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THE ANALYSIS OF HETEROGENEITY. 1.

By J. B. 5. HALDANE
Indian Stalistical Insiit ‘.(11 2,

SUMMARY. Estimatora of the mean and variance of a frequency are given when this frequency
variea through o series of samples.

INTRODUCTION

The following situation frequently arises in biological research, snd doubtlesa
in other branches of science. A number of experiments or observations are made under
as nearly similar conditions as possible. Each of them leads to the production of a
sample, whose members may be classed into two types which we may call successes
and failures, though they may be females and males, fertile and sterile matings, sur-
vivels and deaths, and so on. If we have n samples, and the i-th consists of s, membera
of which a; are successes and b; are failures, we can draw up & (2xn) fold table and
apply the x® or some other test of homogeneity. If the test is judged compatible with
homogeneity, we can adopt the simple hypothesis that the probability of success

was the same in each sample, and estimate it as p =‘i'l a‘lé 8. If however the
- 1

test is judged significant of heterogeneity, we must conclude that p has varied from
one experiment to another, its value in the i-th experiment being p,, We can then
proceed to estimate the mean of p;. Although the estimate given above is unbiassed,
it will be shown that it is not efficient unless the sample number & is constant. We
can also in general estimate the variance and higher moments of p;, While x* is &
teat for heterogeneity it is not a measure of it, but we shall see that the estimate of

the variance of p is related to x*. In this paper I shall only deal with the estimation
of the mean and variance.

In my experiencs this problem has arisen in two rather different contexts.
On the one hend we may have to analyse a series of litters of mice or other small
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animals pr d from p 88 88 possible, under standardised conditions,
The mean value of s is of the order of 8, and for most values of s there is a fair number
of samples. If heterogeneity has been deteoted, we can estimate the mean value of
p for various sample numbers, and see whether they regress significantly on s. If
they do not, we can weight each with the appropriate amount of information, and
combine them, If our data are numerous enough, we can do the same for other
moments.

On the other hand we may have to deal with a series of insect or plant families,
in which the mean value of s is about 100, and two samples with the same value of
& are unusual.

As Robertson (1851) pointed out, this problem is the inverse of the problem
studied by Lexis (1877). Lexis considered the effect on the variance of a; of a kmown
variance of p,.

In what follows I use x, to mean the r-th cumulant of the true distribution
of p. k, means an unbiassed estimate of k, and k(r*) the expectation of the s-th
cumulant of the distribution of k,, while k(r*) is an unbiassed estimate of x(r'). We
have to conmsider expectations at two levels. I demote expectations for a given
value of p;, and thus within a single sample, with an asterisk. Thus &*(a)) = p.s;,
&*(a}) = pls(8,—1)+p;8, &*(a;b) = p(1—p,) 8(8—1) and o on. I denote expecta-
tions within the whole gronp of » samples without an asterisk. Thus &(p)=8&(p)=x,.

I use Za or T g to mean ) a;, and 6o on. If sis constant &(Za) =kms. Ifsis
te1

variable I assume that s, and p; are uncorrelated, though thiz shonld be verified
where possible. In any case I assume that p; and p, are uncorrelated, that is to say
By p) =3, if i#j Also

8(p) = Ky, &(p}) = ki+xy.
SaMPLES oF CONSTANT SIZE

If every sample consists of s members, then since &%a) = P8, 60
&(Za) = k,ns, whenoe
ky = (n8)~1Z a. w (1)
This estimate is olearly unbiassed and efficient.
Zap=Za*423 I ag,.
(Z a) a*+22 Fiax

8o 8[(Z a)"] = ns(e—1) &(p*)+ns &(p)+nin—1)s* &(p, 2;)
= na(s—1) (k}+Ky)+na K, +n{n—1)stk}
= na(ns—1)k}+nas ky+na(a—1)k,.

But [&( a)]* = ndsix},
50 var (Za) = ne{k,—k3)+-nola—1)k,,
«whe! - _ Ky(1—k,)+(s—1)x,
whenoce k(1Y) = var (k) = - VT lm LN w (8)
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The first term is the component due to the small sample size, while the soeond,.
#~Y1—sY)K,, is due to the variance of p. The second term may greatly exceed the

frs b=% ab+Z =
EaXh=1 “«bﬁ"mﬂ«br

8o A8[F a; Tb) = nafe—1) (k;—Ki—Kp)$nin—1)si(c,— k)

= ne(ns—1)K,(1—K,)—nas(a—1)k,.
Also &[T a, b) = nafa—1) (k,—Ki—K,).
Henoe &[(3—1)E @ T b—(na—1) I ab] = n(n—1)s*e—1)k,,

_(e—=1)ZaXb—(ns—1)Tab
8o k= =) e (3)
is an unbiassed estimate of x, Also

ZaXd—Xadb
a W] = Kky(1—K,).

8o we can put (2) in terms of observed quantities.

YaXb—nZab_ Cov(a,bd)

K1) = n—1E | =D

(4)

Robertson (1951) gave an expression for the variance of p which in my
symboliam. becomes :

k, = [0t ss—1)]" [(=—1)Ea TB—ns Tab).

Unless 7 is small, this is very near to my expression (3), the difference being the value
(4) of k{1*). However when n is amall the difference is not negligible. For example
if 8 = 100, n = 5, and the values of & are 4, 8, 10, 14, 17, then Za = 53, Zb = 447,

T ab = 4635. k, = 0.106, and expression (3) gives .0016436 for the variance or

.04054 for the standard deviation of p, while Robertson’s expression gives .00112763
and .033568. If my own value is judged to be more accurate, it should be used.

X3-1, used as a test of homogeneity, may be written

_ na(Za % b—n Tab)
x’w—l = —Ea b

When x, = 0, that is to say p ia constant, its exact expeotation is
8LA-) = (na—1)1 nin—1)s.
S0 ha—(ne—1)nin—1)o = [(ns—1) Ta Zb]*n¥a—1L)stle— Dk,

or b = ZaZb[(ns—1)yt_,—n(n—1)s]
. m(n—1)e(a—1) :

()
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Sinoe x3_; can be zero with a finite probability, but cannot be negative, it
follows that k, can be negative, its minimum value, if p is constant, being
—p(1—p)Ye—1)~2. The null sampling distribution of k, is given by that of 2.4,
and the significance of a positive value is that of the corresponding value of . If
ky is negative we must suppose that x, is zero or too small to estimate, while
drawing the appropriate conclusions from the small value of x%_;.

We now see that x3, as e test of homogeneity, has a triple function. Firstly
its excess over its null value furnishes a test of whether the variance of p exceeds zero.
Secondly it allows us, by means of (5), to estimate the variance of p. And thirdly
it measures the uncertainty of the estimate of the mean of p, For (4) may be written
a8

var (k) = [n¥n—1)88]"1x3_, Za Tb, e (8)

Workera are rightly suspicious of a mean based on a heterogeneous set of
samples. (4) or (8) tells them just how suspicious they should be. I may add that
if x5, is caloulated by the method of Haldane (19556) which, it is claimed, saves
a good deal of computation in some cases, (6) and (8) are more useful than (3) and (4).

(5) is analogoua to the well-known relation between r and x* for a (2Xx2)-
fold table. T hope to give estimators of k4, k,, and of the sampling variance of kq,
in a later paper. The latter is not however of immediate importance, since we have
an expression for the significance of a given value of k;.

SAMPLES OF VARIABLE SIZR

If we have & large number of samples for each of a few small values of s, as

with human families, we can treat each set for a given value of s separately, and

bine the estimates of p, the t of information for each value of s being given

by (2). When however, the values of s are all or mostly different, we proceed as
follows.

If w, be any weighting factor, then,
8(Zwy ) = K, Zw, .

8o provided Sws, = 1, Zwa; is an unbiassed estimate of x,. Clearly w must be a
one-valued funotion of 4. Clearly also when k, = 0, that is to say p is constant, w;
should be constant, and therefore equal to (£s)-!. When however k, is not zero,
w should be an increasing funotion of s. One oan derive the expression
woc[a— 14«31, (1—«,)]"? whioch follows, directly from (2) by & somewhat intuitive
argument. But it can be derived more rigorously as follows.

The most efficient form of w; is that whioh minimizes the variance of
k= %w‘a‘. Now

= 2(‘.«;"4=+2);. ”Z.I‘ wawa,.
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Since &laf] = (xi+xrgofa—1)+ K8
and &lagy) = xiagy,
it follows that 8] =X w!a.[(q—l)(x!+xo+n,]+2§l§‘ st

= k(B we) k(1 — Ky ) Ewfa 4 Twde (s —1).
But Zws, = 1, 80 on subtracting «} we find
var (k) = ?[(“a+(“x""§—"‘a)“_l)'”§3§]-

Since T wg; = 1, this is minimal when wo[ky+(K;—K}—Kg)e71]

or w; = [k 0y — K — Kg] N [E{kg (K — ki — K)o )]
So if ¢ = Ky(1—ky)xgt—1, woc(s+c)t,
a
and by = Z__("_tc) e 7

23

var (k) = k(1%) = Ks

8

2

If x, is small, that is to say p is nearly constant, ¢ is very large, and k, approxi-
mates to (Zs)~! e, as is obvious. Ifp can only assume the values of zero and unity,
¢=0, and k, = n~1Z @ s!. Otherwise the values of ¢ are intermediate. Thus if
all values of p from 0 to 1 are equally frequent, ¢ = 2, and if all values from 0 to }
are equally frequent, ¢ = 20, and so on. Usually therefore it will be necessary to
estimate Kg.

(8

Prof. C. R. Rao has pointed out to me that the estimate (7) is mot quite
unbiassed, because in general estimates of x, and k, are correlated. However the bias
will seldom be large. The most efficient estimator of k, can only be given when
higher moments are known, so that formally the problem is very complicated. But
an infinit ber of unbiassed estimators of x, can be derived, according to the
weights given to different samples. The weight to be attached to any 'sample will
always increase with s, but the weight as a function of sample size will be somewhere
between that appropriate when s is large and kg small, and that appropriate when
s iz small and k, large. We can write down any number of expectations, including
the following :

B(Za ab] = (ky—K1—ks)(Te—n)
&[{e—1)ab] = (k;— K3 — k) Es
8[ZsYa—1)"2ab] = (k,—xk}—K)n
8[Za Tb) = ky(1—«,)(Zs—1)Ds—k4(Ted— Ts)
8[Zs 10T 1b] = K,(1—K,)(n—Tg~t)—Ky(n—Is™?).
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From these we can at once derive a ber of unbi
of which the most likely to be useful are :

d estimates of x,,

k,, = (Ee=mZaTb—(Sa—1)Zs S(ead)
(Za—n){(Za)’—Xe%)

_ ZaZb[(Zs—1)x3 ., —(n—1)Zs] (9)
(Se—m[(Zay—EeT]

TaXb—(Zs—1)EZ{s—1)"lab
kyp = R 7L 57 B —. (10)

_ nZstaZa1b—(nd—Ts-1)Ea~Ys—1)-1gh
by, = AA—T) . (1)

Of these estimates k,, and kys should differ very little, and kyp is the easieat
to compute unless xi_, has already been computed, which h will lly be
the case. It will be seen that ky, and k,s have about the same weighting as x2, while
k,, assigns approximately equal weight to each sample.

From the example which follows it will be seen that these estimatea may be
very close to one another. Indeed k,, and k,, agree to four significant figures. They
thus furnish a fairly precise eatimate of K, which, in turn, allows anacourate estimate
of k,, and of the sampling variance of this estimate of x,.

TABLE 1. RECOMBINANTS IN 18 CULTURES OF
DROSOPHILA SUBOBSCURA

] G b p =g
224 88 188 .30804
208 89 147 .28641
285 10 188 27481
267 70 197 26217
247 61 186 24606
238 87 181 23050
168 26 130 .21887
199 42 157 21108
210 29 m 18571
284 50 84 -17608
160 ] 187 .17368
187 2 155 Jms
A48 40 208 16461
2016 858 2268 *3.91678
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A NUMERICAL EXAMPLE

In Table 1 the successive values of s are the numbers of imagines of Droso-
phila subobscura in 13 bottles each derived from a single pair mating. In each bottle
the father was homozygous for a pair of autosomal recessive genes belonging to the
same linkage group and therefore located on the same chromosome. The mother
wasa heterozygous at these two loci. The values of a are the numbers of flies in which
these looi had undergone recombination, commonly described as ‘‘cross-overs.” I
have to thank Mrs Trent, of the Department of Biometry, University College, London,
for these figures, b =s—a, and p; = a;8;'. That is to say the value of p; is the
satimate of recombination frequency from the -th culture. The cultures are arranged
in descending order of pj. % = 37.059, P(x%) = .00022, so there is very strong
evidence of heterogeneity.

Now if p were constant, its estimate would be 658/2018 = .2257 4 .0073.
In fact sll estimates known to me have been made in this way.

The mean value of p; is .2244, its median .2169. var (p;) = .002380, so
0y = .0487. This is much too high as an estimate of the variance of p. The formulae
(9) and (11) give ky, = k;p = .001636, k, = .001882. This is & very satisfactory
agreement and we may estimate k, as .00168, giving o, = .0407 which is considerably
below the crude estimate of .0487.

Adopting the provisional value of .226 for k;, we find ¢ = 105.03. Putting
¢ = 105 in (7), k, = .2273. If we repeat the process we find ¢ = 106.3, which does
not alter the value of k,. From (8) we find x(1%) = .0001908. So

k, = .2273 4 .0138.

Thus the estimate of the mean of p is only changed from its “‘classical” value
by 129% of ita standard sampling error. The change could be much greater if the
values of s had a larger coefficient of variation. On the other hand its standard
sampling error is nearly doubled. And we have at least an estimate of the variance
of p.

DisoussioN

This paper is a preliminary attempt to develop a field of statistics opened up
by Robertson (1951). If the sample size 4 is constant it is merely & matter of algebraical
acouracy to obtain unbiassed and efficient eatimates of all the moments or cumulanta
of the distribution of p, upto and including the s-th. On the other hand, at least
with the approach here adopted, when s is not constant, one requires statistios of order
2r to obtain efficient estimates of the r-th moment or cumulant. Formally this
involves an infinite regress. It may be that the problem will be soluble in finite
terms by Robertson’s or related methods.
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The example shows that second order statistics may suffice for praotical
purposes when all values of s are of the order of 100 and not very variable. On
the other hand had the same number of individuals occurred in some hundred samples
in which & ranged from 1 to about 10, a8 in human families, fourth order statistics
would have been desirable to obtain the correct weightings in evaluating k.

The numerical example shows that most of the published data on linkage are
probably inaccurate. The mean recombination values found may only require
slight revision. Their sampling errors are consistently larger than those published.
The variances of recombination values will require eatimation. A sufficiently variable
value leads to spurious “interference’ of the frequencies of crossing over in adjacent
segments. In fact the whole theory of linkage will require revision when sufficient
data are available, An attempt is being made to collect such data in this Institute.

1 believe that the approach here outlined may be of a certain value in the
design of sample surveys. We have seen that in the very simple case here considered,
it is desirable, when k, is large, to divide up the total population sampled into a large
number of amall samples even if the total cost or effort is thereby increased. This
diminishes the sampling variance of the estimate k,. However for a given total effort
or cost the optimal design is not known till we have at least & rough estimate of k,.
So ideally the procedure would be sequential. Further the optimal design for the
estimation of &, is quite different from that optimal for the estimation of «,.

Sample surveys are seldom matters of mere counting. So the results of this
investigation have no immediate relevance to them. But analogous problems will
arise in sample surveys when variances as well as means are to be estimated not merely

to determine the precision of means or differences between them, but for their own
sake.

Some of the expressions here found can be derived, as limiting cases, from the
theory of the analysis of variance. For example (1) to (8) can be derived by consider-
ing n sets of s samples, each of one member, the value of p; being constant in each
set. However I have not been able to obtain all the results of the paper by discussing
such limiting cases, and the more direot approach here used can be applied to the
evaluation of higher moments.

I have to thenk Mrs Trent (Miss J. M. Clarke) for kindly putting her unpub-
lished data at my disposal.
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