unitaries i, vin A, such that for alla £ A,

Sia)y=v* Tt awiv.
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We also introduce another (stronger) equivalence relation ~.
DEFINITION 2.3
T ~ & if there exists unitary u € A such that S{a) = Tiu*auw) forall a £ 4.
If § == T as above, we have
Sia)y=v*"T{w*an)v = J.I*{..";‘T,.ﬂ';-{u*ﬂu}ET}u
= v ar(u) ar(alrrin)érv = (£, mria)s),

where £5 = mr{u)Erv. So the comesponding KSGNS bimodules can be chosen to be the
same, say £, and £5 = W for some unitary W e £(8).

It is not unreasonable to identfly two CP maps if the KSGNS bimodules are 1somorphic,
L. can be chosen to be the same. This keads to the third equivalence relation.

DEFINITION 2.4

We say that T and § in CP(A) are KSGNS-equivalent, to be denoted by T ~ 8, if the
bimodules £ and £x are isomorphic.

It is clear from our discussion that T~ § = T = § = T ~ 5. However, the converse
implications can be shown o be false in general.

2.2 Second order irrational mtation algebra and its representations

Fix an irmrational number &, and consider the irmtonal rotation algebra 4y, (see [8]),
which is the universal C*-algebra generated by two unitaries [F and Vo osatisfying the
Weyl commutation relation UV = AVE, where & = e™™¥ Let 1 be the unigue faithiul
normalized trace on A, and (H, = L*(A,. 1), 7. 1), be the associated GNS triple. From
now, we fix the von Neumann algebra 4 as the (unique up to isomorphism) hyperfinite
type 1) factor, identified with the weak closure of Ay in B{H; ). Itis well-known that g is
isomorphic with the crossed product C(T) w0 £, with respect to the action described in [8].
Define the unitary operators Uy, Vi, Uy and Ve in BiH ) by Uja = Ua, Via = Va, Ua =
all and Via = aV fora € dp © H;. It is clear that the C*-algebras C*( L, V) and
C*(U,, V) are weakly dense s-sub-algebras of 4 and A respectively. The vector 1 is
cyclic and separating both for 4 and A",

Consider the +-sub-algebras 4" and 4" of 4 and 4’ respectively, where A" s
the unital #-algebra generated by all polynomials in the unitaries U; and Vp, and A" is
the similar algebra obtained by replacing Uy, Vi by U, V, respectively. Clearly, A" is
normm-dense in A,. Moreover, let A™ denote the w=algebra of Al fin Hape A" fin senerated
by polynomials in all the four unitades £, Vi, U, and V, and B bethe C* algebra obtained
by completing A™ in the norm-topology of BiH, & H;).

Lemma 2.5, The C*-algebra B is ivomorphic (as C* algebra) with the crmossed product
C*-algebra C{T?) »u Z* with respect to the action o given by a(k;, k2){ f)(z1,z2) =
Fo Tz, A g,

Proof By definition, the crossed product C*-algebra C(T?) x Z? with respect to the action
@ i the universal C* algebra generated by four unitaries Wy, Wa, Wa, Wy satisfying

Wi Wa = Wal, WaWy = WaWs, Wils =AW W, WaWw, = AW Wa
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It can be verified by a straightforward calculation that the linear map i: C(T?) » 22 —
AM defined by

WD =Ur®1, g(Wa) =1@V,, giwa) =V, '@V,
W) =U""8U,.
gives the required isomorphism. O

From the general theory of C* crossed product, it is easy to show that B = C(T?) = 22
is simple, and thus any nonzero representation is a C* somorphism. Thus, the C* algebras
B. C(T?) = Z* and C*(Uy, Vi, Uy, V, )(S B(H;)) are all canonically isomorphic, and we
shall identify them whenever there is no chance of confusion, and shall call this C* algebra
the “second order rrational rotation algebra”, and denote it by A:;']. It is actually the 4=
dimensional noncommutatve wrasin the sense of Rieffel and Schware [ 12], comesponding
Lo the skew-symmetric 4 x 4 marix A = ({gg; ), withapy = ay = 0.0y =ay3 = -4,
and all other entries are zerm. Moreover, from the proof of the above Lemma, it is clear
that the map i gives an algebraic isomorphism between 4™ and the #-algebra generated
by Wi,i=1,..., 4.

The weak closure of the C*-algebra AE] in the weak topology inherited from B(H, @
Hedis A@ A Z WHUL V) m B2 Z L2(T?) » 27, which is again a concrete realization
of the (unique up to isomorphism) 11, hyperfinite factor, with the faithful normal trace '
given by the vector state {1 @ 1. -1 @ 1}. We mtroduce bere some notation for future
use. We dencte by £y the veetor 1 @ 1, and by o' (where ¢ € 4 @ A" the operator of
right multiplication by ¢ on H; ® H;, ie. b := be, forb € A@ A, viewed as an L-
element. Thecommutant of 4@ 4", ie. A"® 4, coincides with the set {¢": c € 4@A4"}.
We shall use the notation £ 2(X) for {&n. X&) whenever it makes sense, even when the
operator X 1s unbounded but contains £; in its domain.

Mow we make an important ohservation regarding extension of representations.

PROPOSITION 2.6

Any representation 7w of the x-algebra A ™ ( A™) extends to the C*-algebra As {AE] )

Proof. Let us give a sketch of the proof for 4" only. The proof for A™ is similar. Let
m: A B{H') be a representation. Thus, we have two unitaries 7(U;) and 7(V})
acting on B{H"), satisfying the commutation relation m (U7 )m{ V) = Ax(Via(L;). Since
the commutative C*-algebra Ci(T) is the universal C*-algebra generated by a unitary, we
can get a representation my, say, of C{T) which maps f € C(T) w fim(L;)). Clearly,
(i, { Vp)) is acovariant representation forthe action{m- £)iz) ;= f{A™z), andthus, there
existsa representation 7: C(T) =2 (= Ag)into BH) satisfying 7 (L) = a(Up), 7(V)) =
T V).

.
2.3 Irreducible representations rJ_f'AIE;]

Following [ 7], we say that a separable representation  of the irrational rotation algebra Ag
has the uniform multiplicity m if the restriction of 7 to C(T?) has uniform multiplicity m €
{152y oot The factor representations (in particular, the rreducible representations)
are in the above class. In [7], the author gave a nice invariant of amformm multiplicity
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representation on the irrational rotation algebra 4z, These representations are classified
by their multiplicities m, a quasi-invariant Borel measure v (where gquasi-invanance 15
with respect Lo rotation by the angle 278 ) and a unitary one-cocycle b, 1t is not difficult
to venfy that the arguments of [7] can easily be extended to the second order nrational
mitation algebra AE]. We summarize this fact as a theorem below, the proof of which is
omitted since 1t s very similar to the proofs of analogous esults in [7].

Theorem 2.7.

(1) Any irveducible representation of ,AE] = C(T%) = 22 = C*(W,. Wa, Wa, Wy) ix
unitarily equivalent to a representation of the form Ty v, b described below, where
m € MU {0}, v is an ergodic regular Borel measure on T> which is alvo guasi-
invariant with respect to the action @ of &7 given by @, anz = (AMz1, ¥2z22),
and two v-measwrable unitary valued functions by, b ™ - M (T such that
Tim, vy, Ba): 2] B(LX(T?, v) & C™) is given by

a(Wfiz) = 21 flz).
a(Wa) f(z) = z2 f(2),

d
7(W3)f @) = bi(2),f :'v'“

(2) f Az, 22),

i g A0V 2 _
x(Wa) fiz) = bzmﬁj T“” (z1, Az3), 2.1)

dvgyas . B A > :
where f: T — M, (T), and ld’u = iy the Radon-Nikodvm derivative of the measure
Uiy iy iveEn by

Uy a (E) = vy 222 € E}

with respect to v. Note that vy, | 4, s equivalent to v as v is guasi-invariani.
(1) Two irreducible representations @iy v b, by and T
if and only if

(i BBy By @ unitarily equivalent

1. m = m and v = v can be chosen;
2. there exists a unitary-valued, v-measurable map W: ™ — M (T sarisfring

Wb (z) = B (2IW(hz1, 72), W(Dba(2) = Baiz) Wiz, Az2).

3. Invarianis for CP maps on type I1; factor

3.1 Swate associated with CP map

Given g normal CP unital map T on the type [T} factor A, consider the associated KSGNS
bimodule £, eyelic element &7 € Ep, and the representations mr, pr discussed in §2.
Now we define a representation Ty A @gye A =B (K5 ) by

Aria®a’) = maria)pria’).
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This is a homomorphism since 7wy (a ) and py{a’) commute. By Proposition 2.6, the restric-
tion of 7 to the weakly dense subalgebra A™ extends to the C*-algebm AE], and we
denote this extension again by the same notation. Since mr (A)ErH  is dense in Kp, and
1is eyelic for A, it is clear that £ 1 is eyelic for (77, A @ge A" K We define a state
Yy on AE] by setting

Yri-) = (Er L Ty ()&, ). (3.1
Since 7 is defined also on A &g, A", we shall define e on A @g, A" o, given by
the same expression as in (3.1). Note that we have, vria®@a’) = {1, Tia)a" 1}, Lisclear
from the construction of vrp that (K7, 77, £71) is a choice of GNS triple for . Thus, for
two CP maps T, § € CP_A), the comresponding state vy and 5 have unitarily equivalent
GMNS representations if and only if 7 and 75 are unitardly equivalent. This leads o the
following observation.

PROPOSITION 3.1

T ~§ if and only if iy and g have unitarily equivalent GNS representations, e Tr
and T are unitarily equivalent.

Proof. Suppose first that T ~ §, and &4 is an 4-linear unitary from £y o £y satisfying
Umria)ld* = mgla) for all @ € A. Using the fact that {ev: ¢ € £y, v € H,;} and
fev: e € Eg, v e H}are totalin Ky and Kg respectively, it is easy to verify that the map
U: Ky — Ky defined by

Ulev) :=Ulehw, ecfr, veH,,

extends to a unitary in the Hilbert space sense, and Unpia)lU* = mgia), Upria)U* =
psia foralla € A, a" € A, which means that Umgp ()07 * = w750,

Conversely, given a unitary L7 Ky — Ky such that Uap()L* = m5(-), we can define
U: Er — Es by

Hiey= Ue,

where ¢ € & is viewed as an element of B(H ., Kr). This is easy to prove that & is an
A-linear unitary map, which also intertwins the left actions on the two modules, and thus
Er and £y are isomorphic as bimodules,

We now want to charcterize the states on A5 which are of the form wrr for some
T & CP(A). Let us denote by S the set of all states v on AEJ such that
i) wil@a)={l.a'l)= t(a’) forall &' € A""™; and
(ii) the restriction of the state ¥ on 4" @ 1 admits a normal extension to 4.
FROPOSITION 3.2
The map T + p is a bijection from CP{A) 10 Sp.

Proaf 1t is clear that for T & CP{A), v is an element of S;. Let us first show that it is
one-to-one. Let T and 77 be two CP maps such that Jyir = Yy, For any a € AL and
a', b e AV we have

Yrla ®a'b) = {1, T{a)(a)'b'1) = (1, T'(a)a)*b'1}.
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This gives
la’l, T{a)b'l} = {a'l, T'(a)b'1}.

Sinee {a’l:a’ € A"} is total in M, it follows that T{a) = T'{a), ¥Ya € A*™_ hence for
alla & A.

MNow we show that themap T +— 1 is onto. Let 1 € S We define a sesquilinear form
T(a) for @ in the completion of A" ie. Ag by the following, where a). i € Anan.

{ﬂf I, T{ﬂ}lﬂi I} =via® {ﬂ]}*ﬂg}l.

Fora;.i =12 ..nin A"™and by i = 1.2 .. .nin A"™ we have
> . T(bbjas) =Y wib'b; ®aja;). (3.2)
o v

Since ((b57bj)) and ((afaj)) are positive in M,(A) and M, (A") respectively, and each
a; commutes with each bj,oat follows by standard arguments, similar to those used for
proving the positivity of Schur product of two positive (numencal ) matnces, that the nght-
hand side of (3.2) s positive. By the condition |5 g6 = 7, T(1) = 1. This, combined
with the positivity of the right-hand side of (3.2), suffices 1o show that Tia) extends o a
bounded map from g to B{H; ), 1o be denoted by the same symbol again. It is also easy
toseethat Tis CP and Ti.dg) € (Ap)" = A Finally, as the resriction of the state r on
A @ 1is normal it follows that the map T extends as a nommal CP unital mapon 4. O

32 Invariant for a pure CP map

DEFINITION 3.3

Anclement T & CPi.4) is said to be a pure CP map (see [?16]) if there does not exist any
CP (not necessarily unital) normal map § on A, other than scalar multiples of T, such that
T—-5isCPR

PROPOSITION 3.4

ACPmap T: A — Aispure ifand only if the state \ry is a pure siate on the second order
irrational rotation C*-algebra AE] '

Proaf. First we note that the state Wy is a pure state if and only if the GNS representation 77
isimreducible. Since Ty is constructed out of two commuting representations mp and oy, the
imeducibility of 77 is translated into the fact that 77 (CAY (e (A = arl AV [ LIET)
15 trivial.

Now, it suffices to prove that T is pure if and only if 77(A) [ C(Er) is tivial. This
fact can be dedvced from Corollary 3.7 of [16] by some straightforward arguments, or by
adirect argument along the lines of the proof of a similar fact for states as in [15]. O

Thus, given any pure CP map T on A4, the state Y is o pure state on the second order
irrational rotation C*-algebra A,[gl], ie. its GNS representation 77 is irreducible. Theo-
rerm 2.7 provides o quadruplet (m, v, by, 20, which 1s an invanant for the CP map T under
the KSGNS equivalence ~. Moreover, it is a complete invanant for ~ by Proposition 3.1,
It is also easy tosee that if T s pure and § 15 KSGNS equivalent to 7', then § must be pure.
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For a measure (@ on ']Iq, let us denote by g and g2 the marginals given by
pilA) = plA x T, pa(A) = w(T x A),

where A is a Borel subset of T. The restrictions of the representations 7 to the C*-
algebm Ay = C*(L, Vi) and C*(L,, V) extend to normal representations of 4 and 4"
(respectively) by our assumption, so it is clear that the marginals v and ve of the gquasi
invariant Borel measure v on T2 obtained sbove are absolutely continuous with respect
to Lebesgue measure on T. In fact, as 1y coincides with the canonical trace 7 on A", v
should be equivalent to the Lebesgue measure on the one-dimensional torus.

W summarise the above discussion in the form of a theorem below.

Theorem 3.5. A complete invariant for the set of pure CP maps on A under the KSGNS
equivalence ~ iy given by the guadruplet (m, v, by, b2) as described in Theorm 2.7, with
the additional condition that v is abselutely continuows with wspect to the Lebesgue
measure and vz is equivalent to the Lebesgue measure.

Remark 3.6. 1t should be emphasized to avowd any confusion that the invanant discussed
ahove is well-defined only afier fixing the isomorphism between the weak closure of .4y
and the hyperinite 11 factor. This is quite natural from the viewpoint of bimodule theory
over factors, but this is different from the case of classification theory of automorphisms
of ally factor.

3.3 Extendible CP maps

It should be noted that the state Wy associated o a CP map T may not extend to the von
Neumann algebra 4 @ A, since given a pair of normal representations 7, o of A4 and 4’
respectively (acting on the same Hilbert space) such that 7{a) and p{a") commute for all
a, ', it is not in general possible to get a nommal representation ¢ of 4 @ A" such that the
restrctions of ¢ to 4 and A" are respectively 7 and p. In the appendix, we have given a
counterexample which justifies this remark. Now, we are going o investigate when g
extends to the type 11y factor 4 64" as a nommal state. Let us call the map T extendible
if ¥rr extends to a normal state on A4 ® A, or equivalently, 7 extends 0 a normal
representation of A @ A" To give a necessary and sufficient criterion for extendibility, we
need the following generl result.

PROPOSITION 3.7

Let C C B{Hy) bea C* algebra, and C be its weak closure. Let a discrete group U admit
a strongly continuous unitary representation on Hy given by, say, U 2 y — . Assume
furthermore thatu, Cuy, = C.sothat B, defined by i, (-) = u, - v, defines aT -action on
C as well as on C. Consider the C* crossed product C = T and the von Newmann crossed
product CurT. Let @ C U — T be a state. Then, ¢y extends to a normal state on Cxur if
and only if for every y € U, the bounded linear funciional ¢, defined by ¢ (c) = ¢icd, )
is weakly continuwous (where cdy, denotes the C-valued function given by by (y") = 0 if
y' #y.andiscify’=y)

FProof Let us prove only the nontrivial part, e, the i7" part. Consider the GNS nple
()., £) for the state ¢, and denote by 7y and Uy the restriction of 7 o C and widy)
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rmespectively. ILis enough to prove that mg s normal. Consider a directed family ) < o, 1T 0,
where o, ¢ € C. We have to show that

{w, mpice)w) T {w, mplcyw) ¥Vuw e K. (3.3)

Since the family mplcy) 18 uniformly bounded (in operator norm) by |moic)| (as 0 =
malcg) = mplc)), it is enough o verify (3.3) for w belonging to the dense set T spanned
by vectors of the form my{c)l/, &, with ¢ € Cand y £ . Note that the set 7 is dense
because £ is cyelic for w(C « T).

MNow, it can be verified by a simple caleulation that

{molc) Uy £, moleg hmolca by, £}

= ¢'},] :n{ﬂ?] 1] caca))
—+ ¢':,,] Jn{ﬁ},] ilefeca))
= {mplc WUy E, mplclmolea)Uya £},
by the assumption of weak continuity of ¢, for every y. This completes the proof. O

For k = (k. k) € 72, let 1,£r§. be the bounded hinear functional on the commutative
C*-algebra C*(U;, V,) = C(T?) defined by

YEUPVE = r (U @ VOV @ v T @ U)R), Ym.n € 2.

Let usdenote by u%. the complex measure on T2 corresponding to 1;1]‘_ e ﬁi{b’;" Vi =
f E‘l" :i}d_ug.{_:}l_ From Proposition 3.7, we conclude the following.

Theorem 3.8. The CPmap T is extendible if and only if for each k € Z* the measure p.
is absolutly continuous with respect to Lebesgue measure on T~

We end this subsection by mentioning a few examples of extendible maps. The veri-
ficaion of extendibility, using Theorem 3.8, is quite strightforward, and we omit these
caleulatons,

Example 39. T(a) = R*aR, with R € A, and is given by R = ¥ j oz i U} v, such
that (¢; ;) € [*(Z%). Then T is extendible.

Example 3.10. Suppose that for each & £ Z, there exists some positive integer Ny such
that T{j'{U;}}V;‘ € Span[U"V":m € &, — Np = n = N), ¥f € C(T). Then T is
extendible.

34 Imvariants for extendifle CP maps

Suppose that T s an extendible CPmap, and let us denote the normal extension of 1 again
by the same symbol. So, ¥ is anormal state on A& A", which is also atype 11} hyperfinite
factor, with the canonical trace 1'[3]{-} = {&n, -5} (where £y = 1@ 1 € H; @ H; ). Reeall
also the notation ¢! for c £ A @ A, introduced earlier by us.

Since 7' is faithful normal on 4 @ .4’, any normal state is absolutely continuous with
respect to t'2'. Thus, we can obtain a ‘Radon-Nikodym derivative’, which is a positive



420 Debashish Goswami and Lingaraj Sahn

{possibly unbounded) operator Dy affiliated to the commutant of 4 @ A, ie. 4" ® A,
1
such that & = Durn{Df—}l, and

yrib) = 1 (Drb) = {Déam. bnésu}, vbe A® A

Note that Dy is actually an element in LY A" ® A, '),

We now explain how Dy can be used to get numencal invanants for the equivalence ~.
Suppose that § ~ T, and let v € A be such that §{a) = T(u*au) forall & € A. By an
casy calculation we see that

Ug(b) = wrp(i*hii), be A A,
1
where i i=u @ 1. Using the facts that D?}. commutes with i, and that a&y = i = 0" &g,
(where i € A" @ 4 denotes rght multiplication by i), we get the following:
Ws(b) = Yr(i*bii)
3 3
= {ﬂ Df— &, i D]'—E:]}
1 1
= (D7a" . bD7ii " o)
= (@)* D} g0, b)Y D" ).
From this, we conclude (using the umgueness of the Radon-Nikodym denvative) that
D = @'y Dy’
So. in particular, 2 {u_’ﬂh'} = Iil]{u_’ﬂf ) for all 1 = (). These numbers can be used as

mvariants for ~. Another possibility 15 o use ILZJ{PT}, where Pr denotes the projection
(in A" @A) onto the runge of Dy,

Remark 3.11. Since Dy is affiliated to A" @ 4, which can be identified with the von
Neumann crossed product L-"‘J{']I‘Z} w1 #2. we can describe Dy by a formal senes (which
can be made sense of in 4 suitable L! -topology ) of the form EL:-E.E D;E]E;, where DE,{‘]
- . - ¥ . . . ]

is a measurable complex-valued function on T=. Let us give o formula for the functions
D;f] for aclass of CP maps. Consider Ti{a) = R*faR with R = E[m]_mz] c'm]_sz;"’ 'r";"z,
where the summation 15 over a finite sel, L.e. Cn = Oy, my 15 2010 for all but a finitely

many s Then T is extendible and D;[,-k]'s are given by

L3 E : i Nk e m) IR iR
DT (z)= f'.lrf'm]—'n].mg—n«_e—k]—kg)'- .o m]-'.| ]-'.1 -

il
wmeEs

with Ni{k,n.m) = 2kama + kyny + kany + kjka — i—;. This can be verified by a simple
calculaton,

In particular, for R = L, Dm{__}l Ak hzkﬁ_h and for R = U+ V, Dm{__} -
)Ll —111.3 1"_lll {)LI:] +)Ll$+)'-'lk$-—k]_ o +}Lk= —| —| :

Let us conclude with a nice computable formula for r[l]{Pr} when Dy as 2
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FROPOSITION 3.12.
I Dy belongs to LY A" ® A, t), then we have

T2 Pry=1— inf sup [T (e*) — yrr(c*h))*.
be AR . gfin: 2 [0y=]

Progf Note that Dy € Lt implies that £y € Dom{ D), and thus, by = {En. bDrEp)
for all b € 4 @ A" Moreover, as Dy is affiliated to (A ® A, e7'P leaves AMg, C
Hy ® Hy invariant. Hence A&, is a core for Dy, and hence { Drbgg: b € A™)} is dense
in Ran 0. Thus, we have

tP(Pr) = | Pr&)?
1 — dist{£p. Ran Dy)?

1 — inf |& — Dr b&|*
nf 15 bEq||

=1— inf sup l{e, &0 — Dy b}
bEA“r' :'FA""': Tlll (e*e)=1
=1— inf sup It ") — Pt Driy)?
be Afm o gfine pi2hpee=]
=1— inf sup [T 24c*) — Wric*h)|*.
be Afm o gfine pi2hpee=] (|

Howewver, in this paper, we do not study these numerical mvariants in more detail, and
do not investigate whether one or more of such invariants characterise the equivalence ~.
We leave these opics for future research.

Appendix

Here we give an example of a commuting pair of normmal representations m and p of a von
Neumann algebra 4 © B{H) and its commutant respectively, such that the repre sentation
& of A4 @y A defined by ©a ® a') = mlalpia’) does not have a normal extension to
the von Neumann algebra .4 @ A", To this end, let us take Hy = L*(T) (with Lebesgue
measure ), and A = A" = L2(T). Let H = LY{E2, 1), where

HOE)Y ;== 1{E N Dy,

D i=Ugezlir.t +n):t € B}, and [ denotes the Lebesgue measure on . Define 7 and p
from L™ (T) 1o B{'H) by setting:

(@ s, 1) =d (A fs. 1), (p(@)f)ls. 1) = @A) fis, 1),

for f € LB, p). We claim that ©: L (T) @4, L (T) — B(H) givenby © (9 @) =
migh) i), does not admit a nommal extension to L”‘:{']I‘I}. To see this, note that the set
I := {{x.(A"x) mod 1): n € £} has zero Lebesgue measure as a subset of T2, Now,
assuming, if possible, that < admits a normal exlension on L”‘C{']I‘I}, choose a function
F € C(T?) and define Fyy in L*(T?) by setting Fy(z) = O forz € T, and Fy(z) = F(2)
for all z in the complement of T'. Thus, F = Fj ae. (Lebesgue), hence $(F) = $(F,).
However,
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I®(F)fI* = | |Fold®, &) fis, 0 dpids, 1)

Rt

= Ef [Foldf, K25 s, s + n)| ds
)

HEL e

=1},

for every f € LI{_I.{}I. Thus, &{F) = O forall F e ﬁ{']l‘z}, contradicting the assumption
that < extends normally.
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