ROBUST INFERENCE IN PARAMETRIC MODELS USING THE FAMILY
OF GENERALIZED NEGATIVE EXPONENTIAL DISPARITIES
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Summary

We examine robust estimators and tests using the family of generalized negative ex ponential
disparities, which contains the Pearson’s chi-square and the ordinary negative exponential
disparity as special cases. The influence funetion and e-influence function of the proposed
estimators are discussed and their breakdown points derived. Under the model, the estimators
are asymptotically efficient, and are shown to have an asymptotic breakdown point of S0%.
The proposed tests are shown to be equivalent to the likelihood ratio test under the null
hypothesis, and their breakdown points are obtained. The competitive performance of the
proposed estimators and tests relative to those based on the Hellinger distance is illustrated
through examples and simulation results. Unlike the Hellinger distance, several members
of this family of generalized negative exponential disparities generate estimators which
also possess excellent inlier-controlling capability. The corresponding tests of hypothesis
are shown to have better power breakdown than the Hellinger deviance test in the cases
examined.

Kev words: breakdown point; efficiency; Hellinger distance: minimum disparity estimation;
negative exponentiol disparity; robusimess.

1. Introduction

Consider the general setting of inference in a parametric class of distributions F =
[Fy.8 e ® C IR"}. Let G be the true distribution belonging to G, the class of all distributions
having probability density functions (pdfs) with respect 0 a dominating measure such as
the Lebesgue or the counting measure. Assume that Fy © G, In reality, G is often close
o, but not exactly in, the model Fy. Classical methods of inference, such as those based
on maximum likelihood (ML), can be arbitrarily perturbed by deviations from the assumed
model, although they are often optimal when the assumed model s correct. On the other hand,
classical robust estimators such as the M-estimators necessarily sacrifice first order efficiency
o achieve robustmess for most parametric models (Hampel er all, 1986).

Beran (1977) showed that the apparent conflict between efficiency and robustness is at
krast partially reconciled by using minimum Hellinger distance estimation. Among others,
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Tamura & Boos (1986) and Simpson (1987, 1989) pursued this line of rescarch. Lindsay
(1994) and Basu & Lindsay (1994) discussed a class of density based divergences, called
disparities, which mcludes the Hellinger distance (HD). This class contains the negative
exponential dispanty (NED), an excellent competitor o the HD in generating robust statistics
(Lindsay, 1994; Basu e al., 1997). Jeong & Sarkar (2000) generalized the NED to construct
a class of multinomial goodness-of-fit wsts, In this paper we investgate efficiency and ro-
bustness properties of parametnc inference procedures based on this family of generalized
negative exponential dispanties (GNED). Several members of this family appear to perform
very well in combining robustness with full asymptotic efficiency.

The distinguishing feature of our proposed estimators s their ability to combine full
asymptotic efficiency with strong robusiness properties, which is also the feature of minimum
disparity estimators in general. Under standard regularity conditions, the mmimum dispanty
estimators are first order efficient and have the same influence function as the maximum
likelihood estmator (MLE) under the model, which is often unbounded. Hence the robustness
of these estimators cannot be explaimed through their mfluence functions. However, several
other factors do indicate their robustness. First, many minimum dispanty methods exhibit a
markedly dampened response to observations inconsistent with the model in their estimating
equations, and strongly downweight outlying observations. Second, the second order analysis
of bias prediction (Lindsay, 1994 shows how the higher order terms reduce the predicted bias
more than the first order influence function analysis. Third, the e-influence functions { Beran,
1977 of the estimators are often bounded, continuous functions of the contaminating point.
Finally, this approach often leads o high breakdown points in both parametric estimation and
testing of hypotheses.

A related approach to robust mference is the weighted likelihood method. The weight
functions are based upon dispanties and provide a natuml downweighting to probabilistic
outliers. The weighted hikelihood estimation procedure was developed by Markatow el al.
(1997, 1998). Its extension to the hypothesis testing scenario was discussed i Agostnelli &
Markatow (2001). While we do notdeal explicitly with weighted likelibood estimation in this
paper, one can also use the dispanties considered herein for generating weights o produce
robust analogs of the likelihood equations.

Some of the properties of our proposed procedures follow routinely from previous results,
A such they have only been stated here without proofs; details can be found in Bhandan etal.
(20041). To remove ambiguity, we clearly spell out the original methodological contributions
of the current paper: We have (a) utilized the GNED family for the first ime (except the NED)
for robust mference; (b) established the breakdown points of the comesponding estimators;
(¢) denved asymptotic distributions of the tests of hypotheses and (d) obtained breakdown
points of the tests of hypotheses.

A natural gquestion conceming the applicability of the new methods 1s: *What does one
gain by using these methods over the HD which has already been widely studied and s
known to generte robust and efficient inference procedures?” The outlier resistant propertics
of the HD are offset in part by its poor handling of inliers (defined in Section 2) which can
severely affect its small sample performance (see Simpson, 1989; Lindsay, 1994; Hamis &
Basu, 1994; Basu et al, 1996). As such the HD requires additional accessories such as an
artificial empty cell penalty (Harris & Basu, 1994; Basu et al, 1996) to shore up its small
sample performance. Several GNED family members, on the other hand, control the inliers
naturally and have substantially better small sample performance (eg. compare Table 1 of
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TABLE 1
Relative biases for estimators based on the GNED and HD wnder the contaminated model (1 —
a)Bin(12, 0.1} + g (x) for different values of . [Bold entries indicate smaller relative biases for the
minimum GNED estimators than the HD estimators).

GNED with &

ot HD 0.5 0.75 1.0 1.25 1.50 20

+0.2 0.132 0.024 0.011 0,007 0,005 0004 0,002
+0.1 0158 0.038 0019 0012 0,008 0006 0,004
+0.05 0.201 0068 0,035 0,022 0.016 0012 0,008
0001 0.370 0324 0,162 0.103 0.074 0057 0,038
+0.005 0472 0617 0.321 0,204 0.146 0112 0075
+0.001 0.735 1.1al 0915 0.73 0.598 0497 0,359
+ 00005 0L.830 1.146 1.012 .87 0799 0.716 0.581
+ 00 00H3 (R4 1.109 1.028 0.956 (R 0828 0.723
00001 L9355 1.045 1.020 .99 0970 0,945 0,902
—(n.0001 1.056 0.945 0.967 0.993 L017 L0412 1.097
=002 1.128 0.877 0.921 0.967 L.016 L1069 I.185
~ (0. O0H3 1.227 0.797 0.853 0.916 0,986 L0a2 1.239
—(0.00H04 1.390 0.7M 0.763 0.833 0.913 1L.004 1.224

Harris & Basu (1994) with Table 7 of the current paper). Also, Table 1 of this paper shows
that several GNED family members may have smalker bias under inliers and moderte outhers
than the HD. Several of these tests also have better power breakdown than the HD methods
i the cases we have examined (sce Examples 1 and 2). The methods are competitive with
HD in our real data examples. Thus we believe that some of the methods proposed here can
have more general applicability in many situations over the HD.

The rest of the paper 15 organized as follows: Section 2 meviews minimum disparity
estimation, introduces the minimum GNED estimators and discusses their asymptotic effi-
ciency. Secton 3 studies other related properties including breakdown, Comesponding robust
tests are discussed in Section 4. Examples and smulation results are presented in Section 5.
Section 6 gives concluding remarks. Proofs are given in the Appendix.

Hereafter the corresponding lower case letters denote the pdfs of the cumulative distri-
bution functions (cdfs), e.g., the pdfs of G, Fy and G, will be g, fy and g, respectively.

2. Minimum disparity estimation

For a random sample X . Xo, ..., X, from a distribution G, let

L

1 r—X;
g,.(x}:mgw( i ) (1)

be o nonparametric density estimator of g, where w 1s g smooth kernel function and by, is
the bandwidth. In practice, one may use the automatic kemel density estimator with hy, =
Cipdy. where s, 15 4 robust scale estimator and ¢, = 0 s an appropriate constant depending
on n. For discrete models, take g, to be the empirical density function, defined as g,(x) =

the proportion of sample values equal to x for any x in the sample space. Define the Pearson
residual at v as S ) =8g,, Fa.xh=(golx) — Falx )/ Falx)d. Avalue x in the sample space
15 called an outlier if it has a large posiive Pearson residual 8(x); it is called an inlier if 8(x)
s negative. Let © be a real-valued, thrice differentiable, convex function on [—1, o¢) with
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C(0) = 0. The disparity D (between g, and ) 15 defined as

Delga. fo) = [ C(8) fo. (2)

where the mtegral is with respect to the dominaing measure. Examples of dispanties include
the likelihood disparity (LD) and the (two omes, squared) Hellinger distance ({HD), defined
by LD(g,. fu) = [18,108 &,/ fi) — (fy — g,)] with Cyp(8) = (& + 1) log (3 + 1) — & and
HD(g,. fi) =2 (s — £, with Cup(8) = 2[(5 + 1)"? — 1)? respectively. The LD,
in the discrete case, 15 mimimized by the MLE of . The HD s minimized by the minimum
Hellinger distance estimator {(MHDE).

Let ¥V denote the gradient of a function of 8. Let a'(x) and a"(x) be the first two
derivatives of a real valued function a(x). The corresponding minimum disparity estimator
(MDE) minimizes Do(g,. fo) over 8. Under differentiability, its estimation equation is

_VDe = f AG f, =0, 3)

where A(8) = (8 + 1) C'(8) — Cid). The function A(8) is increasing on [—1, o), and
can be redefined, without affecting the estimating properties of the disparity Dy, to satisfy
Al =0 and A0 = 1. This standardized funcion A(8) 15 called the residual adjustment
function (RAF) of the disparity; it determines how stromgly the large outlying observations
(manifesting themselves as large positive values of 4) are downweighted. One would expect
better mbustness propertes for an estimator if its RAF shrnnks the effect of Targe 4 values more
towards zerm. The RAF for the LD and HD are, respectively, A(d) = & and A(d) = 2[4 4+
132 — 1]. The property A"(0) = 0 leads to the second order efficiency of the estimator
(Lindsay, 1994,

2.1. Generalized negative exponential disparity estimaior

The NED corresponds to C(8) = exp(—48) — 1 in(2), orequivalently, to C(§) = exp(—4)
— 1 4+ 4. Consider the family of generalized negative exponential disparities {GNED, } (Jeong
& Sarkar, 20000 defined by (2) with

(e™™ — 141822, ifr=0
Cad) =
82, if L= 0.

MNote that Col(d) = limy g4 Co08), GNEDy s the Pearson’s chi=square (PCS) and GNED | s
the NED. For & = (), GNED; (g, fu) is bounded below by zemo (achieved when g = o) and
bounded above by (e* — 1)/3* (achieved when g and f are singular).

We will write MGNEDE; ., or simply MGNEDE, for the mmimum generalized negative
exponential dispanty estimator obtamed by minimizing GNED; (g,. fs) over 8. Define the
GNED; estimation functional T3 : G — & as T,0G) = 8, ; satisfying

GNED; (¢ fi() = min GNED; (. fi). @)

provided such a minimum exists. By definition, the MGNEDE; of 8 is T ,(G,).
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Figure 1. The RAFsof the LD, HD and GNED, fora =0,05,1, 2, 4.

The BAF of the GNED; is given by
— A&
A+1)— E(l__-_l;_l} + Ad)e a0
4:(3) = s F (5)

e it A =00
We display a plot of A, (4) against § for L =0, 0.5, 1, 2, 4 in Figure 1, along with the
RAFs of the LD and HD. For comparison, we use the Appld) as reference. The behavior of
other methods can be described by how their RAFs depan from lmeanty. The NED is second
order efficient, and its RAF 15 close to that of the LD in the neighborhood of § = 0. Thus
it downweights small outliers mildly, but downweights large outliers more strongly than the
HD. Other values of A provide different degrees of downweighting for large positive §; the
degree increases with A, For o < 1, the GNED; provides less downweighting around 4 =10
than LD, but eventually its RAF drops below Ay p(8) for larger values of 4, except when L =
(). For the latter case (PCS), Ald) =4 + (.’.‘f" /20 magnifies the effect of large § outliers rather
than shnnkmg them. As a result this estimator 15 poorer than the MLE in terms of robusiness.
In addition, the development of the asymptotic results for the PCS case requires a different
treatment than the other dispanties in this class. As such we have excluded the PCS from our
discussion, and the theoretical results in the rest of the paper assume & = ().
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Under discrete models, the MGNEDE; is first order efficient (Lindsay, 1994). In the con-
tinuous models, existence, consistency, and asymptotic nommality results of these estimators
follow with slight modifications of the proofs of Basu et al. (1997).

3. Robusiness

3.1. Influence and e-Influence Functions

The influence functionof T; at G € G isgiven by 1F; giz) = W;' ;. where
Oy = AL(S(zN s, ,(z) — [A;_[ﬁ}l!fj“!__dﬁ.
W, = f A} Oy, ] dG — f AV f 4G,

and dix) = dlg. fu . x) = (glx) — fu (xhh/ fo Gxhand Az 0-) is as in (5). Thos, if G is a
maodel point Fy, then the influence function of T reduces o T~V (Bmg(z), the influence
function of the MLE. While this suggests that the MGNEDE; is asymptotically fully efficient
at the model, it is potentially unbounded - thus failing to capture its mobusmess.

Consider the gross-ermormaodel (Beran, 1977), when G is the model point fora continuous
distribution Fy with pdf fa Let fo.. =01 —a)fs + ay.. where 5. denotes the uniform
density on the interval (z — e, 2 4+ ). € = 015 a very small, fixed number, 8 € @, a (0, 1)
and z € . It can be shown (Bhandan et al., 2000, Theorem 2) that the o -influence function
of T, defined by the difference quotient ¢ ,(z) = (T3 Fu. ) — #)/a, can be bounded
even when the influence function IF; g or its generlized form gy g(2) = im, . ¢ 4 (2) 18
nob. In such a case the functional is robust against 1000% contamination by gross emors at
arbitrary z. Note that while the influence function of T fails o capture its robust behavior,
its -influence function can do it successfully.

3.2. Breakdown point analysis

The breakdown point of a statistical functional is roughly the smallest fraction of con-
tamination in the data that may cawse an arbitrarily extreme value in the estimate. Here we
establish the breakdown pomt of the functional T, (G) under the following set-up. For o €
(0, 1), consider the contamination model

Hu.f:rzil_ﬂ'}ﬂ'i‘ﬂjfm, m = 1.

where G is the true distribution and { K, } is a sequence of contaminating distributions; fi, .
£ and kg, are the corresponding densities. For a given contamination sequence { K, }we will
say that there s breakdown in T for o level of contamination if

lim |T{Haym)| = o0. (6)

ar— 30

We will examine the smallest o for which there exists a sequence | K, }osatisfying (6). Our
analysis is based on the following assumptions on the model and the contamination sequence,
necessary Lo determine the disparities under extreme forms of contaminations.

Assumptions. The true density g, the model density { fs }. and the contamination densitics
{ K} satisty the following:



ROBUST INFERENCE IN PARAMETRIC MODELS 1

Al. f min{g, ky | — 0 as m — oo that 15 the contamination disiribution becomes asymp-
totically singular to the rue distribution.

A2, f min{ fo, Ky} — 0 as m — oo uniformly for 181 = ¢, = for any fixed c; that 1s the
contamination distribution becomes asymplotically singular to specified models.

A3, f min{g, fa | = 0 asm — oo, if 18, — o0 as m — o0; thal Is large values of 8 give
maodel distmbutions that become asymplotically singular to the rue distribution.
Contamination sequences that satisfy assumptions Al and A2 are called outlier se-

quences. Intuitively, outlier sequences represent the worst possible type of contamination

sequences, so il seems appropriate o study the breakdown properties of the functionalunder
such sequences. Assumption A3 formalizes the expected behavior of the model,
Minimizing GNED (g, fu) with respect to 8 15 equivalent to minimizing

pilg, fo) = f el £ (7)

Let pifig . Fa) be minimized at & = T3 (H, ). We then have the following result.

Theorem 1. Assume that the true distribution G, the model { Fy}, and the contamination
sequence | Ky, bosatisty conditions AILA3. Let 8% be the minmizer of g (1 — adg, fu). by
satisty o3 (1 —a)g. fir) = M= g o* =infla ;e M W = g7 Then, for any
outlier sequence {Ky b, Hm sup g [To(Heo )l < 0o whenever e~ =¥ = o=22 ip par-
gcular, i @ < a. Furthermore, when G = Fy, belongs (o the model, if @ < 1/2 then
m supy—oe |T0H o )l = 00 for any outlier sequence and the minimizer of p;(hy 0. Fa)
m the limit as m — o0 18 &,

Theorem 1 shows that for a general &, &® 15 the breakdown point of T ;. In addition the
proof (given in the Appendix) also shows that as long as o < a”, 8 minimizes the divergence
Pl . fa) in the limit as m — oo, In the special case when G = Fy,, 7o, achieves a
breakdown point of 1/2; as long as o < 1/2 the minimizer of g, 00, 4. fa) in the limit as
m — o0 15 A itself, so that the contamination has no limiting mpact at all.

3.3. Bias study and inlier analysis

Using several contaminated distnbutions for a paticular model, we demonstrate here
that the MGNEDE can perform more favomblythan the MHDE in terms of relative bias.
Consider the binomial model and the contaminated binomial density f lx) = (1 — o) f +
a1 ) where s the rue density, o the contaminating proportion, ¢ the contaminating value,
and ¢.(x) the indicator function at ¢. Let F and F, be the corresponding distributions. An
outlier 15 generated at x = ¢ if @ = 0 and an inlier ife < 0. Let Tag . Typ and T be the
estimation functionals for the ML, HD and GNED;, methods respectively. Let

ATyr =Ty (Fo) — Ty rlF), ATyp = Tap(Fo) — ThplF), AT, = TilF,) — Tu(F)

measure potential biases in estimation due to ¢ amount of contamination.

Weuse f = Bin(12, pydensity with p=10.1, c =6and o = 0.2, (. 1, 0.05, 0.01, (L0035,
0.001, 0.0005, 0.0003, 0.0001, —0.001, —0.002, —0.003, —0.004. We compute the biases
relative to the ML method i estimating p for HD and GNED; , defined as ATyp/ ATy and
AT ATy, respectively. We present the results in Table 1; bold entries represent smaller
relative biases for the MGNEDE than the HD. Table 1 leads to very interesting observations:
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() most of the MGNEDES perform substantially better than the MHDE against inliers. Even
the strongly outlier resistant estimators for A = 1.5, 2.0 perform comparably or better than
the MHDE against inliers, while being far better than the latter under all the outlier situations
considered here. In particular, MGNEDE, 5 beats the MHDE for every single value of a; (b)
the estimators in the middle range of the scale (4 = 1.0, 1.25) comfortably beat the MHDE
under all inlier situations, and under all moderate and large values of @ (o = 0.0005). Only
under very small outhiers (when the bias s very small anyway) does the MHDE beat the
MOGNEDES in this range; (¢) for the estimators in the lower range of the scale (A =10.5,0.75)
the MHDE s comparatively even poorer under inlier situations, and is again substantially
worse than the MGNEDE when o = 0.005; (d) overall, the MHDE is outperformed by all
members of the GNED; family considered for ¢ = 0.005, and by every member of the
GNED; family considered here, except & = 2.0, under all inler situations (o < 0).

This supenor performance of the GNED based methods under the presence of inliers
raises the following gquestion. Can one have an wea of how often inliers show up in practice,
so that one can assess the amount of gain in choosing an appropriate GNED-based method
over the HD. While the general answer to thisis clearly a difficult one, we provide a numerical
study in Section 5.2 which demonstrates that even when the data are generated by the pure
maodel there are enough mliers in the data to really retard the pedommance of the HD-based
methods than those based on GNED.

4. Generalized negative exponential disparity tests

Because of the lack of robustness of the likelihood ratio test (LET), altemative robust
tests have received a lot of attention in the literature. One such robust alternative 15 Simpson’s
(1989 Hellinger deviance test (HDT). Here, we show that analogs of the LRT, based upon
GNED;, have the same asymptotic behavior as the LRT under the null hypothesis. However,
unlike the LRT, these tests have good breakdown and strong outlier resistant properties and
compete very well with the HDT.

4.1. Definition

Under the parametric set-up of Section 1, suppose that the hypotheses of interest are H:
fe@yand H:8 B — By, where By C 9. Let &5 = T500) be as defined in (4) and the
functional Ty g : G — By bedefined as Ty (&) = 87 i € By which satisfies

GNED; (g, fuor )= min GNED; (g, fa),
=4 HeEF, h

provided such a #7 . exists. We will wnte & for 8,  and 8 for & . for brevity. For a
random sample of size n with kernel density estimate gy, denote the estimators T o(0y,) and
TGy under the null hy pothesis and under no restniction by #* and ﬁT, respectively. Define
the generalized negative exponential disparity west (GNEDT, ) statistic as

o
GNEDT; =2n(GNED;(g,. fi.) — GNED,(g,. fil) = EHEN;_[G”} (8}
where, with g, asin (7).

NG = pulg, for ) — pulg. fag ) (9}
Below we will write GNEDT, simply as NEDT.
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4.2. Asymptotic distribution

Let &y be a set of r = p mestnctions on @ defined by Bi@) =0,1 =i = r. We
assume that the parameter space, under Hy, can be described through a parameter v = (v,
o P with p — r components, ie., & = b{v) where bz IRF™ — RP. Then A% = bii),
where 15 the MGNEDE; in the v-formulation of the model based on the sample of size n.
Let ¢ = Fy,. where 8y is the troe value of the parameter. Under Hy ket vy be the true value
of the v parameter. It can be shown that under Hy, @ and A* are consislent estimators of Uy
and &y respectively. Let J{vg) be the mformation matrix under the v-formulation, and 7(8,)
be that under no restrctions, The LRET has the form

LRT = 2[ k}g{l’[j'=|j|};w_{X,}}l —I{}g{l’[j'=,f,};;“_[X.}'}]

where @,-,”_ and @I;”_ represent the MLEs of @ under no restrictions and under Hy, respectively.
Asymptotically the LRT has a y*(r) distribution under Hy. Theorem 2 below, proved in the
Appendix, establishes the same for the GNEDT .

Theorem 2. Assume the corresponding veclor-parameter generalizations of the regularity
conditions {RI}-(R3) of Serfling ( 1980}, Section 4.2.2) on the model family Fg. and the
regulanty conditions assumed for the asymplotic nommality of the MGNEDE; (Bhandan el
al., 2000 Theorem 1), Then, the statsuc GNEDT; has the same asympiotic distribulion as
the LRT under Hy asn — o0, which 1s the x"{r} distribution.

Although the null behavior of the GNEDT ; is similar to that of the LRT, the breakdown
properties of the GNEDT,; ame substantally stronger than that of the LRT. In the next section
we determine the actual power and level breakdown points.

4.3. Breakdown resulis lor tests

Let G £ G be the wrue distibution and consider the parametric hypotheses Hy and H,
and the test statistic GNEDT; of Section 4.1, In this section we give a breakdown pomt
analysis of GNEDT; . Let H = (1 —o )G + oK be a contaminated version of G with pdf i =
(1 —a@hg 4+ k. To define the breakdown point of the test functional we focus on the smallest
o for which the corresponding P-value of the test attains its maximum or minimum possible
value. See He et al., (1990) for a comprehensive discussion of power and level breakdown
functions under more general conditions.

We study the functionals associated with the test statistic GNEDT ;. Let No(-hand (-, -)
be as defined i (9) and (7) respectively. Assume that G is convex. Define
F.|.|_| J"i";LfF_:l. Ny oy = 5up J"Il'r;L'I:F_:l.

Ny win = Il
Feg Feg

apl(i; V) = inl'la' ssup Nl —a)od +ak) = N;__,,,m} %
Ked
(G N = inl'la' sanf Nl — el +ak) = N;__,,,;,,} .
Ked
The guantities ag 2N ;) [o (G )] are the level [power| breakdown points of the test

and represent the smallest fraction of data contaminatnon where some suitable contaminating
distribution & & G causes the P-value to become the minimum [maximum] possible. Under
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hypothesis Hy, s =0, 1, an o = @, can lead to an meorrect decision. Usoally, o 15 considered
to be more informative and we study this in Theorem 3 below. Note that N, = 018 attained
for G = Fy,. &) € &y. For the rest of the section, we write 8; = T,(G), 8y = T3(H), and
= TalG) 8% =T, ol H), suppressing A,

Theorem 3. For G, H = (1 — )G + ek, and the functional N, as defined above,

NG )
o N, P 10
@GN 2 i (10)

The proof is in the Appendix. Consider the case where py(g, fi,) =™, and
@alg, fop ) = 1, Le, G belongs to the model family but is smgular o the model distribu-
tions under Hy. This is the situation where the test should have the maximum power, and
should require the largest fraction of data contamination o cavse power breakdown. In this
case, the lower bound of the breakdown point in (10} twrns out to be

-k

l—¢

PESy Y (4

For the NEDT, this is approximately equal to 0,38, which is smaller than 0.5, a bound attained
by the HDT in this sitwation { Simpson, 1989, However, adirect caleulation (Lemma 1, proved
in the Appendix) shows that a breakdown pointof 0.5 15 indeed attainable for the MGNEDE;,
in this case. Thus the bound in (107 15 a crude and and not a sharp lower bound. We expect
that it should be possible to denive a sharper bound, but do not have a proof at this point.

Lemma 1. If p(g, fi,) = e and gale, ﬁJ&} = 1, the lower bound of the power breakdown
point for the GNED ;. tests 1s (0.5,

MNext we give aresult (proven inthe Appendix) regarding o GV ), the level breakdown
point. Notice that Ny g =1 — =", with equality if

sup o, (fs. fap ) = L. (12)

=}
The above condition implies that there exists adensity g = fi in the model family for which
the first and second terms in the expression of NV simultancously attain the maximum and
minimum of g; respectively.

Theorem 4. Suppose that (12) holds. It p, (g, _,f,i,-;;}l = 1, then ag(G;N; ) = 1.

Thus we cannot drive the P-value of the test to zero under the conditions of Theorem 4,
unless 100% of the data are contaminated. We now consider two illustrative examples.

Example 1 {Gaussian mean with nuisance variance). Let F, be the Ny, o) cdf with # =
(7, rI’}l and the hypotheses of interestbe Hy : n=0vs. Hy tnp £ 0, a2 unknown. We
have No(F) = gl fa. fﬂ, Y— gl Jfa. for, ) = pal fa. _,f.«. }l—e" In Tablke 2 we present the
calculated bounds for o |(F,. N ford = (3, 1) and ﬁ 1} for various A values. For 8 = (3,

1y and (5, 1}, the breakdown point bounds for Simpson’s (1989, p 111 HDT are 00127 and
0.208 respectively while that for the NEDT are (0.198 and (0.256 and the maximum bounds
occur n g neighborhood of A = 1,10 and (L.90 respectively. Note that (a) ford = (3, 1) and
(5, 1), the GNEDT breakdown pomts are higher than the HDT breakdown points for all &
[00.5, 2], and (b) for different values of ¢ the best breakdown occurs at different values of 4.
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TABLE 2
Power breakdown bounds a(Fy: N} of GNEDT, for testing Hy @ = 0 vs. Hy g £ 0
under the Nin., of) model with unknown o for various & values. [Power breakdown bounds for
Simpson’s HDT are also shown for ease of comparison. |

GMNEDT with &

(ma®) HDT 025 050 0.75 0490 1.0 L1 1.25 1.50 2,00 4.00

31 0127 016 016ef 0192 1% 0098 0098 0197 0191 0176 016
5 1) 0208 OJUI81 0239 0255 0257 025 0254 0249 0239 0217 0143

MNow observe that sup o0 fa. _f,i,;"} = 1. Thus (12) holds and also ,ﬂ;_(ﬁj,_ﬁj;.l} < 1.
Therefore, ag(F o N3 )= 1 forall A,

Example 2. (Poisson mean). Let Fyg be the edf of Poi(?), and the hypotheses Hy 08 = 8y vs,
H:8 #£8y Here No(Fa) = pal fa, _ﬁj;;l V= ol fa. for, ) = ol fo. ﬁs;ﬂ}' —e™*. Now,

(ol 8 .Gt

o fip )= 3 € T g

x!

We computed the numerical bounds for e (F:N ;) for different values of 8 for A in [1077,
4.0]. For brevity, we have not reported the actual numbers in a graph or a table. For 8 = 4, for
example, the breakdown point bound for Simpson’s HDT is (0,134, that for the NEDT as given
by Theorem 3 15 0.226 and the maximum bound of (L2482 is attained for 4 in a neighborhood
of 045, For a fixed &, the GNEDT breakdown points were observed to be higher than those
of the HDT for an interval of A values depending on 8. The value of & at which the best
breakdown occurs changes with 8.

MNote that again here sup, o0 fi. _,f.i.;"} = 1. Thus (12) holds and also g0 fs. _f;q;;l::l < 1.
Hence, ag( F o) =1 forall A,

5. Numerical studies

5.1. Examples
Here we demonstrate the performance of the estimators and tests on two real datasets.

Example 3. For Newcomb's light speed data (Stigler, 1977), Table 3 presents the values of
the MHDE and MGNEDE; of u and o for various values of A under the nomal model, as well
as MLEs for the full data (ML), and those after deleting the two obvious outliers —40), and
=2 (ML 4+ D). We have used the automatic kernel density function with the Epanech-
nikow kernel (wix) = 0.75(1 — r’}l, if [x| = 1, and wix) = 0, otherwise), ¢, = 0.5, and

TABLE 3
MOGNEDE s of p and o for the Newcomb data under a normal model,

0.25 .50 075 100 1.25 1.50 200 400 ML 4D ML

nM X4 2173 ey 27el 1A 2739 2112 2775 2621
523 514 502 488 4.73 4.57 4.34 an 04 1066

[

O

MHDE of u = 2774, and MHDE of o = 497.
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TAEBLE 4
The signed generalized negative exponential disparity test statistics and associated P-values for
various values of & for the two sample drosophila data. [Corvesponding values for the signed LRT and
signed HOT are also shown. |

With all observations Outlier de leted
FS Statistic P-value Statistic P-value
025 1.559 0.059 1.558 0.060
050 1.234 108 1.223 0111
075 0.831 0.203 0.R08 0.200
100 0.462 0322 0.439 0.330
125 0.273 0.392 0.258 0.398
1.50 0.204 0419 0.194 0.423
200 0. 168 0433 0.162 0.435
4.00 0.157 0437 0152 01.439
LET 2.959 002 1.099 0.136
HDT 0.698 0.242 0.694 0.244

5, = (067457 median (| X; — median (X;)]). Notice that these estimators exhibit strong
outlier resistance properties even for guite small values of A,

Example 4. We apply the proposed dispanty tests on a two sample problem with two sets of
chemical mutagenicity data involving drosophila, also analyzed by Simpson (1989, p.112).
The responses are the numbers of daughters with recessive lethal mutations among flies
(drosophila) exposed to chemicals and subject to control conditions. The mesponses are
modelled as mndom samples from Poi(d) (control) and Poiids) (exposed) distributions
respectively. The hypotheses of interest are Hyg @@ = & against Hy 8 = #Ha. Letny =
number of observations m groupi. i = 1,2, andn =n + na.

Let dy(x ) denote the fraction of x-values i the ithsample, i = 1.2, x =10, 1,2, ...
Let & (x) = (dilx) — folah/ fo () where fo(x)is the Pori; ) density at x. To define the two
sample version of the test, let
=L e M ] 4 i)
Z 32

a
GNEDg, ;(d. da. fo. fa) =n"")

i=l a=l}

Ja(x)

denote the overall generalized negative exponential dispanty in the discrete model (see
Simpson, 1989, p. 112; Sarkar & Basu, 1995, p. 359). We then mmimize GNED ;. with
respect to 8 = (8, ﬁ'_:}lT under the null space and under the unconstraned space 1o obtain
their estimates (@,‘_l,ﬁ'ﬂ_,'_;_}l and (@._;_, Q_:._;_} respectively. Compute the test statistic as

t, = 2n[GNEDg ;(d\. d, fgr . f: ) — GNEDg(di, da, f . f3,,)]-

The one-sample asymptotics extend to the present case if nyfn: —a (0, 1) as n — oo,

Fortesting Hy: 8 = 8 against H 1 8 = 85 asigned dispanty test is approprate. In the
GMEDT case the test statistic is 1, '*""sign@._;_ —ﬁ'ﬂ_:_;_} and it 1s asymptotically equivalent to
the signed LRT. For the full and reduced (after mmoving the two large counts for the treated
group) data, the signed dispanty statistics and the associated P-valoes are given in Table 4.
Exclusion of the twolargest counts from the data has httle impact on the robust methods, and
in either case the robust tests provide similar degree of support for the null hypothesis that
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TABLE 5

Observed distribution of the number of cases of peritonitis for 390 patients.

Mo of cases 0 | 2 3 4 5 a6 7 B 9 10 11 12
ohserved freg 199 04 46 23 17 4 4 1 0 L] 1 0 1

the mean number of recessive kethal davghters in the control group is at least as large as that
in the treated group. The conclusions, however, are opposite when one uses the signed LRT
with and without the outliers.

Example 5. A data set on the incidence of peritonitis on 390 kidney patients was provided
by Professor EW.M. John (pers. comm., 1995) (Table 5). A look at the data suggests that the
observed frequencies (O, k=1, 2 .. .) of the number of cases (k) may be well modelled by
the geometric(#) distribution with # around 1. The sample size is fairly large, and it appears
that although there are a few moderately |&1}:!L‘ values, there are no extreme outliers. For an
estimate 8, the expected frequencies are then obtained as E, = nd (1 —8)*. Treating it as a
parametrie density estimation problem, we assess the goodness-of-fit of the plug in predictive
density coresponding 1o the estimate & with the log likelihood ratio statistic { Ailchison, 1975)
which s given for these data as

=
G2 =12 O log(Oy/Ep).
k=l

The G* value for the predictive density coresponding to the MLE is 11.84. The G* values
for the MGNEDE; for L = 0.75, 0.9, L0, 1.1, 1.25 ame, respectively, 11.90, 11.96, 12,01,
12.06, and 12.14. The G* value for the MHDE equals 12,48, In this example, the GNED
based methods clearly give a better predictive fit than the HD.

Example 6. This is an example in discriminant analysis from the field of speech recognition.
The dataset consists of 10 classes of two-dimensional measurement vectors, This was created
by Peterson & Barney (1952) by a spectographic analysis of vowels in words formed by *h°
followed by a vowel and then followed by “d'. A number of people were asked to speak the
words and the first two formant frequencies of 10 vowels were splitin two sets. The final data
consisted of a trmining set having 338 cases and a test set having 333 cases. The fommants are
the two lowest resonant frequencies of a speaker’s vocal tract See Pelerson & Barney (1952)
and Bose (2003) for 4 more extensive discussion of the nature and construction of the data
set.

We assumed o multivariate normal model for these data, and atiempted o classily
the observations m both the trmining set and test set using the raditional Bayes™ quadratic
disenminant rule, where the parameter estimates of the mean vectors and the covanance matnx
are obtained (using the raining set data alone ) by the following methods: ML, MGNED, for
several values of A, and MHD. The results are presented in Table 6. It is evident from the
table that the use of the MLE leads to the worst performance among the cases considered
here. The Bayes’ linear discriminant analysis results, using the MLE, are also presented in
the table for comparison. The use of mbust estimators generates comparatively better ermror
rates. Although the difference is not dramatic, the methods based on the GNED; achieve
better misclassification error raes than the HD-based methods for all the cases looked at
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TABLE 6

Classification Example.

Misclassification Error Percentage

Method Training Dut Test Data
ML (LDA ) 2840 26.13
ML (QDA) 21.60 21.02
MGNED (4 = 0.75) 20.41 19.22
MOGNED (4 = 1.00) 20041 19.52
MGNED (4 = 1.25) 20.41 19.22
MHD 2160 19.82

in this example. Bose (2003) has tested several nonparametne methods on this dataset. Our
results show that the misclassification error rates achieved wsing the MGNEDE (with & =
1.25, say) are guite competitive with those obtained by the nonparametric methods used in
Bose.

For estimating the unknown density of the data sets we wsed a multiplicative
Epanechnikov kernel inoall the cases of this experiment. The smoothing parameters for
each component were oblained as h, = 1.0667n "9, where we used the mbust estimate of
scale & = M ADOGATAS, where MAD represents the median absolute deviation.

5.2. Simulation results

We conducted a simulation study for the Poisson model Por(d), and computed the
empirical mean, variance and mean square error (MSE), against the target value 8, of the
MLE, MHDE and MGNEDE; for varous A values under different contaminated models of
the form aPoi(8) + (1 —a)Poi(d,). We have chosen A=0, 0.25,0.50, 0.75, 1.00, 1.25, 1.50,
200, 400, (8, 8.0=(2.12),(5.15), and o = 0 and 0.10). Sample sizes considered are n = ),
50 and 1040, Our computations are based on five thousand replications. For brevity, we have
presented only pant of these findings in Table 7. More details can be found in Bhandart et al.
(20003},

A universal recommendation of & most suitable value of A o cover all possible scenarios
can not be made at this point based on our Iimited numerical stodies. The choiee of A for
a particular problem will depend on specific needs. However, A = 1 appears to be a quite
reasonable choice becaose its performance 15 close to that of the best in almost all the cases
we have looked at. In a broader sense there is not wo much to choose from among the
estimators in the range A £ [(.75, 1.25], and further research will be necessary for dentifying
an “optimal” A inoa given case. In general, smaller values of A in the above range tend o
do better in terms of small sample efficiency, while the larger ones improve mobustness. In
this study the MHDE is clearly substantially kess efficient than the MGNEDES in the above
range. The minmum PCS estimator (for A = 0) 1s highly nonmbust, performing poory even
in companson with the MLE.

Finally, we present a numerical study which is devised keeping in mind the inlier
question. Is it really a practical problem to be concerned about at all? In the following we
demonstrate that even when data come from the pure model, the inlier problem can cause
senous damage o the methods based on the Hellinger distance. This study, based on the
Foisson model Por(? ), wested the null hypothesis Hy © @ = 3 agamst # £ 3 using the HDT,
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TABLE 7

Empirical mean, variance and mean square error of the MGNEDE;, MHDE and MLE of & for
sample sizes 20, 500 and 100 in the Poisson model under pure and contaminated Poi(2) distribution,

Poil2)

A n =2 n =50 n = 1

Mean WVar MSE Mean WVar MSE Mean War MSE
0 2135 0122 0135 2095 0053 0.062 2067 0,020 0.033
025 2086 0105 0112 2056 0044 047 2035 0021 0.023
050 2042 0101 0102 2032 0043 0.044 2018 0021 0.021
075 2006 0101 0101 2013 0043 0.043 20006 0021 0.021
100 1975 0102 0103 1.997 0044 0.044 1.995 0.021 0.021
125 1948 0104 0107 1.982 0.4 0.045 1984 0.021 0.022
150 1923 0106 0112 1.967 0045 0.046 1.975 0.022 0.022
200 LR77 0113 0128 1940 0046 0050 1.95%  0.022 0.024
400 L7132 0152 0234 1.826 0.054 0.085 1874 0026 0042
MHDE L.R57 0107 0127 1921 0040 0046 1.952 0.021 0.023
MLE 1998 096 0098 2000 042 0042 1.997 0.020 0.020

0.9 Poi(2) + 0.1 Poi(12)

0 4932 2542 11143 5555 LIR9 13820 5750 0679 14730
025 2226 0221 0272 2192 0087 0123 219 0045 0083
0.50 2108 050 0162 2081 0062 0.071 2006 0030 0.0
075 2060 0041 0144 2050 0057 0.060 2060 0027 0031
104 2024 040 0141 2023 0056  0.056 2041 0027 0028
125 1995 0143 0143 2000 0055 0.055 2025 0026 0.027
150 1970 0046 0147 1982 0055 0.055 2012 0026 0026
200 1926 0152 0158 1950 0057 0.059 1991 0027 0027
400 1772 0086 0238 1LE37 0067  0.094 1914 0030 0038
MHDE LE62 0125 0144 1934 0051  0.055 1973 0025 002
MLE 3037 0624 1699 2007 0250  1.243 36 0125 1137

NEDT and LRT at the nominal level 0,05, Five thousand inde pendent rmndom samples of size
n were penerated from Poi(3) forn =20,21,22_ 100, We computed the empirical levels of
the three tests based on chi-square critical valoes, and have presented them here as a function
of the sample size in Figure 2. Notice that the observed levels of the test statistics for HDT
severely overestimate the true level. Inference based on atest that cannot hold ies level will not
be reliable. This phenomenon, in comection with the HDT, was also observed by Simpson
(1989). Basu et al. (1996) have noted that this limitation of the HDT is at least partially due
to the presence of inliers, particulady empty cells. The NEDT or the LET does not appear to
have this problem. Other members of the GNED family such as those comresponding to ) =
0.75 or 1.25 also produced satisfactory results ike the NED, but those curves have not been
added o the figure here to present a cleaner contrast.

6. Final remarks

Inference procedures based on the minimized Hellinger distance still remain the standard
mn density based minimum divergence inference. In this paper we have studied allernatives
based on the GNED. They share the positive theoretical properties of the Hellinger dis-
tance based methods such as bounded e-influence function, full asymptotic efficiency, high
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Figure 2. Empirical level of the HDT, NEDT and LRT for various sample sizes.

breakdown points, ete. But, in addition, the proposed methods have many other strengths
ovier the methods based on the Hellinger distance. They appear to outperform the latter when
the model 15 correct in small simuolated samples — an effect in part of the inlier cells. Similar
results are seen inexamples where the model fits the data well. These methods were observed
to produce better power breakdowns under some commonly occurning models. Inoa vanety
of examples the methods were seen to be extremely competitive or better than those based
on the HD. While proposing a most suitable method within the observed class of the GNEDs
will evidently require more research, we firmly believe that these methods present a nch class
of practical allernatives o minimum divergence inference based on the Hellinger distance.

7. Appendix

Proof of Theorem 1. Fixh =0, and o £ (0, 1). Write t, for T3 (H ). Suppose, if possible,
breakdown occurs, that is there exists an outlier sequence {K,,,} such that |ty | = o0 asm
—+ o0, Then we have,

(—crlg e _afey ]
|I‘:|J.{-hu..ur- _f]n} [y {ﬂ'-‘-m _,fjm} i [ _J{ ¥ew ::I_‘_a- {v,..::l f‘n.

[ £ fo {xh= .l:h"}

f _;_{n .r:l:.n!m:l _L,_;'{“;i':_.:ll j‘
[x: j,nu'wmﬂ} c

: Al —a)g |
2[ Je +f .
U=y AR k] [ fo (b= gl b} f&m

1A
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— [ as m — oo by assumption A3, and hence |,ﬂ;_(hu_,,,, Ji ) — mlak, . _f,m}| — () as m
— oo, Now, miak,, fi ) = e ™ using Jensen’s inequality. Hence, if a breakdown causing
outlier sequence exists, we get iminf,,_ .. g (h, .. f ) = e,
We will get a contradiction to our assumption of the existence of an outlier sequence
{ K} for which breakdown occurs at contamination level o if we can show that there exists
a bounded sequence {8, } of parameter values such that
lim sup ,ﬂJ_(f!,_,.w, _ﬁ,ﬂ_} < g < lim mnf ,ﬂ;_{f!,_,.lm, _ij} (13)
nr—s o0 it —+ 00
since in this case the sequence {1, } cannot minimize p;(h, », fa) for every m. For any
arbitrary bounded sequence {8, . using assumption A2, we obtain,

||ﬂ5.{hu..ur~ ..ﬁJ.,..} = .ﬂﬂ.{fl —alg. _ﬁjm}| — Dasm — o0 (14}
and hence for such 4 sequence

lim sup s (A, fa,) = limsup p ((1 —edg, fi.) = pal(l — g, fir) = ™' 7 (15)
Aar— a0 A — S0
where the last inequality follows by Jensen's ineguality. In particular, if we choose {8, =
#% 1, a bounded sequence of identical values, we get

limsup gy (Agm. for) = limsupp; (1 —adg, fi:) = pa((1 —adg. fir) = e M= 11g)

Hr—a0 A — S

Then combining {15) and (16) we have, for any bounded sequence {8, },

lim sup g5, (o, fo,) = imsup o (ha . fir) = pa((1 —a)g. fir) =770 (17)
Hr— A Hr— A
Since by definition p;((1 — a)g, fa) = 1 forall 8, we have p; (1 — a)g, fo:) € [e7M 72 1],
and hence 30 = &, = 1 {and £, not dependent on m) such that

limsup s ham. fir) = pr((1 — a)g. fir) = e (18)
Given any a, we have a contradiction, by (13) and (18}, to the assumption that there exists an
outlier sequence which causes breakdown in T4, if e % = ¢=%* In particular breakdown
does not occur when o < o,

We have shown that if @ = o, for any owlier sequence {K,} there exists a
bounded sequence of parameter values which makes the divergence o3 (g . fo) smaller
m the limit than a divergent sequence. By (17, we have msup,, o @00, fo) =
lim sup,, . Pilfigm. for) for any bounded sequence {6, }. This implies that 8, is the mini-
mizer of the divergence g, (04, Fa)inthe imitas m — o0 as bong as o < a®.

MNext weshow that b, =1 when G = Fy € Fa. Lletg = Su,-and 8 isnow the minimizer
of g (1 —a)fy. fo). By (14) we then have

lim sup o5 (ha . fos;) = limsup p;((1 — @) fa, for) < limsup p; (1 — @) fy, fio,) = 7
ar— G A —G A — S [lg}

Thus, by the above mequality and (16},

e < limsup g (Ao, fir) = pa((1 — @) fi. fir) = 717,

A 3G
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Hence p;{(1 — @) fy,. for) = e M= = g ((1 —a)fy,, fu). Therefore, 8* = 84, b, = 1 and

there is no breakdown in the T functional when ¢ 179 = #=% o = 1/2 for any outlier

sequence | K o Also in this case (le., g = o, and o < 1/2) the minimizer of o0k, . fa)
in the limit as m — o0 18 dy.

Prool of Theorem 2. We prove that 20(GNED, (g,,. fi.) — GNED,(g,. fi)) — LRET = o,(1)
under Hy. By a Taylor series expansion we have

2n(GNED;(gn. fi-) — GNED;(g,. f3))

= ni(f* —8) 18" — &) + n(d* — 6 (GNED(g,. 8) — IH)NE* —8)  (20)

with 8 lying between #* and . Now, under the assumed conditions, one can show that

nY 3 @y — 8% ) =nVHE — 8% + o,(1), (21)
n'd — i) = (1), n' Py — 8y = Op(1). (22)
(GNED (g, 6) — I{8)) = 0,(1), (23)

L ) a1 n
n'?@ -6 =1 '(&.}n'*'(; > ua(X; }) +o,(1) )

by utilizing the steps i the proof of Theorem 4.4.4 of Serfling (1980), and equations (3.5)
and (3.10) of Basu et al. (1997, Now by (21)

n@* — 8 1N 8* — 8) = n(BY,, — By )" HBNEY, — Byr) + 04(1). (25)
Therefore, by (200, (22}, (23) and (25) we have
2n(GNED; (g,, fi) — GNED; (g, f30) =n@, — Oue) " 160XEY, —Brur) +o0,(1).

From the proof of Theorem 4.4.4 of Serfling (19807 it follows that the asymptotic distnbution
of n(@l;, L g,w_}le{ﬁ'[,}(@;‘,L — @M phisy 3(1'}. Thus the proof is complete.

Proof of Theorem 3. Note that

plh, fo,) = pth, fo) = (1—a)p,(g. fo,) +a < plg. fo, )+ all —e™),

, (l—algy . ok ; :
o lh fa ) = fuxp ( —)'-T)fu;, (1 = )LJF_’) =g, fa ) —ak = mig, far)—ak.
M M

Therefore, N (H) = N, (G) — a((h + 1) — 7). Thus, forany o = N (G)/(L+1 — e,

inf Ny (H)= No(G) —a((h + 1) —e™) = 0= Ny m
Kelg

and this establishes the result.
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Proof of Lemma 1. If pi(g. fi: ) = 1. then py (g, fi; ) = 1. Thus, we have

, k
pulh, fir,) = fl:xp (—(1 —aui) exp (—al_—)ﬁ,;]
Jey Jig

= fuxp (—1:||!.1'-._i)_,ﬁj;J = expl —od)
Jor

On the other hand,

k
pith, fa,) = path, fa.) =f cxp(—il —a}lf—#) L‘HP(—WL—)J‘?&; = exp(—(1 —a)d).

[+ .-ﬁie;

Thus, N (H) = expl—ad) — expl—(1 — a)i), and this being greater than zero 15 equivalent
W —a=>—{1l—alie,o <172

Proofl of Theorem 4. Since (12) holds, we have Nj e =1 — ¢ Let H = (1 —
a) G + aK. Now pih, fa,) = e Also piih, fir) = path. fig) = (1 —edplg. fir )+
ok, _f,i,;}l.Sim_'l: o (k, _ﬂ_];::} = 1, it follows that g, (h, -'ﬁ‘.ﬂ} < | unless v = 1.
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