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Abstract

Inthis paper we consider proximinality questions for higher ordered dual spaces. We show that for a finite
dimensional uniformly convex space X, the space C(K, X) is proximinal in all the duals of even order.
For any family of uniformly convex Banach spaces {X. ey we show that any finite co-dimensional
proximinal subspace of X =0, X is strongly proximinal in all the duals of even order of X,

Kevwords: Proximinality: Duals of hi gher order

1. Introduction

We always consider a Banach space as canonically embedded in its bidual. Thusif ¥ < X then
¥ C ¥ © X** is the canonical embedding. We say that ¥ is proximinal in X if for any x € X
there exists a best approximant vy € ¥ such that dix, ¥) = ||x — yo|l. The set valued map x —
Pix) where P(x) is the set of best approximants for x in ¥, is called the metrdc projection. We
recall that X is said to be proxbid if under the canonical embedding it is a proximinal subspace
of X** This concept received some attention during the eighues. See, for example, [5] and
[9] and the references therein. Recently Indumathi [7] proved that any finite co-dimensional
proximinal subspace of ¢y continues to be proximinal in its bidual £7. Motivated by this in
this paper we undertake an investigation of spaces ¥ < X where ¥ is proximinal (under the
canonical embedding) in all the duals of even order of X. Note that if ¥ < X*™ is proximinal
then in particular it is proximinal in its bidual. Thus such a space ¥ is proximinal in all its duals
of even order. It may be noted that proximinality is in general not hereditary or transitive.
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We denote by X' the higher duals for n = 1. We note that when X is non-reflexive, X**
and X+ are distinct (isometric) subspaces of X'

Let K be a compact Hausdorff space and let C(K, X) denote the space of X-valued con-
tinuous functions equipped with the supremum norm. Using a result of Lau [9] we show that
when X is uniformly convex, any C{K) module M (ie, fe M, ge C(K) implies fg e M)is
proximinal in C{K, X)*.

To see the relation with the proximinality questions in spaces of operators we note that the
space of compact operators K{X, C({K)) can be identified with C(K, X*) and £(X, C(K)) can
be identified with the space WHC (K, X*) of functions that are continuous when X* is equipped
with the weak®-opology. These embeddings are carded out via the map T — T*|K where K
is canonically embedded in C{K)*. Moreover when K = (), W*C{ K, X*) can be identified
with 5. X* (I -many copies of X*). Also since C(K) has the metric approximation property,
it follows from [ 10, Example 1] that in the canonical embedding C(K, X*) = K(X, C(K))
CiX,CiK)) isan ideal (in the sense considered in [ 10]). Consequently one has that £(X, C{K))
is womelric 1o a subspace of C{K, X*)* in such a way that the isometric copy is in the canonical
embedding, between C(K, X*) © C(K, X*)*.

Therefore if C(K, X*) is proxbid we in particular have that (X, C{K)) is proximinal in
CiX.CUED).

We recall [6] that a proximinal subspace ¥ < X is said to be strongly proximinal if for each
xr € Xande =0, there exists & = 0 such that sup{diz, Plx):z e¥and ||x —z|| =d(x,¥)4+48} =
€. See [3] for some charetedzations of finite co-dimensional strongly proximinal subspaces.

Extending Theorem 4.1 of [7] we show that for any family {Xeljeer; of uniformly convex
Banach spaces, any proximinal finite co-dimensional subspace ¥ of X = (B, Xo is strongly
proximinal in all the duals of even order of X.

We refer to Chapter VILL of [2] for standard results from tensor product theory that we will be
usmg. We use the subsenpl 7 to denote the projective tensor produoct.

2. Main resulis

We recall that a closed subspace M C X is said 1o be an M-ideal if there exists a linear
projection P :X* — X* such that ker{P) = M+ and ||x*|| = | P(x*)| + |x* — P(x*)| for all
e Xt I X =M $ N foraclosed subspace W, then M is said o be an M -summand.

It is easy to see that any M-summand is an M-ideal. Any M-ideal is a srongly proximinal
subspace (see [T].

Lemma 2.1. [f M < X is an M-ideal then wnder the canonical embedding M is proxhid if and
only if M ix proximinal in X**.

Proofl. One implication is always true. Suppose M is an M-ideal and proxbid. Since X** =
M~ @ N,as M is proximinal in its bidual M+ we get that M is proximinal in X**. O

Lemma 22, Let ¥ © X be the range of a projection P of norm one. If X iv proxbid then so is Y.

Proof. We have that P**:X** — ¥+ is a projection of norm one. Let A & ¥+ ¥,
Since X is proxbid there exists xg € X such that d{A, X) = |A — xp|. Now forany vy € ¥,
A=yl Z lA— x| =z |P*(A—x)|=A— Flaw)l. As P(xp) € ¥ we have d(A,¥) =
|A—=Plxod|l. O
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Question 2.3, We do not kmow if X* is proxbid implies X is proxbid. In view of the natural

projection A — A|X from X*** o X*, by the above femma we have that if X** is proxbid then
a0 ix X,

Remark 24. Let T be a locally compact noncompact Hausdorff space and let X be a Banach
space whose dual 15 1somorphic 1o Ll{_u}l. For a closed subspace V C Col T, X)) CC{H(T), X,
Theorem 3.9 of [1] gives conditions under which V is proximinal in C(8(7T), X'). It follows
from Remark 325 of [1] that V ={f ey fi2n) =nfi{2n — 1), n = 1} is proximinal in oy
but not in £7°. Since oy 15 an M-ideal in £7 but not an M-summand, this example shows that
proximinalily is not transitive even when one of the subspaces has the stronger property of being
an M-ideal. As already noted during the proof of Lemma 1,if Z C ¥ © X and Z is proximinal
i ¥ oand ¥ s an M-summand in X, then 2 1s proximinal in X,

It follows from [4, Theorem [11.1.6] that V is proxbid. 1t follows from [10, Proposition 1] that
there is a projection of norm one P*:(£%9)™ — (£*)* such that range( P*) = V-, de, Vs
an ideal in the sense considered in [10].

It is well known that for a compactset K, C(K) is proximinal inits bidual [5]. Since the bidual
of C{&) can be identified with C{ K") where K7 is the Stone space of C{ K )** a simple induction
argument shows that all the duals of even order are proxbid. We are interested in conditions under
which the space of vector-valued continuous functions C(K, X) and for a family of Banach
spaces { X} the £ direet sum 5. Xo are proxbid. It is casy to see that this is the case for
finite families.

It follows from the above lemma that it is necessary that X or each X is proxbid.

When all the X, ’s are taken as a finite dimensional space X, it 15 well known that @x Xa
can be identified as C{ A7), X)) where I s the index set for o,

Proposition 2.5. For any uniformly convex space X, any C{K) module M C C{K, X) iv prox-
iminal in C{K, X)**_ In particular, M iv proxbid.

Proof. Since X is uniformly convex it is reflexive. Thus C{K, X)* = C(K)* &, X* (see [2,
Chapter VILL|). Hence C{E, X)** = C(X*, C{ K)*™). The later space can now be identified with
WH*C{K', X) where K is the stone space of C{K )™ . Now under the canonical embedding CiK)
is a closed subalgebra of C(K)** containing the identity 1. Thus there exists a continuous onto
map ¢ - &' — K such that the canonical embedding of C{K, X) in WFC(K', X) is implemented
by f— f og. LIt now follows from [9, Theorem 4.3] that M is proximinal in C{K_, X)*. 0O

In the following corollary we collect several simple consequences. Theorem 2 of [5] is our
statement (o) when E is a singleton and X is the scalar field.

Corollary 2.6.

(a) Fora uniformfy convex space X, forany EC K. M ={fe C(K, X): f{E)=0}is proxhid
av well as proximinal in CUK, X )™

ib) When X is finite dimensional and wniformly conver, C{K | X) and all itv duals of even order
are proxbid. Move over CUK, X)) is proximinal in all the duals of even ovder:

(c) For a finite dimensional wuniformly convex spaces X and for any index set I the same con-
clusion as in (b) holds for the space B X.
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Proofl. (a) Since M is 8 C{K) module this follows from the above proposition. It can also be
deduced from Lemma 1 since M s an M-ideal in C(K, X).

i(b) Following the notation of the proof of the above propositon, as X is finite dimensional
and uniformly convex C{K, X)™ = C(K’, X) and the canonical embedding is implemented by
composition with the continuous onto map ¢: K" — K. Now repeating the argument with K,
we get o K7 and a continuous onto map : K7 — K. Now applying the proposition once again
using ¢po s K — K we see that C(K, X) is proximinal in C(K, X)™, The conclusion now
follows by induction.

() We identify the space 5., X with C(8(7), X) then the conclusion follows from (b). 0

Remark 2.7. Let { X} be a family of finite dimensional uniformly convex spaces such that
{dimi{ X )} is bounded. Then using (¢) and the fact that finite £™-sums are proxbid, we see that
P Xa is proxbid. We do not know if this is also the case for a general family of uniformly
convex finite dimensional spaces.

Let X be a reflexive Banach space. Note that C(K, X)* = C(K)* @, X* =LY u) @, X* =
L'z, X*) for some positive measure jo. It follows from the remarks on page 200 of [4] that,
under the canonical embedding, Ci{K, X)*™* = C{ K, X)* 45 N for some closed subspace N
(¢! direct sum). Thus C (K, X)* is a Chebyshev subspace (unigue best approximation) of its
bidual. It can now be deduced from [11, Theorem 6] that C{K, X)* is a Chebyshev subspace of
C(K, X)) forn = 1. If X is a finite dimensional uniformly convex space, it follows from (b)
above that C{K, X) and all of its duals are proximinal in the appropriate biduals.

In the proof of the following theorem we use the fact that strong proximinality is hereditary
for uniformly convex spaces. This for example can be seen from [8] that any closed subspace of
a uniformly convex space has the stronger property U-proximinality.

Theorem 2.8. Let { Xy} be a family of uniformly convex spaces. Let X = (B, Xo. Then any finite
co-dimensional proximinal subspace is strongly proximinal in all even ordered duals of X.

Proof. We will first prove the theorem for X** = (B, X,. Let ¥ C X be finite co-dimensional
and proximinal. Then there exists a finite set A such that suppf < A forall f e ¥—. Thus
¥ = @m{xa toga B (¥ NEB L {Xaleea). Since X, 's are reflexive it follows from [4, Theo-
rem 1L 1.6] that the first summand here is an M-ideal in its bidual @B, {Xaloga and hence is a
strongly proximinal subspace. Also X*™ = @, {Xq laga B Bl Xolaea. Thus we only need
to show that £ =Y ﬁ@x{){u foea 15 strongly proximinal in &)x{Xu teea. Now since Z 15 a
finite co-dimensional subspace of @5 {Xsleca and since any closed subspace of a uniformly
convex space is strongly proximinal, we see that condition (2) of Theorem 2.2 of [6] is satis-
fied. Therefore by [6, Theorem 22| we have that Z is strongly proximinal. Hence ¥ is strongly
proximinal in X**.

Nextnote that since A is finite and X, s are reflexive, X' = (Pl Xaloga) Pl Xelaen.

Again since (B, { Xy laga is @ M-ideal in its bidual, it follows from the proof of Theorem 2
in [11] that EBHI{XQ}“H is an M-ideal in (B, { Xa}ega) . Thus as before we conclude that
¥ is strongly proximinal in X', Now the proof can be completed by an induction argument
similar to the one given during the proof of Theorem 2in [11]. O

We recall that for a discrete set T, C{S(I), X)* = P, X* P, N for some closed set N (the
sel of non-atomic measures). Here and in what follows below the direct sums are taken over
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the index set 7. The following result is similar o our proposition, for subspaces which are not
necessarily C( K ) modules.

Theorem 2.9. Let X be a finite dimensional uniformly convex space. Let ¥ © @B, X =
C{A(I), X) be a finite co-dimensional subspace determined by elements of ':'B'l X* that are
Simitely supported. Then ¥ is proximinal in (B, X)1*

Prool. Since ¥ is finite co-dimensional we can conclude that the hypothesis implies that

¥ = @DXuduga B ¥ 0Dl Xebeen)

where each X, = X . We have

(@X)** _ (@{Xﬂ}ﬂ#.{)i @(rﬂ@{xu}uf_ﬂ)_

Now from the last part of the corollary applied to the index set 7% A we have that @B X o lega
15 proximinal in its bidual {@x{xﬂf}ﬂ_ﬂ‘u‘. Simce the other summand is reflexive, we conclude
that ¥ is proximinal in (65, X)*™. 0O
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