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ON THE APPLICATION OF THE PROPERTIES OF GALOIS FIELDS
TO THE PROBLEM OF CONSTRUCTION OF
HYPER-GRECO-LATIN SQUARES

By RAJ CHANDRA BOSE

INTRODUCTION,

Two Latin squarcs may be saill to be orthogonal to cach other if, when they are
superimposed, every letter of the one square occurs once and only once with every letter
of the other. Such a pair of squeres (one square being written with Greek letten)
may be called a Greco-Latin square.  When p—1 mutually orthogonal squarcs of side
# exist, then by their superposition we get what may be called a completely orthogonalised
or Hyper-Grivco-Latin square.® The work of Fisher' and Yates? has shown that such
squares are of fundamental importance in exrerimental design. It is easy to see that for
a prime number p, a p-sided Hyper-Greaeco-Latin square exists  Recently Vates has shown
that Hyper Grieeo-Lotin squarces exist also for the cases p=4, 8, 9. Professor Fisher,
during his recent visit to India, in a Scminar held under the ouspices of the Indian
Statistical Institute, made the surmise 'that it should be possible to construct a Hyper-
Craco-Latin square for every value of p, which is a prime or a power of a prime. It is
the object of this paper to prove that this surmise is correct, by using the propertics of
Calois Ficlds. It is hoped that the properties of Galois Ficlds, and the finite geometries
connected with them, will prove useful in many problems of experimental design and the
author hopes to pursue this matter in subsequent papers.

§1 ELEMENTARY PROPERTIES oF Garols FIELDS,

1. A sctof clementsa, b, ¢, . . . . ., is said to form a field F when there exist two
Jaws of composition, riz., the addition denoted by + and the multiplication denoted by x
or a dot, such that the following axioms are satisfied.

1 (i) To any two clements a and b of F, there exists a unique clement s belonging to
T defined by

a+b=s
(i) atb=b+a
(i) a+(b+c)=(a+dl+c

*The word H)per-Gravo-Latin square will throughout this paper be used to mean o completely
orthugonalised Hyper-Greeo-Latin square,
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(iv) To any two elements a and b, there exists on clement x belonging o F such that
a+x=b
On the basis of the axioms I (il—(iv), regarding the first law of composition viz., the

addition, it can be shown that the element x in 1 (iv) is unique, and that there exists a
unique element 0 in F with the propcerty that ¢ being ony arbitrary clement of F, ¢+0=¢.

11 (i) To any two clements a and b of F, there exists a unique clement p belonging to
I* such that
ab=p
(i) a.b=b.a
(i) (a.b).c=a.(b.c)

(iv) To any two clements a ond b of F, (b5£U), there exists an clement y belonging to
F, such that

ya=b

It can be shown that the clement 3 in IT (fv) is unique, and F contains a unique clenrent
1, with the property, that ¢ keing an arbitrary element of F, c.l=c.

III a(b+c)=ab+tac
It also follows that a.0=0, vherc a is any srbitrary clemeut of F, and taat {50.

The axioms I (i}—(iv), 11 (i)—(ir) and III, arc obvionsly satisfied by the systems of
all rational numbers, all real numbers, all complex nuinbers: so that these systems provide
examples of fields. What interests us here is the existence of systems, containing only
@ finite number of clements, and yet satisfying all the atove axioms. Such systems are
called Galois fields. \We shall Lriefly sketch their propertics here.

2. The simplest example of a Galois ficld is provided by the ficld of the classes of
residues modulo p, p being any prime positive integer. Let oll {ntegers congruent to one
other modulo p, be considered to belong to the same class, and et the class to which the
integer a telongs be denoted ty (a). Then (a) = (b} when and only vwhen a=b mod (p).
Thus there exist only p different classes (0), (1), (2), . . . . (p=1). The addition and
multiplication of these classes are definad by

(@) +(b)={a+ b
(a).(b) = (ab)

w (1
o A111S)
€.g>if p=T7, there are seven classes (0), (1) (2), (3, (4), (S), (B).

(2)+(3) = (S) (3+3=1(8) =(h

(2).(3) = (6 (3. (S)=(15) (1)
Tt con be verified that all the zxioms I (—(iv), 1I ()—(iv) end IIT are satisfied. The
ficld considered cbove is usually symbolised by GF,. The integer a may b xaid to be a
representative of the class (a). There is only once non-negative integer less than p, repre-

sentative of (a). This may be called the standard representative of {a). For example if
p=1, the sandord representative of (17) is 3.
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3. Sots of clements satisfying all the axioms I, 11, IIT with the possible exception of
I (iv), may be said to form a comcutative ring.

‘The concept of o polynowial in ordinary algebra can be extended to any field, viz. if
a,, a,, 8y, ..y by by, by, .. are clenients of any ficld F, then new clements of the type

J(x)=a.+ax +apn+....... rren .

constitute the sct of polynomials belonging to what may be called the commutative ring
F [x), the oddition aud multiphcation being defined in the ordinary way 21z,

(r2)
lag+ax oy r D% (bt byx+byxt+
a0+ (U by +aub))x + (a3ke +a,b, +2by)x "+ ... e (1°25)
For polynontials Lelonging 10 GF,[x), a,, ¢, ¢lc. are residue classes mod (p).
A polynomial f{x) of F(x] is said to te irreducible, when it is impossible to find

polynomials ¢{x) and ¢(x) of F{x] of degrees m and n, m $ 1, » ¥ | satislying
J(x)=e(a). w(e

If however we can find ¢(x) and w(x) satisfying the above condition, then J(x) is said
to be reducible.  p{x) or w(x) mav be called a factor of f(x). The polynomial f(x) may be
said to be divisible by ¢(x) or w(x).

Let f(x)be an irreducible polynomial of F{x). Two polynomials ¢,(x) and ¢,(x), may
be said to be congruent modulo f(x) if ¢,(x)—9,(x) is divisible by f(x), and this may
be written ¢,{a)=¢,(1) mod f{x). The class of polynomials congruent to ¢(s) modulo
f(x), being denoted by [¢(x)], we may define the additien and multiplication of these
classes by

[9n] + [vix] = [#txr+v(x)] e 1Y)
Lotn)] . [wlerd = Totx). wi)] . (1°38)

It can be shown that these classes form a ficld.  The polynomial ¢(x) may be said to
be a representative of the class [¢(x)]. If n is the degree of 4{x), there is only oue
polynomial of degree Icss than n, tepresentative of [(x)). This may oe called the standard
representative of [#(x)).

4. It is known that the most general Calois ficld contains p* clements, where p is a
prinie positive integer, and » any positive integer.  T'wo Galois ficlds with the same number
of clements, are ixomorphic, f.c., ly identical, a (1,1) cor il being possible
between the clements, in such a way that the sum correxponds to the sum, and the product
to the product. The Calois ficdd with p* elememts is nsually symhbolised by CFp,

Every clement @ other than 0 of GFys satisfies the relation

@ el =m0
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R

of the i hism b any two Calois ficlds with the same number of
elements, it is suflicient to write down the clements of auy Calois field with a given
number of el lier with the and iplication table. This muy be
done in the lollo\\ing manner ;—

Cousider the Umomml cquation x¥™' =1, of ordinary algebra, and obtain in the usual
manaer the cyel quation, viz., the ion, which has for its roots, all the primi-
tive roots of this equation. Il is well known that the degree of this equation will bhe
m=g(p*~1) where ¢(p*~1) denotes the number of integers less than p*—1 and relatively
prime to it. Let this equation be

X®4 0y XV @ =0 . (1'5)
where  Gum.y...2e are integers. If in the left hand side we replace the integers ay by their
residue classes (a;), modulo p, we get the polynomial

A"+ (G )X+, (20) e (1'6)
of GF,[x], which may be called the cyclotomic polynomial of order p*~1 of GF,[x]. Let
H(x) be an irreducible factor of (16). Consider the classes of polynomials of GF,[x)
congruent modulo f(x). Then these classes form the required Gaiois field with p® eluments,
the addition and multiplication Leing carried out nccording to (i°1), (1-15), (1-2), (1-25),
(1:3), (1-35). The degree of f(x) is always n. f(x) may be called the minimum function.

Instead of these classes, we may write down the polynomials which are their
standard representatives, and the cocfficients of these polynosials which are residue
classes modulo p, may also be laced by their Jard ives ; provided we
remember this fact at the time of forming sums and producls. Then cach clement of the
Galois ficld assumes the standard form

g+ 0, %+ a4 onnn o+ Q0!
where a,, a, cte. are integers taking any value ranging from 0 to p—1. It is scen that
there are exactly p* such elements,
§2. CoNNEXION oF FINITE CEOMETRIES WITH HVPER-GRACO-LATIN SQUARES,

1. We shall now discuss the connexion between a projective geotnetry with a finite
number of points and lines, with Hyper-Grieco-Latin Squares.  We lave to consider two
kinds of elements ‘points’ and ‘lines’ A given poiut and a given line may or may not be
‘incident’. We moke the following axioms reganling points and lines, aud the relation
of incidence between them :—

(1) There is at least one line, incident with each of two distinct points.
(2) There is not more than one line incident with cach of two distinct points,
(3) There is at lcast one point incident with cach of two distinct lines.
{(4) Not all points are incident with the same line,
(S) There are at least three points incident with every line,
(6) The mumber of points incident with at least one line is finite,
It can now be shown that there is not ntore than one point incident with two distinct
tines and 3f the number of points incident with any one line is s+1, tien
(i) there are precisely s+1 points incident with every lite.
(if) there are precisely s+1 lisres incident with every point.
(iii) there are in all precisely s’+s+1 points, and s'+s+1 lines.
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When a point and a line arc incident with onc another the point may be said to lie on
the line, and the line may be said to pass throngh that point.

A projective goemictry satisfying the above axioms (1)—(6), is. not possible for every
value s ; when however stch a geometry exists, its existeace is exactly equivalent to the
existence of an s-sided lyper-Creco-Lotin squarc.  Given any prime numbes p, and a
positive integer n, the Galois field alv:ays enables us to construct such a geonetry with
3=p% and hence on ssided Ilyper-Grocco-Latin wuare. In the next section we shall
discuss the actual procedure of construction, and in the final section consider the special
cases s=4, 8, 9, 16, 25 ond 27 ; the first three being already known. There of course
exist other projective geometrivs mot derivable from Galois fields. Hyper-Grieco-Latin
Squares Lelonging to such geometries, will be discussed in a later paper,

2. Take any onc of the s+ s+1 lines, and coll it the line at infinity (I). Through
cach of the s+ 1 roints on (/), there pass exactly s straight lines, other than (1) itself
these s{s+1) straight lines moking up together with (1), the totality of *+s+1 straight
tines. The s straight lines passing through a given point of (l), may he said to belong to
tife same paraliel pencil.  Choose any tivo roints X and Y on (/). The intcrsections of the
¢ lines forming the paraltel pencil with vertex at X, with the s lines forming the paraltel
peneil with vertex at Y, yield s* points, which together with the s+ I points on (1), consti-
tute the totality of s>+s+1 points. The s* points not lying on (/) may be called Anite
poimts. The s”+s lines other than () we may call finite lines, Let U,, Uy,.oiieUsy be
the points other than X and Y on (). The parallel peucils with vertices X, Y, Uy
{i=1, 2, ceenien s—1) may be denoted by (X), (V), (U). To the s lines of the pencil (X),
we may attach the numbers 0, 1, 2,......... s—1, one number being atiached to cach line.
The samre may be done to the lines of the pencil (Y). Consider now a finite point P, Let
x be the ntmber of the line of (X), and y the number of the line of (\') passing through P.
Then (x, y) may be called the coordinates of P. There are just s* ordered pairs (x, 3)
corresponding to the s? finite poirts. If we regard the as the row b
and y-coordinates as the column numbers, then the s* finite points correspond to the s* cells
of an s-sided square [the i-th row or columin being supposad to have the row or columu
number (i=1)). The cell corresponding to the point (x, ¥), we may call the cell (x, y).

3. Now consider the pencil (U,). We can as Lefore ottach in ony manner the
nunbers 0, 1,.......... 5= 1 1o the s lines of the pencil (U,). Through every finite point there
passes one and only one line of (U,). Let u, be the number of the line of (U,) passing
through (x, 3). In every cell (v, ¥) of our s-sided square we tien put the corresponding
nimber u,.  The arrangement that we thus get is a Latin square, for any row of our square
corresponds to a certain line of the pencil (X), and through the ¢ finite points of this line,
there pass the s differnt lines of (U,), one through each (a similar result holding for the
columns). The numbering of the lines of the L.encils (X), (V) and (U,), having once been
fixed, this Latin square is uniquely determined. We shall call it the Latin square [L,).
In the same way after having fixed the numbering of the lines in the pencils Uy, (uy),
we{Uaus) we get the Latin squares [L,], [Ly),......[Laa]. Finally it is clear that the
s~1 atin squarcs so obtained are | h For if uy denote the letter of
(La} (here represented by one of the numbers 0, 1, 2,......6=1) in the cell (¥, ¥), then to
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uny given value of m there corresponds a definite line of the pencil (Ui), and this line is
met by the s different lines of (Uj), i%j in the s finite points on it. Hence a given letter
of [L4], eccurs once and only once with every letter of [L;]. The superimposition of the
s—1 Latin squares we have obtained, gives us o Hyper-Griceo-Latin square.

4. Conversely given an ssided Hyper-Graco-Latin Square, we may call the
componeut Latin squares [L,], 1L,), ..o [L..,] ond may identify their letters with the
pumbers 0, 1, 2, ...... s—1. Let u, denote as before the letter of [Ln] in the cell (a, 3.
The s* cells may now be called finite points. The points corresponding 10 a fixed value of
X, ¥, iy eeeees or t,_;, may be considered to lic on the same finite lime.  We thus get s*+5-
finite lines. The lines corresponding to the different constant values of (X), may be said
to form the pencil (X). In the same way we define the pencils (V), (U), cooeennes (G
From the fzet that [L,], [L,], oct [L.,) arc mutually orthogonal Latin squares, it is
easy to deduce that any two finite points lic on one and only one line, and any two finite
Yines not belonging to the same pencil, intersect in one and only one finite point. If wa
now add new conceptual points X, Y, Uy, ... U, considered to lic on a line viz. (he
line at infinity, X being incident with cvery line of (X), ond no other finite tine, (sitnilar
being the case for the other points Y, U,, Usy ...... Us.,), we get a plane projective geometry
with s*+s+1 points and as many lines, cach line passing through s+ I points, and each
point lying on s+1 lines. The geometry that we get by considering only finite pdints and
finite lines, is the afine geometry of s? points and s(s+1) lines. It should be noticed that
these two geometries correspond exactly to the two types of orthogonal serics of incomplete
balanced blocks considered by Yates® ; so that now it is possible to extend these series to
any value of s, which is a prime or g power of a prime.

§3. Tug meriop oF CONSTRCCTION OF THE HYPER-GRACO-LATIN SQUARE.
1. Leta,=0,a,, a, .... a,,be the clements of the Galois ficld GFye, (s=p"). The
s? ordercd pairs (x, y) where x and y are elements of GFye, may be regarded as forming
the finite points of the geometry discussed in §2. Al points (v, ¥) satisfying a lincar
equation of the form
ax+by+c=0 e (3D
where a, b, ¢, are elements of GF,, a ond b not being simultancously 0, may be said
to lie on a finite line with the equation (3'1)*. The line whose cqualion is

ax+by+c’=0 31
is identical with the line whose cquation is (31) when and only when
be'=be=ca'-cda=ab’ ~a’b=0 e 1312)
Hence the linear equations can be reduced to one of the standard forms
x=a (=0, e s=1) . (32)
y=a, U=0, 1hrireene s=1) e 33
y+my=a, (i=1, s=1,j=0,1, ..s-1) e (34)

It should be remcmbered that Il ordinary algebrnic operations pre possible, in view of the fact
that GPn s o field.
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Hence there ore in oll s+ s+5(s~ 1)=¢"+ ¢ finite lines,

On any line with cquation of the form (32), there are exactly s finite points, corres-
ponding to the s diffcrent values of 3. Shmnilarly cn every line with cquation of \he form
(3:3), there ere exactly s finite points correspopding to the s diferent values of x. Finally
consider a line with cquation of the form (34). Given ony fxed value of x say o, ¥ is
uniquely determined (cf§1). Ience there cre exactly s points on n line with cquation of
this form also. Hesce cvery finite line has s points on it.

The lines x=gq; form the parallel pexeil (X), the lines y=u) formy the parallel pencil
(Y), the lines x+a,y=a; (i being fixed), forn the parallel pencil (Uy). It is casy to see
that sny two lines not belonging to the some parollel pencil interscet in a unique finite
point. It can nlso be verified that through every finite point, there passes exactly one line
of each of the s+ 1 parallel pencils, and that any two finite points are joined by one and
only one finite line. We have thus obtained the affine geometry with s* points and s+«
lines. Adding the conceptual points X, Y, U, ... U, regarded as the verlices of the
pencils (X), (V), (U})), ... (Us) Iying cn a concentual line, viz. the line ot infinity, we get
a projective geometry with 5+ s+ 1 points and &'+ s+ 1 lines, \With this the proof of (he
existence of an s-sidvd Hyper-Grieco-Latin square when s is a prime or a power of a prime
is complete,

2. The simplest woy of numbering the lines of the s+ 1 parallel pencils is to associate
the nomber j to any line whose ¢quation is expressed, in one of the standzrd forms (3:2),
(33), (34). Considering as before our Hyper-Graco-Latin square 2s formed of superim-
posed Latin squares [L,), [Ly), ... [La.,) to find the letter of [L,]) in the cell (p,q), we
have to find the numbcer of the line belonging to (U,), which passes through Lhe intersection
of the line nugber p of (X) and the line number q of (Y). To do this we determine ay from
{34), afler putlting x=0,, y=u,. Then j is the required number.  The crux of our wholt
discussion may now e stated in the form of the following theorem.

Tukoren I. Let 0,=0; a,, ay, ...... a., be the clements of the Calois field GFys,
(s=p"), p being a prime, and u any +ve integer.  Consider an s-sided square, and number
tha rows and colunmns 0, I, 2, ...... $=1, the cell (p, 9)® denoting the intersection of tie row

oumber p, and the column number g. If now in every cell (b, g) we put the number
j dutermined by

a,=a, + aa, {i fixed and non-zuro) {35!
we get a Latin squore (L. The s—1 Latin souares [L,), (Ly] ........ . [Lay] are all
iy ortl 1 eud their superi ition lcads to a Hyper-Graxeo-Latin square.

3. It is clear from the gencral theorem proved above that the actual form in which
we gzet the Hyper-Greco-Latin square will depend on how the identification between
a,, Uy, ..., 0.y and e clements of GFys (other than the null clement), when expressed in
the standard forn, is made. In the case a=1, i.c. when s is a prime numiber p, the simplest
way of identification is to sct @ equal to the residue cluss (i), modulo p. Our theorem then
leads to the lard method of ion of o p-sidéd Iyper-Gracco-Latin square when
b is o prime.

*The *p* of (p, @) nunibering the cell xhould not be confused with the ‘p* of 5=po,
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4. \When however n is not cqual to 1, i.e. s is a power (other than the first) of a prime,
the simplest procedure scems to be as follows :—

Let J(x) e the mini function, f.e. an irreducible factor of the cyclotomnic poly-
niminal of the order p*—1 of GF,[.:] Then the clements of GFy» can be represented
uniquely by the residue classes modulo f (x) of the polynomials

0,a%=1, 2, %, 2%eeena®™ (s=p%) - (300

We con then identify u, with 0, and ¢j with the class represented by the x'-'.  Sinee
x*1=1, we then get the following rule for the multiplication of the clements of the Galois
field.

aa,=a, il cither §=0 or j=0, I
aa=a wWhere I=(i+j-1) mod (s—1), 1 g1 s5-1
if i, jo. l

To apply the fundamental theorem to the construction of Hyper-Grzeco-Latin squares,
it is now only necessary to form the addition table of the elcments of GFya. To do this
we have to express the elements, when given in the form (36), in the standard form, and
then get the sum.  The actual procedure will Eecome clearer by the special cases considered
in the pext section.

3D

§4. DiscussioN of SPECIAL CASES.
1. Let us apply our method to the construction of a 4-sidled Hyper-Gricco-Latin
Square. Here we have to consider the Galois Field GFp. ‘The charactenistic of the field
18 2, and every clement other than 0, satisfies

x*—1=0
In GF, there are only two el having the dard rey ives § and 1. The
ordinary cyclotomic polynomial of order 3, is

+x+l

and this may be regarded also as the cyclotomic polynomial of GF,{x], provided we now
regard 1 as the standard representative of (1), Since x’+x+1 is irreducible in CF, {x],
the miviinum function f(x) is given ty
Jix)=x+x+1
Since our ficld is of ch istic 2 addition is identical with sul i The four
clements written in the form (36) sre the classes represented by 0, 1, x, x*. When
expressed in the standard form they beconte 0, 1, x, 1. Hence we have

a, = 0; a =1 ay = v; ay = l+x.
Since ovr field is of characteristic 2, in calenlating with ae, a4, a3, @y We must always
make 2=0 since 2 and 0 now stand for (2) and (0) which are identicol.
aataq = 0+aq = o (i=1,23)
@wtam = 2 = 0 (i=1,223
a+ay = |l+x = a
@ ta = 2+x = g

pta = 142y = g
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Henee we have the following addition table, where to find the sum of a, and a), we look up
the clement which is comnion to the row headed by a) and the column headed by &y,

@ | @ | ap | o

a | 0| a | &
ay [ag | 0 | &
ay az ay 0

Forming now the Latin square [L,}, [L,], [L,) according to our gencral Theorem 1,
using the formula (37) for multiplication, and writing their clements in the first, sccond
and third places respectively as in the following scheme, we get the required Hyper-Greeco-
Latin square,
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whicl we may call the key Latin square. It is then casy to sce that the Latin square [L,}
is the same as the key Latin square, while [L,) and [L,] have Leen derived from it by
keeping the column numbxr 0 fixed, and cyclically interchanging the columns numbe:
1,23

\Ve shall now prove that this result is general for the mnethod of identification adopted
by us. Since g, is 0, it is clear from Theorem 1, thaf the column number 0, of any one
of tise Latin squarces [L4], has the numbers

0, 1,2, 8 =1
so that it remains fixed.

Let now § have any fixed value satisfying 15igs—2. Let j be the number io the
ccll (P, q) of (L), and j’ e the number in the cell (p, 9—1) of [Lin]s p50, ¢30. ‘then

a=aytaay ay=ay+ a Ay

When g%}, the formula (37) shows that j=j. Hence for g1, the column number
g-1 of [La,,) is identical with the column number g of [La]. In the same way it is sceu
that the nunber ia the cell (p, 1) of [Li] is identical with the number in the cell (p, s—1)
of {Li,) so that the column number s—1 of [Ly,] is identical with the column number 1
of [Li]. Hence we have

TueorexM I1.  If we make the identification of the clements of the Galois field, in tke
way considercd in the last paragraph of §3, and form the key Latin square [L,] by taking
only the sullixes in the addition table ; and form other Latin squares [L,), [Ls), «coroe
|Ls.,] from it by cyclically interchanging the columns number 1, 2, ......s—1 of [L,],*
then these s—1 Latin squares are mutually orthogonal and their superposition leads to
a Hyper-Grxeco-Latin square,

Tt is thercfore only mecessary to comstruct the key Latin square in apy given case
A further simplification will be i duced at a later stage,

2. Let us now consider the case s=8. The cyclotomic polyaomial of order 7 is
xtextate b atatl

when regarded as a polynomial of CF,[x] it can be factorised as (x*+x*+1) (x*+x+1).
We shall take our minimum function /(x) to be a®+x*+1. Then

=0 w=1

=X ay=a?

a=xt=x'+ et=xl=x"+re=xtta+l
a=x'ax 4 x'+x=x ) ay=x=1"+x

L, is Cerived from .[L§] by displacing the columny number 2,
and carrying the column gomber | to the Jast column

.8=1 one xtep o the left,
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where we have to remember that since we are considering a ficld of characteristic 2, addition
is the samec as subtraction. To form the nddition table we liave now to find the sun of
every two clements, ¢.8.

ata= () +(x+l)= atvr=a,
ayta;s (x4 x+1)4(x'+x) =1=q,

Forming the oddition table and taking only the suffixes, we now have our key Latin
square.

When the six other Latin squares obtained from it by a cyclic interchange of the
columns headed by 1, 2, 3, 4, 5, 6, 7, are supcrimposed on it, we get an 8-sided Ilypers
Grco-Latin square,

3 We shall now cousider the case s=9. Tha cyclotomic polynomizl of order 8 is
x'+1, and this when regarded as n polynomial of CF,[x] is factorisable os (x*+x+2)
(x'+2x+2). Let us then toke the minimum function f(x) to be x*+x+2. Here we sre
dealing with a ficld of tharacteristic 3, so that 3=0 rememberiny of course that now our
integers are standard representatives of classes of residucs mod 3.

ay=0 aml

a=x yextm2x+]
a,=2 m2xt+xm2x 42 aym2x?+2x=2
a,™2x a,m2x' = x42

a,=xt42xex+1
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Hence forming our addition fable and taking only the suffixes we obtain our Key
Latin square in the form

Superposing on this the sevea other Latin squares derivable from it by a cyclie inter-
change of the columns headed by I, 2, 3, ...... .eee 8, we get a 9-sided Ilyper-Craco-Latin
square. -

4. If we now carcfully observe the form of the Key Latin square for the cases
5=4, 8, 9; then denoting by j (p, q) the number in the cell (p, g), we find

If p and g have any values such that 1zp 362, 159 <s-2 then

M j(p+1,9+1)=0 when § (p, 9)=0
) j(p+1,q+D=14j(p, g whenjip, q)=1,2,....5-2 E e (405Y
(i) jp+1, q+)=1 when j (b, @)=s-1

We shall now prove these results to ke general,
If ap+ aq=ar and ay,, + @ =y then § (p, g)=r, and j (p+1, g+ 1)=¢
Now from (37) we find, since Isp gs-2, 159 58-2,
= a, a, A 2ay ag
al =aptaw=a; {+a)=a,ar
When j (p,g)=0 r=0. Mence ay=a,=0. Thus a’,=0,i¢, r'=0 or j{p+1, ¢+ 1'=0.
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When ih, @) =r tlsrse=2), then ap=an, sothat ¢P=r+l.
Henee  jip+1, 9+ =14, a)

When  § {P Q)=s—1, armay @y =a,  so that r’=1, Ience j (p+1,9+1)

‘The rules symbolised by (4'5), introduce a great simplification in the work of cou-
structing the Key Latin square. The row mumber 0 is always composed of the munbers
0, 1, 2, ccoes s=1, in this order. We now form only the row number 1 of the addition
table, and from it the row smwmber t of the Key Latin square by taking only the suffixes in
the addition table. ‘The remainder of the Key Latin square can now be very quickly filled
up. We begin from any number of the row munber |, and proceed by single steps in the
direction of the leading diagonal. If the initial number in the vow number 1 is 0, then
we fill vach successive cell we get by 0. If however the initisl number is other than 0,
then $n cach successive cell we put a muuber one gieater than the number in the preceding
cell j remembering however that when the number s—1 is reached in a cell, the succeeding
cell must he filled up by the number 1. The unfilled portion of the Key Latin square may
now be casily filled up, on account of the symmetry of Key Latin square about the leading
diagonal.

Henceforward hercfore it is only necessary to specify the numlers, in the row
manber 1 of the Key Letin square.  \We shall do this for the czses s=16, 25 und 27,

5. We now consider the case s=16. We have now to deal with the field GF,4 of
characterislic 2.

The ordinary cyelotomic polynomial of order 15 is
At et —attxtex |
lenee the cyclotomic polynomial of G, {«] of order 15 is
MxtEtpat e e x4
which is factofisable as
(e*+at+1) Gl ex+l)
We can therefore take our minimun fusction f(x) as

Jx)=a'+a’+]

+a=at+x+l
rxtexTrx=xTrx+ 1
0

N =y ttxsnt]
a=aP=xThx a=att=xt 4 at
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SANKHYA:

Now a,+a,=a, a+a,=0,

ata,=a;, atag=a,
nta=ay,, ata,=a,

ata=a;, atay=a,

TIIE INDIAN JOURNAL OF STATISTICS

atas=a, ata,=a,
atag=ay, ata,=a,
atag=as o ta,=a,

atay=a, atay=a,.

Hence the row number one of the Key Latin square is

1,0,13, 10,5, 4, 11,9, 14,7, 3,6, 15, 2, 8, 12

[ParT 4

From this the Key Lalin square can be formed according to the process cxplained
before. Now by a cyclic interchange of the columns rumber 1—15, we get 14 other Latin
squares, which superimposed on the Key Latin square give us the 16-sided Hyper-Groecos
Latin square.

6.

of characteristic 5.

The ordinary cyclotomic polynomial of order 24 is

xt=xt4l

hence the corresponding cyclotomic polynomial of GF,[x] is

ER X INEY

Let us now consider the casc s=25. We have now to deal with the ficld GF,s

wlhiere the integers are now standard representatives of classes of residues modulo 5. This
can be factorised as

so that we can take our ktinimum function f(x) as

(A24+20+3 (A?'4x+2) (A'+4x+2) (aT+3x+3)

f(x)= x*+2v43

a,=0

AT H22v=x+1
a=x*=4x 4 2r=4x+3
a,=x"=3¢
ae=x"r=4x"+ x = 3x+3
aa=xMt =2y 2x +4
ay=x"=4x
2x'+3x=dx+4
at4By=x42
ay=x't=2y
ap=xti=gtidy=2v42
= x? =3 +4x=3x+1

a=a'

ayy =

a=l

ay=at=3x+2

aymat=yttr=4v42
.

a=

3xT+3x=2x+1
A= +4u=4
a=x"=dx1=2x+3
ap=xtt=d2 =243
=at4+2x=2

- =2xt=x+4
@A =2x142x=3x +4
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7. Finally lct us consider the case s=27,

The ordinary cyclotomic polynomial of order 20 is

R R A R Y L N P TN |

Ience the corresponding cyclotomic polynominl of GF,[x] is

A2 AR 22t 2 2 a2 F AT 204 |

where the integers are now standard representatives of classes of residues modulo 3.
can be factorised as

(P+2x+1) (P + 22+ D (P "+ 20+ ) (VA0 x+])

take our f

J (&) wat+2x+1

a,=0

ay=x

ﬂ.=x’=x+2
a=xtmx?+2:'=2x"+x+2
a=x'matr At x=xt+ 2042
a =x'=2x"+2xmx+1
ap=xtt=x =t x e 2
o=zt = 2rm2

@ =x"=2x?
a,=x=2x"+x

Are=x" =t 2T h x 20V 4 204 2
ape=xt =20+ xtbamatil
ay=xP=2:t 42

Ay =XV m2 P+ 2 r x =22+ 1

37

f(x) os

a=I

ay=xt

a=at=xt+2x
aymxt=2x"+x"+2v=xtHxt |
ay=xt=x"+2x + 2x=2x14+2
oy =x"t=at by
apax'taxtexte2x=1"42
ayymati=2y
ay=xttm2yt=2x+1
a=x't=2x 4 xt= x4 2x 4+
ay =x"=2x"4+2x"+2x =20\ "+ x 41
ayymx ey am2r+2
aym =20t $ 2x 2, 4 2x 4+ )

Forming now the row number 1 of our addition table, and taking only the suflixes,
we get the row number 1, of the Key Latin syunare as

1,19, 4, 10, 18, 6, 16, 13, 24, 5, 23, 22, 20,0, 0, 12, 4, 21, 17,7, 11, 2, 15, 8, 3.

From this now the Key Latin square can be written down aml hence the complets
Iyper-Grvco-Latin square,

This

We can now form the row number 1 of the addition table and from this by taking only
the sufixcs, the row number | of the Key Latin square comes out as

1, 14,10, 22, 2, 19, 18, 12, 5, 16, 4, 7,11, 3, 0, 17, 28, 23, 21, 8, 24, 6, 13, 15, 25, 20, .

From this the Key Latin square, and the complete Hyper-Griveco-Latiu square can be
generated, as explaioed before,
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SuMIARY,

By using the propertics of the Galois Ficld GFp, it is possible to build up a projective
geometry with s”+ s+ | points, and s*+ s+ | lines, where s=p", p being a prime integer, and
nany positive integer. It has been shown that the existence of such a geometry is exactly
cquivalent to (he existence of an s-sided completely orthogonalised Hyper-Graeeo-Latin
suare.  This completes the proof of the existence of such a square when the number of
clements in cach row is a prime or a power of a prime.  The actual form in which the Hypee-
Grxeco-Latin square will be obtained depends on the manucer of identification of the Iincs
forming the pencils defining the coordinates of the points of our geometry, and the elements
of the Galois-fiell, When n=1, i.é, sisa prime, a certain simple wode of identification is
siown to lend to the usual mclhod of construction of Hyper-Crieco-Latin square of this
special type. \When however n>1, so that s is a power (other than 1) of a prime, it is
shown that there exists a certain method of identification, for which the component Latin
squares, of the completely orthogonulised Hyper-Grocco-Latin square, are all derivable
from one of them, called the Key Lalin square, by a simple system of cyclic interchanges.
Further it is shown that the Key Latin sqrare itself can bLe generated from the row
number one, according to simple rules. ‘Thus the actial labour of construction is consider-
ably simplified.  Actual cases in which s=4, 8, 9, 16, 25 or 27 have been discussed,
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