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1. Introduction

Let A; be a sequence of positive reals tending to infinity, let & and & be functions defined
on a suitable Hilbert space which satisfy certain continuity and non-degeneracy conditions,
and let W, be a sequence of independent one-dimensional Brownian motions. In this paper
we consider the countable system of stochastic differential equations

[= &
dX| =" ay(X)dW] — Lb(X)Xide, i=12,..., (1.1)

=1

and investigate sufficient conditions for weak existence and weak uniqueness to hold. Note
that when the o and b, are constant, we have the stochastic differential equations
characterizing the infinite-dimensional Ornstein—Uhlenbeck process.

We approach the weak existence and uniqueness of (1.1) by means of the martingale

problem for the corresponding operator

ac

o
Lf(x) = jzcmm by {r]—zi;x:b;{.r]a—’:{x] (1.2)

operating on a suitable class of functions, where ay(x) = Y2 | su(x)ou(x). Our main
theorem says that if the a;; are nondegenerate and bounded, the b; are bounded above and
below, and the a;; and b, satisfy appropriate Holder continuity conditions, then existence
and uniqueness hﬂld for the martingale problem for %, see Theorem 5.7 for a precise
statement.

There has been considerable interest in infinite dimensional operators whose coefficients
are only Holder continuous. For perturbations of the Laplacian, see Cannarsa and Da
Prato [6], where Schauder estimates are proved using interpoelation theory and then applied
to Poisson’s equation in infinite dimensions with Hélder continuous coefficients (see also
[14]).

Similar techniques have been used to study operators of the form (1.2). In finite
dimensions see [17-19,12]. For the infinite dimensional case see [7-11,14.23]. Common to
all of these papers is the use of interpolation theory to obtain the necessary Schauder
estimates. In functional analytic terms, the system of equations (1.1) is a special case of the
equation

dX, = (MX )X, + FXY Ddt 4+ alX)dW,, (1.3)

where a4 is 8 mapping from a Hilbert space i to the space of bounded nonnegative self-
adjoint linear operators on f, b is a mapping from / to the nonnegative self-adjoint linear
operators on # (not necessarily bounded), # is a bounded operator on H, and hx)x
represents the composition of operators. Previous work on (1.3) has concentrated on the
following cases: where « is constant, b is Lipschitz continuous, and F = (); where ¢ and b
are constant and F is bounded; and where F is bounded, b is constant and « is a
perturbation of a constant operator by means of a Holder continuous nonnegative self-
adjoint operator. We also mention the paper [13] where weak solutions to (1.3) are
considered. In our paper we consider Eq. (1.3) with the o and b satisfying certain Holder
conditions and # = (). There would be no difficulty introducing bounded F{X,)d¢ terms,
but we chose not to do so.
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The paper most closely related to this one is that of Zambotti [23]. Our resulis
complement those of [23] as each has its own advantages. We were able to remove the
restriction that the ay's be given by means of a perturbation by a bounded nonnegative
operator which in turn facilitates localization, but at the expense of working with respect to
a fixed basis and hence imposing summability conditions involving the off-diagonal a;.
See Remark 5.10 for a further discussion in light of a couple of examples and our explicit
hypotheses for Theorem 5.7.

There are also martingale problems for infinite dimensional operators with Hdélder
continuous coefficients that arise from the fields of superprocesses and stochastic partial
differential equations (SPDE). See [20] for a detailed introduction to these. We mention
[15], where superprocesses in the Fleming—Viot setting are considered, and [4], where
uniqueness of a martingale problem for superprocesses on countable Markov chains with
interactive branching is shown to hold. These latter results motivated the present approach
as the weighted Haélder spaces used there for our perturbation bounds coincide with the
function spaces 5" used here (see Section 2), at least in the finite-dimensional setting

(see [1]).
Consider the one dimensional SPDE
du 1 & )
E{:,_ﬂ =3 E_T:{.r,!}+ Alwyd W, (1.5)

where W is space-time white noise. If one sets
2n
X =f eulx, dx, j=0,£1,42,...,
]

then the collection {X"}}’;‘_E can be shown to solve system (1.1) with 4 = i*, the b
constant, and the ay defined in an explicit way in terms of 4. Our original interest in the
problem solved in this paper was to understand (1.5) when the coefficients 4 were bounded
above and below but were only Hilder continuous as a function of u. The results in this
paper do not apply to (1.5) and we hope to return to this in the future.

The main novelties of our paper are the following.

(1) C° estimates (Le., Schauder estimates) for the infinite dimensional Ornstein—Uldenbeck
process. These were already known (see [14]), but we point out that in contrast to using
interpolation theory, our derivation is quite elementary and relies on a simple real
variable lemma together with some semigroup manipulations.

(2) Localization. We use perturbation theory along the lines of Stroock—Varadhan to
establish uniqueness of the martingale problem when the coefficients are sufficiently
close to constant. We then perform a localization procedure to establish our main
result. In infinite dimensions localization is much more involved, and this argument
represents an important feature of this work.

(3) A larger class of perturbations. Unlike much of the previous work cited above, we do
not require that the perturbation of the second order term be bounded by an operator
that is nonnegative. The price we pay is that we require additional conditions on the
off-diagonal a;/'s.

After some definitions and preliminaries in Section 2, we establish the needed Schauder
estimates in Section 3. Section 4 contains the proof of existence and Section 5 the
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uniqueness. Section 3 also contains some specific examples where our main result applies.
This includes coefficients ay which depend on a finite number of local coordinates near (i, /)
in a Holder manner.

We use the letter ¢ with or without subscripts for finite positive constants whose value is
unimportant and which may vary from proposition to proposition. x will denote a real
number between () and 1.

2. Preliminaries

We use the following notation. If i is a separable Hilbert spaceand - H — R, D, fix)
is the directional derivative of fat x € / in the direction w; we do not require w to be a unit
vector. The inner product in i is denoted by {-,-}, and | - | denotes the norm generated by
this inner product. Cj = Cp(#f) is the collection of R-valued bounded continuous
functions on H with the usual supremum norm. Let C3 be the set of functions in Cj, for
which the first and second order partials are also in Cy. For o & (0,1), set

—— fix+ k) —fx)l
E-”t‘ B JFF;-:'-,I.I'Irjaeﬂ i1

and let C* be the set of functions in C, for which |[f|| = = fl¢, + [fle= is finite.
Let V :2(V) — H bea (densely defined) self-adjoint nonnegative definite operator such
that

¥~ is a trace class operator on H. (2.1)

Then there is a complete orthonormal system {z, : n € B} of eigenvectors of V™' with
corresponding eigenvalues 4!, 4,>0, satisfying

=&

) . ! .
E Ay =OC, Ay T o, r/*"'.lr = Apfy
n=I

(see, e.g. Section 120 in [21]). Let @, = e~ be the semigroup of contraction operators on
H with generator — V. If w € H, let wy, = {w, &} and we will write D;f and Dyf for D, f and
D, D.f, respectively.

Assume a @ H — L(H, H) is a mapping from ff to the space of bounded self-adjoint
operators on f and b2 H — L{2( V), H) is a mapping from H to self-adjoint nonnegative
definite operators on %( F) such that {z,} are eigenvectors of blx) for all x € H. If ay(x) =
fenalx)e) and Bx)(e) = Abix)e, we assume that for some 30

p P2 Y ay)zz el xzed,
7
22y, xeH, ieh. (2.2)
We consider the martingale problem for the operator ¥ which, with respect to the
coordinates {x, g}, is defined by

NS ¢ . =,
LI =33 ageDyf (x) =Y Axib(x)Dyf (). (2.3)

=1 i=l
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Let 7 be the class of functions in C3 that depend on only finitely many coordinates and
Fy be the set of functions in .# with compact support. More precisely, /' € 7 if there exists
nand [, € Cﬁ{IH"] such that f{x,.. ., x..)=Fdx1,...,x) for each point {x,x,...)
and € 4 if, in addition, f, has compact support. Let X', denote the coordinate maps on
the space Ci[0,oc), ) of continuous H-valued paths. We say that a probability measure PP
on C([0,0c), /) is a solution to the martingale problem for % started at xg if P(X, =
xg) =1 and fX) — (X)) — f; (X )ds is a martingale for each e 7.

The connection between systems of stochastic differential equations and martingale
problems continues to hold in infinite dimensions; see, for example, [16, pp. 166-168].
We will use this fact without further mention.

There are different possible martingale problems depending on what class of functions
we choose as test functions. Since existence is the easier part for the martingale problem
{see Theorem 4.2) and uniqueness is the more difficult part, we will get a stronger and more
useful theorem if we have a smaller class of test functions. The collection # is a reasonably
small class. When a(x) = &" and b(x) = V are constant functions, the process associated
with % is the well-known H-valued Ornstein—Uhlenbeck process. We briefly recall the
definition; see Section 5 of [1] for details. Let (W, t=0) be the cylindrical Brownian
motion on # with covariance a. Let 3, be the right continuous filtration generated by
W. Consider the stochastic differential equation

dX, =dW, - VX, dr. (2.4)

There is a pathwise unique solution to (2.4) whose laws {P*,x & H} define a unique
homogeneous strong Markov process on the space of continuous ff-valued paths (see, ez
Section 5.2 of [16]). {X;, t=0} is an H-valued Gaussian process satisfying

Ei({ X h)) = {Xo.Of) forallhe H, (2.5)
and
£
Cﬂ‘-"'.r{erﬂ}{Xr-h}]:f (0 aQ,_g)ds. (2.6)
]
The law of X started at x solves the martingale problem for
1 = =
Lofx) =35> dDyf(x) = LD (x). (2.7)
Tig=l =1
Welet P.f{x) = E*f(X;) be the semigroup corresponding to %, and R; = j;"' e~ P dy
be the corresponding resolvent. We define the semigroup norm || - || 5 for o € (0, 1) by
s = sup 3PS = fllc, (2.8)
1=
and
s = Wflle, + 1fls-

Let §° denote the space of measurable functions on ff f;ur which this norm is finite.
For x € i and fi € (0, 1) define |x|p = sup, i{_r,a;}lz'.ﬁ" and

Hy={xeH :|x|g=cc}. {2.9)
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3. Estimates

We start with the following real variable lemma.

Lemma 3.1. Let A=0, B=0. Assume K @ Cy(H) — Cyl ) is a bounded linear operator such
Hhat

1K N, <Al Ne,, S € ColH), (3.1
and there exisis v € H such that
1K e, <BIDS |l ¢, (3.2)

Jor all (such thar D e CuH). Then for each o € (0,1) there is a constant ¢ = ¢){2) such
that

IKf e, 1 10Plf |c=B2A'=*  forall f € C*.

Proof. Assume (3.1) and (3.2), the latter for some v € H. Let {p, : ¢ =0} be the standard
Brownian density on H. If /e €7, set

p,o* f(x) = fﬁ flx+zoplz)dz, xe H.
Since a change of variables shows that

powflx + o) —p, # f(x) = fﬁ Fx+ zop,(z — h)dz — fﬁ Flx + zo)p i) dz,
it follows that

Dyp, #fNx) = — f fix + zo)p(2)dz;
this 1s in O ) and

D, # i) = ‘——[j'{.r+:u1r:r:{:]dz

= U (f(x +:v]—j'{-r]]p:.{:]d:‘

£ |fle=lel” f I:I’I:%Ip,_{:]d:

= ealfle=le)*e™~ 17,
where ¢2 = [ [z|2+|p|{:]d:. We therefore obtain from (3.2) that
1K (p, * /)¢, ScaBlf|alu| ==V (3.3)

MNext note that
|+ flx)— flx) = f [flx + zv) — fix)|plz)dz

<Wflelof? f I21%p.(z) dz

= aslf le=lofe*’?,
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where ¢; = [ |z]%p,(2)dz. By (3.1)
1K(p, % f — N, Ses Alf | = o). (3.4)
Let ¢, = ;v ¢ and £ = B /4%, Combining (3.3) and (3.4) we have

”K-"IFI”C-‘-‘QEI'IEJFII("‘E?I:EZ'Q[;{+_Bg_|-"2]
=2eslfl=l0’B*4'™2. O

{"u],-’{e"‘ TEIN
w=1,
], = ( 11".’1{1 !]) = w.

Recall

=
— &I
Q= E e ey,
=1

We have the following by Propositions 5.1 and 5.2 of [1]:
Proposition 3.2, (a) For all we H_ (e CylH ), and t =0, D PJ e Cp(H) and
Illlf N e
(b) If t=z0,w e H, and f : H — R is in Cy(H) such that Dy ,f € Cy(H), then
D P fix)= PiDg,ix), xeH.
I particular,
IDwPS e, < 1Dguf e, - (3.6)

We now prove:

I1DWESf e, = (3.5)

Corollary 33, Let 2 C°, uyw e H. Then for all t=0, D, P and DD P are in Ciifl)

and there existy a constant ¢y = (2, 7) independent of ¢ such that
1DWPF NI, S et Wl Ic= £ e Iwl |f | 1707 (3.7)
and
I1D.DWPS Nl e, Se11Qalspawlipalf e Serlulalwlipalfle £
<erlulw|l[f| =87 (3.8)

Proof. That D P isin Cy( ) is immediate from Proposition 32(a). By (3.5) and (3.6) we
may apply Lemma 3.1 to K = D, P, withv = Q,w, A = |w|,(y”"* and B = 1 to conclude
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for fe C*
1DLES e, = Ty A1 =3y~ (=22
" f.x‘“-cllgr'”’l U'{_“i”l; {74)
"‘;-.E'E}‘h_IJ'II:I'H'I[III{_"!‘:_”E_ {39]

This gives (3.7).
By Proposition 3.2, D, D, Pif = D P xDg P of, and the latter is seen to be in Cp(H)
by invoking Proposition 3.2{a) twice. Using (3.5) and then (3.9) we have

1DwDuPif |l e, = I1DwPijaDo, P pf e,
< Wlya @t /2 2 Dg, e Pisf e,
< W2t /2)” Peay® DRI, il e (/2
This gives (3.8). O
Remark 3.4. We often will use the fact that there exists ¢ such that
Il el se- (3.10)
This is (5.20) of [1].

Corollary 3.5, There exists o) = oo, ) such that for all A=0, [ O, i), we e
DR f, Dy Rif € Cy, and

IDiR:f e, < €1 (A + A D2 1, (3.11)
1DyRSf Nl e, < el + L) If = (3.12)
1D Rif | =< er(h 4+ 407 21f = (3.13)
1DyRSf N = < erllf I e=- (3.14)

Proof. Corollary 3.3 is exactly the same as Proposition 5.4 in [1], but with the 57 norms
replaced by C* norms. We may therefore follow the proofs of Theorem 3.6 and Corollary
5.7 in [1] and then use (3.10) to obtain our result. However, the proofs in [1] can be
streamlined, so for the sake of clarity and completeness we give a more straightforward
proof.

From (3.7) and (3.8) we may differentiate under the time integral and conclude that the
first and second order partial derivatives of #;f are continuous. To derive (3.12), note first
that by (3.8),

IDyPf e, = IDpPSf e, Seal @, ogylleallfl e £
= e P f| =, (3.15)

Multiplying by e*' and integrating over ¢ from 0 to oc yields (3.12).
MNext we turn to (3.14). Recall the definition of the 87 norm from (2.8). In view of (3.10)
it suffices to show

| DyRf || = = eallf Nl o=
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Since
1PDyR:f — DyRif lle, 20Dy Rif Nl e, € rlf le=(4 + &)™
by (3.12), we need only consider = {4+ z'.J-]".
Use Proposition 3.2(b) to write
PDyRyf — DyR;f = [e™'e™ ¥ DyPiR,f — DyPiRf]
+ [DyPiR;f — Dy R;f]. (3.16)

Recalling that 4;< 4;, we see that the first term is bounded in absolute value by
=
N 3 . a2 o3 .
el A0 | Dy PR S | ¢, Sest™? f A e Dy Py Sl e, ds
0

. n
<ot |f e,

using (3.15).
The second term in (3.16) is equal, by the semigroup property, to

L~ _ oz .
f e H Dy P, f ds — f e HDyPf ds
1] (1]

={e"—1) f e Dy Pfds —e” f e Dyl ds.
0t

L]

Since Ar<1, then e — 1 <ee(A)** and the bound for the second term in (3.16) now
follows by using (3.15) to bound the above integrals, and recalling again that Ar<1.

The proofs of (3.11) and (3.13) are similar but simpler, and are left to the reader (or refer
to[1]). O

4. Existence

Before discussing existence, we first need the following tightness result.

Lemma 4.1. Suppose Y iv a real-valued solution of
P
Y, = o+ M, — f Y, dr, (4.2)
1]
where M is a martingale such that for some ¢,
(M}, — (M), <elt—35), s<t (4.3)
Let T>0,e€(0,1). Let Z, = f,;: eV dM  Then Z, = Y, — ey, and for each g=¢,
there exists a constant o2 = cale, g, T) such that for all 8 (0, 1],

geg— |
E [ sup 1Z, — ZJ¥]| <e:(e, 9. T) T (4.4)
§ A :

s g T r—s5|= &

Proof. Some elementary stochastic calculus shows that
- £ -
Y, =e "+ f e 4 M,
L]

which proves the first assertion about Z.
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Fix sy <ty=T. Let

- - I -
K, = [e~H0—) _ e~ f e dM,
1]

and

Li= e‘“"f e dM,.
MNote

Zr,-, = Z.'r.-, = K.'\r“ RE LI.,-
Then

(K),, = [ _ [P2e~2n f " g,
0

etin _ |
2

<r [e—:]r.-, —sg) l]le—li.\i,

Legfe ™Mo~ _ 171!
<03 (LA {ﬂ — %)) _
A
Considering the cases A{fp — s9) =1 and = 1 separately, we see that for any & £ (0, 1) this is
less than

! — ... E
cale) M
.

Now applying the Burkholder—Davis—Gundy inequalities, we see that

(te — sa)™

E|K,, 1% < esle ) —— g>L (4.5)
S
Similarly,
o e—]}.l ]
{L}:.. =0 21

<eeld™ A (fo — 50))

A1 A Aty — 50))

tf————————.
A

This leads to

(to — s0)™

3
ey o fe
E|L,| ér?{h,rﬂ—j“_m

. og=Ll {4.6)

Combining (4.53) and (4.6) we get

lto — sol™

ElZ;, = Za Pt el g) .
Ty i 8 J i‘l—u’.l‘{

It is standard to obtain (4.4) from this; cf. the proof of Theorem 1.3.11 in [2]. O
Recall the definition of Hy from (2.9).
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Theorem 4.2, Assume ay: H — R iv continuous for all i.f, by is continuous for all i, (2.2)
holds, and for some p= 1 and positive constant ¢

Arzok”, k=1 (4.7)

Then for every xy € H, there s a solwtion B to the martingale problem for 5 siarting at x.
Moreover if B € (0, 1), then any such solution has sup, ... | X:|g<oc for all ¢ P-as. If in
addition xy € Hp for some i € (0, 1), then any solution P to the martingale problem for &
starting af xq will satisfy

sup | Xlp=<oc forall T=0, P—as {4.8)
=T

Proof. This argument is standard and follows by making some minor modifications to the
existence result in Section 52 of [16]. We give a sketch and leave the details to the reader.

Fix xy in M. Using the finite dimensional existence result, we may construct a solution
X' = (X" k e b)of

I L r
X = @) + leen [—f“ A X b (X")ds + ZI _£ a (X d W
=

Here { W7} is a sequence of independent one-dimensional standard Brownian motions and
a'{x) is a symmetric positive definite square root of (a0 2 which is continuous in
x € H (see Lemma 5.2.1 of [22]). Then X =3 }_, X‘,""'a;c has paths in C([0, o), H) and we
next verify this sequence of processes is relatively compact in this space. Once one has
relative compactness, it is routine to use the continuity of the ay and b on H to show that
any weak limit point of { X"} will be a solution to the martingale problem for & starting
at xg.

By our assumptions on by, each by is bounded above by y~! and below by 7. We perform
a time change on X*%: ket A™ = [ b (X" ds, let /* be the inverse of A%, and let
Y& = X% Then ¥ solves the stochastic differential equation

P
Fit = -+ laen = [ a3t et

where M"* is a martingale satisfying |{M"*}, — (M"*},| 5|t — 5|, and ¢, is a constant not
depending on n or k.
We may use stochastic caleulus to write

Yok = k() 4 Z,
where

K40 = [l s;mf_m + Ly =)l f)

and

I
Z% = lgkan f LEeml Pl
¥

I
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Let >0 and s<¢=T. Choose £ € (0,1 _II'] and g=2/e. By Lemma 4.1 we have for
k=nand any § (0,7],

of |
3 i i a9
E sup |zt _ Znk 2l < eo(e, g,y Ty ! T
i =y T, e—t] =y ,a_k
Hence, undeing the time change tells us that
qe— |
2 R o
[E 5“P IXj-ch s X:-ucl_q 5:-\. likié.lr:lr-'ﬁ{ﬁsq:n}'s ﬂm.
srE T, |a—r| €4 A

where
X”Jrrk = likiélrJ{X‘er T "3_!:* f: hﬂxszdr—‘fﬂ{kn o E lik}lrlxﬂ{kL

so that ¥ = Z‘,’*‘f_ Now for O=s, =T and | —s|<7,
L]

(EJXY — XUPOY = X0 — X2, =

vk v k2
D IXEE Xk
k

&
< 30 - X =3 @ - Xt
k T

Jge—1 e
| |t — 5|
zale g7 T) “‘rz ==I1g:

& &

where || - ||, is the usual LY([P) norm.
By our choice of ¢ this is bounded by eq(e, g7, Tt — 5%, and hence

sup ELXY — X" <t — 5|92, su<T, |s— <.
i

It is well known ([5]) that this implies the relative compactness of X" in C(R,, H).
We may write

¥t = 1— ), (4.9)
where
" o .
U = Z e, haXOd (K.
k=|
If s<1t, then

[ ) . e 2
U — U=y [f-“ Jomona _ =i fy momar|” 2
k=1

<3 (G 1= s A Dxolk)?
k=1
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2k 2 — 5
% 11:'4 SE','lr—.vr'J“".E-Tﬂ{k] i [l

e

=
]

o
+ 3 Ly g0k {4.10)
k=l
Fix £>0. First choose N so that Y. , x¢(k)* <e, and then =0 so that

x 3
Z 11!-_*};54 rxﬂ.{k =g
k=l

and

e et oy
Apxglk) ™y 5 <e.

=

-

=1
If 0=t — s=4, then use the above bounds in (4.10) to conclude that

N =

U — UL Y Bxok)y 6" + ) xok)’

k=] k=N

=
+ 3 L, sysyXolk)
k=1
< 3g.
This and the fact that U"{0) — xy in i prove that { L™} is relatively compact in C(R,, ).
The relative compactness of { X"} now follows from (4.9).

Assume now [P is any solution to the martingale problem for & starting at x, € Hf and
let X} denote (X, &). Fix fe(0,1) and T>1. Choose £ £ (0,1 — fi). Using a time change
argument as above but now with no parameter nand § = 1, we may deduce for any g= 1/«
and k € M

1 (sug - e ru bl ) ‘h_r“{k]l > i;ﬁﬂ)
1=
= esle, g, Tf}*]if”_“ e

The right-hand side is summable over & by our choice of & and (4.7). The Borel-Cantelli
lemma therefore implies that

=l j'l’ biXx,yd

sup |)(fc —g ”xf.{kllé,i;ﬁﬂ for k large enough, as. i4.11)

1=T

If xy € Hy, this implies that with probability 1, for large enough &,

sup | X417 < 1+ xo(R)AY <1 + 1xol,
15T

and hence

sup | X |g<oc as.
r=£T
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For general xy € H, (4.11) implies

g B2 —ayT A2
sup !Xfi,-_ﬁ" T .r.ﬁ |xg) Segly, T, 8, x)  for large enough &, as.
T-'gigT

This implies supr-i -, o7 |X|g<oc a.s. and so completes the proof. [
5. Uniqueness
We continue to assume that (ay) and (b;) are as in Section 2 and in particular will satisfy

(2.2). Let yy € H and let P be any solution to the martingale problem for % started at py,.
For any bounded function f define

= -
Sif = [Ef e X ods
(1]
Fix zp € H and define

1 = o
Lof () =53 afz)Dyf (x) =Y Axibilz)Df (x). (5.1)
2 4 -

Set # = % — ¥, and let B; be the resolvent for %, as in Section 2. N

To make this agree with the definition of % in Section 2 we must replace 4; by i; =
Bizo) Ay and set .r;f:- = ayfzg). As :'&b,{:u]é:-‘", and the constants in Corollary 3.5 may
depend on 7, we see that the bounds in Corollary 3.5 involving the original 4; remain valid
for £;. We also will use the other results in Section 3 with A; in place of 4; without further
comment. In addition, if we simultaneously replace b; by b= by fbdzy), then

12 OO

LI =53 ape)Dyf(x) = Axiblx)Dyf (x),
T =l

i=l

] == o
Lof () =35 Y alz0)Dyf (x)— D kxDif (x),

ij=I i=1
and
bizg) =1 forall i
In Propositions 5.1 and 32 we will simply assume hizg) = 1 for all { without loss of
generality, it being understood that the above substitutions are being made. In each case it

is easy to check that the hypotheses on (b, 4;) carry over to (b, 4;) and as the conclusions
only involve ¥, ¥, RB;, and our solution X, which remain unaltered by these substitu-

tions, this reduction is valid.
Let

1= sup z gy (x) — ayl(zo)|.- (5.2)

X e

Set
Bix) = xlbilx) — 1)

As before,  will denote a parameter in (0, 1).
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Proposition 5.1, Assume

y—f2
3 yle i <oo,

i=f
.12
> AT IBilc, <0,
J.

andd

A1 —a),2
Z Ay IE,'E,_N: <D

1

195

(5.3)

(5.4)

(5.5)

There exists o 4) — Das 4 — oo and c3 = eala,7) such that for all & O we have 3R €

O and

18R f | = = (erl )+ exm)|lf |l =
Proof. We have
|BRf (<Y layx) — ay(zo)l 1Dy RS (x)]
.
+ Z Al [Bi(x) — 1| DR;f(x)]

shalfle + cal)fle.

(5.6)

where c4(d) — 0as L — oo by (5.4) and (3.11). In particular, the series defining # R/ is

absolutely uniformly convergent.
Let &jy(x) = ad x) — ay{zo). If i € H, then

|BRf (x+ h) — BRf(x)] =

[x]

+ Z AlBdx + DR (x4 1) — Bl ) Dy R N(x)]

=

If

f

4

4

=85 +5 + 5+ 8.

3 [dylx + WDy Rif (x + h) — Gy(x)Dy Rif (x)]

> Gl x + WDy Rif (x + h) — DyRyf(x))

+ D @iylx + ) — @y())DyR:f (x)

+ |3 ABlx + DR (x + ) — DiR:f(x)

+ D A Bilx + h) — BAx)DiR;f(x)

(5.7)
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Use (3.14) to see that
Sisesy  laylx + Bl le= 1Al
If

el = 1Al (5.8)
By (3.12)

S1 Y laylx + h) — aylx)| | DyRf (x)]
.

<er Y lagle ™G+ 471

7
< e 1= 101, (3.9)

where (5.3) and dominated convergence imply lim;_ . cgid) = 0. By (3.13)
Sy<ce Y MIBix + WA+ 2P | k1< ero A 1= 17, (5.10)

where cjgl4) — 0as L — oo by (5.4) and dominated convergence. By (3.11)

Sisen Y MBile(h+ 4 P | clhl cn@f I 1hP, (5.11)

where again ¢2(4) — 0 as i — oc by (5.5). Combining (5.8)—(5.11) yields
1B R;f |c= €[e13(d) + cunliflc=-
This and (3.6) complete the proof. O

Let O denote those functions in C* which only depend on the first # coordinates. Note
that %, C | ], C;. Note also that §;f is a real number while K;f is a function.

Proposition 5.2. If f € |, C;, then
Sif = Rif (vo) + SiBR:f . (5.12)

Proof. Fix zy € if. Suppose h € 7. Since (X)) — (X)) — f; FhiX,)ds is a martingale,
taking expectations we have

P
EA(X ) — hiyy) = [Ef RN ) ds.
]
Multiplying by e*' and integrating over ¢ from 0 to oc, we obtain

1 - I r
S:h—<hiy) =L f e f LhiX,)ds de
& 0 0

A

Lo |
Lo f e Ph(X,)ds = L S, Fh.
0 A

This can be rewritten as

183k — 8 Loh = h(yg) + 5:9h. (5.13)
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Define

L i

L) =" ayzo)Dyf(x) = Y AxiDyf (x).

=1 i=l

Let R} be the corresponding resolvent. The corresponding process is an n-dimensional
Ornstein—Uhlenbeck process which starting from x at time ¢ is Gaussian with mean vector
(xie™*"),., and covariance matrix Cy(f) = ay(zo)(1 — e %4 (4 + 4)~'. These para-
meters are independent of n and the distribution coincides with the law of the first n
coordinates (with respect to £;) of the process with resolvent R;.

Now take f € C and let h(x) = R; f(x) = R} f(x1,...,x,). (Here we abuse our notation
slightly by having " also denote its dependence on the first # variables) By Corollary 3.5
and (3.10), heF. Moreover, ¥Foph= LR f=iRf—f=4iR,f—f. The second
equality is standard since on functions in Cj, % coincides with the generator of the
finite-dimensional diffusion. Now substitute this into (5.13) to derive (5.12). O

To iterate (5.12) we will need to extend it to /' = C* by an approximation argument.
Recall }.,‘ = ,{:“]}.,'.

Notation. Write [, E}j' if {f,} converges to [ pointwise and boundedly.

Lemma 5.3. (a) If f € C*, then pR,f — f as p — o and
sup [|pRfle== If =
pro=-il
(b) For p=0 there is a o (p) such that for any bounded measurable f: H — R, R,f = C7
and |pR,f =< (S ;-

Proof. (a) Note if /' € C*, then

b
PR N, < l re P S, di<|f |l e,

and

=
FRI,J'{-T] —f{-‘f}=f pe (P fix) = fix))de = 0
(1]
because P,f{x]ﬂrj'{_r] as £ — 0.
Let X, be the solution to (2.4) (so that X has resolvents {R;)) and ket X} = (X, &}
Then X satisfies

- f y
X{=X§;+M‘,'—}.,-—[ X ds, (5.14)

0
where M} is a one-dimensional Brownian motion with Cov(M}, M}) = ay(s ~ 1). Let X7+
denote the solution to (5.14) when X, = x;. Then

b G LB S f (X — X7 ds,
0
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and so

Xxthd _ xd — ehipg,

Hence, if X* is defined by (X*, &) = X,

- (143

!X.r!-'l‘-"f — Xr"I = ‘Z ;Iff_:i':r = i-hl-
Therefore

IPS(x+ 1) — Pf(x) S || EQX T = XT PV e 7,
and so

IpR, f(x+ h) —pR, f(x)| < f pe™|P f(x + h) — P f(0)|di<|f| = 1hI%,
L1}
i.e., |[pR, flc== |f]e=- This proves (a).

(b) As we mentioned above, for any bounded measurable f, |pR, fl¢c, < f | c,- We also
have

PR =pRS = [ 0 MPuf — Pf1ds

= 5
= (" — 1]—[ pe P fde —e'“"f pe P fdt
0 0
The right-hand side is bounded by

2(e™ — DIf N,

This in turn is bounded by e5(p)s*? for D<s< 1. Also,

I1PpR.f — PR, fllc, <2W e, €28 f N, for s=1.
Hence ||pR, f]s <c3(p)f |l c,- Qur conclusion follows by (3.10). which holds for the {E,-}
just as it did for {4;}. O

Lemma 5.4. Suppose [, R O where sup, ||z <oc. Then
bp . bp ; .
DyRif,— 0 and DiR:f, — 0 asn— o foralij

Proof. We focus on the second order derivatives as the proof for the first order derivatives
is simpler. We know from Corollary 3.3 that DyR;f, is uniformly bounded in €7 norm, so
in particular, it is uniformly bounded in Cp norm and we need only establish the pointwise
convergence. We have from (3.8) that

IDyP S e, < erlfull 7" (5.15)
From Proposition 3.2, we have
DyP\f, = DiPy2Dg, . Psfy. (5.16)
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Fix ¢t =0and w e i. The proof of Proposition 5.2 in [1] shows there exist random variables
Bit,w)and ¥, such that

D, Pf(x) = Hf(Qx+ Y)R(Lw), f € CH),

and

[

[w

1

E[R(t, w)]<

Therefore
: : 5 b
Bl t,%) = Do, o Pyf () = E(f(Q, 2% + ¥, n)R(t/ 2,0, 1)) —> 0
by dominated convergence. Moreover Cauchy—Schwarz implies
Wi, O, S Grt)™ 2 50p 1f sl
L)
Repeating the above reasoning and using (5.16) we have
: : b
ﬂ,‘-,-Pr_f"{_t} = BIPr,-'z-th{-‘f] = E{f!n{Q,,;x + ¥ 12 MR !.n"lzs &) _I” 0
and
” DFPUFM " Cy ‘E{T”_I sup ".-'Irlm ” [ {51?}
L)
Fix &= 0. Write

o -
1Dy R (2l = f e Dy P f(x)dy;

f e, P, j',,{.r]d:‘ +
(1]

by dominated convergence and (5.17) the second term tends to 0, while (5.15) shows the
first term is bounded by

I
f el e 2 de<ey (sup 1l c-=)a=”.
ik

L]

Therefore

[ e

lim Sup EBUR/_--"FM{I]E‘% o (SUP ”.Jlrl.lu”f1)az:ll-
A

Since ¢ is arbitrary,
lim sup |DyR; f,(x)] = 0. 0

a0

Proposition 5.5. Assume (53.4). If [ e 7, then
Sif = Rif(yo) + SiBR; |- (5.18)

Proof. We know [, :f—pRPj'ﬂ» 0 as p— oo by Lemma 5.3, This lemma also shows
If plle= =20f | ¢=. and therefore we may use Lemma 5.4, the finiteness of #, (5.4) (in fact a
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weaker condition suffices here), and dominated convergence to conclude

BR; folx) = Z (an(x) — ay(za) Dy R f ) (x)
=

+ 3 Axbilx) — bizIDUR: f,)x) —> 0 asp — oo,

Here we also use the bounds |DyR; f,llc,=¢lf = and | DR, 1, ,_e-*azc'}.j_“! I = from
(3.11), (3.12) and Lemma 5.3(a). By using dominated convergence it is now easy to take
limits through the resolvents to see that to prove (5.18) it suffices to fix p=0 and verify it
for f = pR,h where h € C°. Fix such an h.

Let z(x)= 3L, xa+ 3., (z)& — xasn — oc and define h,(x) = h(z,(x)). Then
J':,,ﬂr h since h € 7. Recall the definition of R}, from the proof of Proposition 5.2; by the
argument there, we see that the function pR Ayl x) = ;?Hrf!,,{n,..... x,) depends only on
{x1,...,x). By Lemma 5.3(b) pRp.’!,, e C* and therefﬂre is in C}. Proposition 5.2 shows
that {S 18) is valid with /' = Rpf,. Now pR .f:,,—:-pRp}: as n — oo and sup, [|pRJy | ==

¢1(p) by Lemma 5.3(b). Therefore, if d,, = pR,(h,; — k) we may use Lemma 5.4, Corollary 3.5,
and dominated convergence, as before, to conclude

-EQ.R!'_ ﬂr"{ .T} = Z {“{,‘{x} SE H@'{ :ﬂ]]'ﬂu{ Ri n’"}{x}

+ 3 Axbilx) — BEDD(R AN —> 0 asn— oc.

We may now let n — oc in (5.18) with f = pR.h, to derive (5.18) with [ =pR,h, as
required. [

Theorem 5.6. Assume (22), each a; and each by is continuous, (4.7), (5.3), (5.4), and (5.5)
hold. There exists wy, depending ondy on (2,7), such that iy < yg, then for any vy € H there is
a unigue solution to the martingale problem for ¥ started at vy,

Proof. Existence follows from Theorem 4.2.
Let P be any solution to the martingale problem and define §; as above. Suppose
e 7. Then by Proposition 5.5 we have
S:J'r = R}f{_l’ﬂ] + S,ﬁ‘ifﬁ,f

Using Proposition 5.1 we can iterate the above and obtain
i
Sif =R; (Z{-ﬂfﬁ]’);" () + S BRI
=l

Provided 5y = ngiz.7) is small enough, our hypothesis that n=n, and Proposition 5.1
imply that for A= Ag(a, 7. (ay) (B)), the operator #R; is bounded on C* with norm strictly
less than _% Therefore Z;H (#R;)'f converges to 0 and {.ﬁ‘.‘h]“'j' also converges to (0
both in C* norm, as & — occ. In particular, they converge to 0 in sup norm, so
RS2, (BR:Y W (yg) and S:(BR)“T'f both converge to 0 as k — oc. It follows that

Sif = Ry (Z{ﬂf?}.]") flvg)

i=r
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This is true for any solution to the martingale problem, so 8; is uniquely defined for large
enough 4. Inverting the Laplace transform and using the continuity of ¢+ — Ef{X ), we see
that for every f € C7, Ef(X;) has the same value for every solution to the martingale
problem. It is not hard to see that %, C €7 is dense with respect to the topology of
bounded pointwise convergence in the set of all hounded functions. From here standard
arguments (cf. [3, Section V1.3]) allow us to conclude the uniqueness of the martingale
problem of ¥ starting at », as long as we have n<n,. O

Set
Qﬁ‘l.‘, = {_T =] H: i.TIﬁ%hr}.

Theorem 5.7, Asstme (b)) and (ay) are as in Section 2, so that (2.2) holds. Assume also that
x, e (0, 1) sarisfy:

(a) There exist p=1 and ¢ =0 such that i ze .

(b) 31 !HJ'J'EC"‘:'J'_JIQ < 0.

©) 3 }.J._ﬁ < oo, (For example, this holds i f=1/p.)

(d) For all N=0, for all ny =0, and for all x4 € Qp 5 there exists 6 =0 such that if
lx — xol <& and x € Qp y, then

z laglx) — al xo)| <ny-

If
L1
(&) 3,4 il =oc.

Then for all y € Hy there exists a unigue solution to the martingale problem for ¥ starting
at y.

Remark. By Theorem 4.2, any solution to the martingale problem for & starting at y €
will immediately enter H and remain there as. for any § € (0, 1). Hence the spaces Hy are
natural state spaces for the martingale problem.

Proof. Fix f € (0,1)as in (c) and write {0 for Qp 5. Let P be a solution to the martingale
problem for %¥. By Theorem 42 we only need consider uniqueness. If Ty =
inf{r: X, &0y}, then by Theorem 42 we see that Ty 1 oo, a.s. and it suffices to show

uniqueness for P(X .7, € -). (c) implies ¢y is compact and so as in the proof of Theorem
V1.4.2 of [3] it suffices to show:

(5.19) for all xg € @y there exist r=0, gy, and g; such that ay = ay and by = !;, on O, N
[x e H :|lx — xg|<r} and the martingale problem for 17 starting at y has a unique
solution for all y € @y. Here % is defined analogously to 2 but with ay; and b
replaced by a; and by, respectively.

Fix xg € Oy, g as in Theorem 5.6, Choose 4 as in (d). We claim we can choose 124, =0
depending on & and N such that if x e @, and [x — xgll.<d), then |x— xyl<d. Here
Ixle = sup; [{x, 2.
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To prove the claim, note that ||x — xp| .. =8, implies that for any Ky
Y- P ) 8 AN < Kod] + 4N Y iR
i i k=Kq

So first choose Ky such that the second term is less than -:31,-’2 and then set §, = 4//2K,.

Now let [5, 4] = [¥, — 61, + 811 N [-N4 ™ Ni7*] and note p, <q, s xo € Qy. Let

h,: R — [ be defined by
x if px<g,
H':’J.{-T] = 4 P if xX<py,

g if x=gq.

Define v : H — Oy Nixe H: |x— xg|lc<d1} by
b= dylx.ee.
=1

As I, < NP, i is well defined by (c).

Take r=46,e(0,1] and set ay(x)=ay((x)). If |x —xpl<r and x @, then
lx — xall.c <<r and therefore J(x) = x, which says that &;{x) = ay(x) for all i,j.

Define

i if |ul<r,
pluy= § (2r—|ulu/r i r<u|<2r,
0 if 2r< |u,

and set .f;,-{.t] = b{xo+plx —xg)). If |x—xp|<r, then plx—x)=x—2x and so
byix) = bdx). Also b is clearly continuous as (e) implies that by is.
We now show that a;; satisfies the hypotheses of Theorem 5.6. For any x

3 laglx) — axo)l =3 layl(x)) — aylxo)|- (5.20)

T ]
Since ||ix) — x| o= v and fix) € Oy, it follows that [y x) — xg) <d. (d) now implies that
the right-hand side of {5.20) is less than . It remains only to check (5.3) for &;. But

e £x) — dfey(x + i) < gl
and so
Ir(x) — lx + )| < Al
Therefore
Jeiy(x 4+ k) — ay(x)] = lag(l(x + 7)) — ag(b ()

= argle= e 4+ ) — (0"
= I“jjl(" u!lz .

and so
laijle= = lagl =

Henee a;; satisfies (5.3) because ay; does.
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If we set Bi{x) = xi(bi(x) — b{xq)), it is easy to check that Bi(x) is 0 for |x — x| 22r,
IBil < calbil= S albyle=, and B =< ealbyle= < calbil =, where ¢ may depend on xq.

Therefore (e) implies {!;,-] satisfies (5.4) and (5.5).  _
We see then that Theorem 5.6 applies to 4y and b and so (5.19) holds. [

Example 5.8. We discuss a class of examples where the by = 1 and the ay are zero unless i
and f are sufficiently close together. Let M & B, 2 £ (0, 1) and Sy(i, /) be the subspace of i
generated by {ag @ |k —id] v [k —jl=M}. Also let f1g,, be the projection operator onto
Sali.f). Assume that ay{x) = ay(x) = (g, alx)g) satisfies (2.2) and depends only on
coordinates corresponding to Syli, f), that is,

aiflx) = ag(Mginx) forallx e H, i,je B (5.21)
In particular, (5.21) implies ay is constant if |§ —f|=2M. Also suppose that

sup layle: = ¢ <oo. (5.22)
i

Set Afx) =1 for all i, x and also assume
A =zeaf for all j for some p=1, (5.23)

and fi £ (0, 1) satisfies
z .F.J.- = oo  for some d=10. (5.24)
=1

For example, (5.24) will hold if p=2 and ffz=2/p. We then claim that the hypotheses of
Theorem 5.7 hold and so there is a unique solution to the martingale problem for

Ffix) = Z;,,-“:J{-‘fmwr{x]— 3 iAo f(x), starting at any y € Hp.
We must check conditions (b}+{d) of Theorem 3.7. Note first that

laid x + h) — a2 = Ly saanlaglo: 1017,

so that |ay| < i <4003 and hence by (5.24),
Y lyled P <@M + s Y 4 <o,
g ;
This proves (bh), and (c) is immediate from (5.24). If N =0, x, v € Qﬁ.h" then for small

enough & =1,

Z laglx) — ayl x|

If

<2 lagles |3 L an(xk) — xok)’
1= k

=/
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HAM 3f2

2=l 3 D |3 lemn=anhe(k) — (k)
=l I3
=|x — x| cal M) Z (k) — xolB)*
k=l

=+
- .
Ses(M)lx — xof* Y N5
k=l

=olM,N)|x— xgl".
We have used (522), x, x5 £ QﬁN and (5.24) in the above. This proves (d), as required.

Example 5.9. We give a more specific realization of the previous example. Continue to
assume by = 1 for all {, (5.23), and (5.24). Let L. & =1 (we can take N = 1, for example)
and for k=1 let fy = {(k — )N + 1,...,kN}. For each k assume &% : R*™ = 5. the
space of symmetric positive definite N x N matrices. Assume for all &, for all x € IH'L*""
and for all z € RY,

Z Z aly (¥)ziz; € izl y " 1] (5.25)

and

(&) ;
sup max |4, |~ <oc. (5.26)
o l=ij=N J

MNow for xe H, let mex = (| X, Bt +k—IN=Lv 1 = L.aL+N € |HJ'+'~I- and define a: H —
L(H,H) by
folx)e, e = aylx) = aglx)

{.:.F'"_c"tc 1= Al TEX) ifi,jel k=],

0 if (L,/)¢Uz) fe x I

Then for all x,z € H,

Z Z oy {.I:Iz.f.. = Z Z “Ij{-r]zj:j

k= |:,;Fh
= Z Z dy {mt]_u N2k — 1IN+
k=1 ij=
g
€[yl 2]

by (5.25), and so (2.2) holds. Note that if i, f € {; | then (using the notation of Example 5.8)
w2k =N — L+ 1, &N+ L}, and so (3.21) with M = L + N is immediate
from the above definitions. Also (5.22) is implied by (5.26). The conditions of Example 5.8
therefore hold and so weak existence and uniqueness of solutions hold for the martingale
problem for % with initial conditions in Hp.
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Remark 5.10. The above examples demonsirate the novel features of our results. The
fact that our perturbation need not be nonnegative facilitates thenlcn:&limtiﬂn argument
(see Remark 9 in [23] for comparison) and the presence of {}.J-_z"} in condition (b) of
Theorem 5.7 means that the perturbation need not be Hélder in the trace class norm. The
latter allows for the possibility of locally dependent Holder coefficients with just bounded
Holder norms, something that seems not to be possible using other resulis in the literature.
On the other hand [23] includes an SPDE example which our approach cannot handle in
ezeneral unless, for example, the orthonormal basis in the equation diagonalizes the second
derivative operator. This is because he has decoupled the conditions on the drift operator
and noise term, while ours are interconnected. The latter leads to the double summation in
conditions (b) and (d) of Theorem 5.7, as opposed to the trace class conditions in [23]. All
of these approaches seem to stll be a long way from resolving the weak uniqueness
problem for the one-dimensional SPDE described in the introduction which leads to much
larger perturbations.
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