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Ahstract

In a normal example of Stone (1979, 1. Roy. Statist. Soc. Ser. B 41, 276-278), Berger et al. (2003,
1. Statist. Plann. Inference 112, 241-258) showed BIC may be a poor approximation to the logarithm
of Bayes Factor. They proposed a Generalized Baves Information Criterion (GBIC) and a Laplace
approximation to the log Bayes factor in that problem. We consider a fairly general case where one
has p groups of observations coming from an arbitrary general exponential family with each group
having a different parameter and r observations. We derive a GBIC and a Laplace approximation
to the integrated likelihood, under the assumption that p — o0 and r — 20 (and some additional
restrictions, which vary from example to example). The general derivation clarifies the structure of
GBIC. A general theorem is presented to prove the accuracy of approximation, and the worst possible
approximation error is derived for several examples. In several numerical examples, the Laplace
approximation and GBIC are seen to be quite good. They perform much better than BIC.
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I. Introduction

Approximations o Bayes factors by Schwarz (1978), BIC, further improvements in ap-
proximation, and interesting applications have been studied by Kass and Vindyanathan
(1992), Kass and Wasserman (1995), Kass and Raftery (1995), Raftery (1996), Pauler
(1998), and Volinsky and Raftery (2000). As in Schware, the highest dimension p s fixed,
while the sample size tends toinfinity. The BIC also emerges as an approximation in maodel
selection via computational complexity or equivalently a Kullback-Leibler loss functionin
Rissanen (1978, 1983). A very inleresting paper by Spiegelhalter et al. (2002) s based on
the last eriterion. However, the approximation and asymptotic gualities of their new method
are yet to be studied.

Owr interest here 15 in developing an approximation that throws light on the behavioar of
the Bayes Factor when both the dimension and the sample size tend o infinity.

In the first study of this kind, Berger Ghosh and Mukhopadhyay (2003), henceforth ab-
breviated as BGM, have shown that the BIC may not be a good approximation to the Bayes
Factor (see Tables 1 and 2 of BGM) in a problem of Stone ( 1979). A much better approxima-
tion 15 provided by their new information eriterion Generalized Bayes Information Criterion
(GBIC), whichreduces wo the BIC when p (the dimension) s fixed. Stone (1979) had shown
earlier that BIC i an inconsistent model selection eritlenion in the same problem.

BGM consider an equivalent formulation of Stone’s problem with yi; = iy + 255, i =

i
L2,...,p. j=12,...,r, n=prand g ; e N(0, 1) and the models being compared
are My : gy =0fori=1,2,..., povs. Macopoe BPA fully Bayesian method of model
selection 1% then proposed based on the Bayes Factor,

ftr'l'jl]n{pjdp

gk = eLii

(1)
L j () s the log-likelihood function undermodel M and mf o) the well-known Zellner-Siow
(19800 multivariate Canchy prior. We focus on numerator since the denominator is easy 1o
calculate. A major result in BGM is a rigorous Laplace approximation to log BF2; which
leads w the GBIC.

Stone proved the inconsistency of (p/2) logn as the BIC penalty term. It can be easily
venfied that Stone’s counterexample holds for BIC even under the more appropnate penalty
(P2 logr.

This paper considers 4 whole new class of examples where a Laplace approximation,
and hence GBIC (see Egs. (4) and (9) in Section 2.1), are valid for certain sets of val-
ues of poand r. Our proof is new and sheds light on the structure displayed in (4) and
(9. Instead of a nommal family, we consider a general exponential family, and instead
of the Cauchy prior, we consider a4 general mixture of conjugate priors. In this general-
ity we apply the Laplace approximation in two steps (see Section 2.1) and are able o
prove a general theorem (Theorem 1) and verify the conditions and the order of mag-
nitude of the remainder in various special cases, namely, binomial, normal, exponential
and Poisson. The worst possible orders for the remainders for the four distnbutions men-
tioned above are, respectively, max{l/p, p{lugr]ll,.-'ﬁ}, max{l/p, p{k}gr}ll_-"fﬁ} for
some ) <7 < 1, max{1/p, p/r'/**7} for some 0 <y < é and max{ 1/ p, p(log r)y*7 /./r}
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for some 0 <y < 1. Our result holds when p — oc and r — 2¢ and the derivatives of the
loglikelihood satisfy certain conditions near the boundaries of the natural parmmetler space.
The specific assumptions change somewhat from example to example as illustrated in Sec-
tion 3. The advantage of this approach is that it not only generalizes the approximations
used in BGM, but explains why this kind of stueture holds and where the different terms
come from.

Sections 2—4 address the development of a two-stage Laplace approximation and a GBIC.
They present details about the assumptions made, the applicaton of the general resull in
specific examples and illustrations of the use of the results in the context of some model se-
lection problems, and several inferential implications of our approximation method. Section
5 provides a numerical study of different approximations. Further heuristic generalizations
are included in Section 6, which considers the case where the observations need not be
distributed as an exponential family, and where the number of parameters also vary across
different groups. At this level of generality, it s unlikely that the approximation can be
rigorously justified. But we have included a limited numerical study that suggests that our
approximations are quite good.

2, Generalization of BIC, assumptions, and proof of the main result
2.0 Novations and development of GBIC

Consider observations y;, i=1,2,..., p. i=L2,....,r, n=prwithy;={¥.¥2,
<oy ¥ip ) having a joint density, given by

flyi)=exp 1Y Pl) 0 +ra@) g [T hop. (2)

_||'=| _||'= |

where 8, € @ C B, k=1, and @ is the natural parameter space. For notational simplic-
ity, we shall benceforth write Aiy;) = l_[j-=| Ay In the above representation f-) is a
vector-vilued function, while fi (- and A(-) are scalar-valued functions. We are considenng
hypotheses Myt B =--- =8, =t [, where 8 is known, vs. M2 - (8. ..., Bp) € [PE.

Our approximation of the numerator of BF7) for the above testing problem, which we
denoted by mz, 15 presented below.

Lett; = Zj=| lj!f{_'ln'jj boa ik = 1) vector, Consider a mixture of conjugate priovs mif; |, )
and assume the #;7s are iid. given (=, ) having a common conjugate prior m(f|a, §) =
Cila, fleapla’® + fA(O)}, where Cla, 1) is 8 nomalizing constant and 7y, ) is the
mixing prior on the hyperparmmeters. [L s important to note that in the above poor 2 is 4
vector and [Fis a scalar. As pointed out by Ghosh and Samanta (2002}, in high-dimensional
problems, this 15 a4 common and natural chowe of an objective prior. Note that ma is
given by

» n
ma = l_[ fi{_]’j?] [ : [ CPla ) l_[ explit; +2)'0; + (r + HAG;)]

=l =l

x mifa. f)d@ ---dfl, daxdf. i3
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Let H be the m.Le. of the original parameters and | —r A”{ﬂ‘ }II be the determinant of the
Hessian of the quantity —r A{#), a (k = k) matrix, evaluated at Ei" Also ket [ M(a, ﬁ'}l be the
determinant of the Hessian of — plog Cla, §), a (k+ 1 x & + 1) matnx, evaluated at (z, ﬂ}
where (2, ;ﬁl} will be defined through Egs. (7) and (8) later in this section. Also denote the
(k » 1) vector & /r by ¢;. Then, by Laplace approximation, we have

n
i=1

log(] —rA” (8
!PZ}E{ . {m]

logma Z{?ﬂ + A(B))

HI'::

"~‘!|“':

= |ﬁ=

Iﬂ .
Y Al +log C(a, M+ ; h}ngz]

1 .
—3 log(| M (z., ()

+ Iﬂ—: - log2n + logm (&, ﬂ}l} i4)

We can write

P ?
my = l_[h{y;}] [{ ]_[ f,-{ﬂ,ﬂ}]C”{m,ﬁ}m{m,ﬁ}dmdﬂ, (5)
=l ' ! i=l

where fi(x ) = [explt/@; +r A0} expla’®; + FA(S)}dE;. As r — oo the integral
Ii{a, ). for each i, is approximated by

[ Ei' A H‘ m’ﬂ‘ A Ei'
expltly +r A} exp| + A8 )} \."'{_?-!}I

Iia f) = =
'.,fl —rA"(®)

(6)

with

A{ﬂ‘}_——.

r

"r"-L make i sL‘Lun-:!-*-..lugL Laplace approximation o estimale

,_|h{3’1}}ff _y Btz }CP(a, fimy (2, f) dxdf, getting

!l_[h'}h ]”,_L [IJ{UL ﬁ}}f:“{-: ﬁ}m{ﬂ'« ﬁ}{\t"{_}k 1
i=l

VMGG B
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The values of & and ,H are obtained by solving the equations

ClogClz fi) 1 g .

T —_; E (K] ﬁ}
dlogC p B

QIoRE®® _ 1 5= sigii. )

ap

So, puting the two Laplace approximations together, logma is approximated by (4).
Mote that the first two groups of terms in (4) anse from the maximized log-hkelibood of
the data and the first group is an O(pr) term. The third group arses from the first-stage
Laplace approximations of the p integrals I, ) described above. It is Of plogr) and
corresponds to the penalty term in BIC. In general, the second group will be different
from the penalty in BIC because of its dependence on A"(8;). The first three BTOUPS COmde
entirely from the data and the model through the Laplace approximation. The fourth group
collects the O p) terms and they come from the prior, the data and the first and second-stage
Laplace approximations. The first three terms in this group give the maximized value of
the logarithm of the conjugate prior w.r.L the hyperparameters, evaluated at the maximum
likelihood estimates fi',- of the parameters #;. The term { pk/2) log 27 arises from the p first-
stage k-dimensional Laplace approximations where £is the number of components in 8. The
fifth group comes from the second-stage Laplace approximation and is the loganthm of the
determinant of p times the information matrix from the first-stage prior and is of order log p.
These, namely the third, fourth and fifth groups of terms provide an adjustment o the BIC
penalty. Some of 18 inferental implications are presented in Section 4. The sixth group has
two terms, both OC1). The first term comes from the second-stage Laplace approximation
and involves the dimension & of 2. The second tenm is a contribution from the second stage
prior.

Finally, we propose GBIC in the general case as

GBIC = logmy — C)

P
=g ! .fl"' Zﬁ:ﬁj o+ A{E}J}}] +

i=l

n
¥ |u;__-¢m_y,.}}]

i=l

3| "3

b 2
- log(] — rA"(8;
!p E og(] —rA’( }I}]

=1

2o 5 P
X B 3 - k
Epe i +E > A@) +log C & )+ S Iughz]
P i=l r i=l -
k+1
= ——logp. )

where €y = [(k + 1)/2]log2n + logm (& f) — 1 log(M| (& f)). where M (& ) =
(1/ PIM@. ).
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For the problem in BGM, our results lead to a GBIC that is exactly the same as theirs
but under different assumptions on poand r. It can also be shown that with r — 20, our
approximation of log m, differs from that in BGM by o(1).

Note that if one chooses to Lake 2 = 0 for the conjugate prior (as in BGM ), then the Tast
termn in GBIC above will become —log p/2 and the first term in C) will become log 25,/2,
since the second-stage approximation will be done with respect to a one-dimensional argu-
ment, namely 5.

2.2, The main result on Laplace approximation and the wmainder

Before presenting the general theorem, we first List the assumptions needed for proving it
All our assumptions are verifiable from the given data (unlike the probabilistic assumptions
in BGM). We give a ngorous proof for &£ =1, In principle, a similar ine of argument should
work fork = 1. Let us first define A j={0 : |0— fl-l <elogr//r}. for some suitably chosen
constant ¢ = ().

Assumptions. (A) For cach i =1,2,..., P f; falls in the interior of the natural pa-
rameter space &, and (;'s are such that there s a constant ¢ = 0 such that A;; = {0 :
I — | =clogr/,/r} C € forall large rforeach i = 1,2, .., il

(B {I{}gr'fﬁ}supwd“ [A(M] = of1) uniformly in i, as r — oo,

{C.1) There exist positive constants ¢ = o3 = 0, such that 1 AT <= AT(D) < c2 A7 ()
for all ' € Ay uniformly ini, as r — oo,

C.2)] — r’!rrif}iﬂ is at most of the order of r30087)' ™ ~1/2 yhere c3=c/2xca, cand 2
being defined above, and is at least of the order of 1/ (log r ) for some 0 <6 < 1, uniformly
iniasr — oo,

(D.1) There exist positive constants cs = o4 = 0, such that ¢4 A0 = SUPpe 4, 1A (]
<es|A™(0;)] as r — oo, uniformly in .

(D.2) [(log r'}lﬂ'ﬁild"’{ﬂ;}l = of 1) uniformly in i asr — oo,

(E) supge 4, m(0) ﬁ';c'f,r::{t“!;}l uniformly in i, 2, ff as r — oo forsome constant o = 0 and
R{EJ';}I is at least of the order of lfr'llng"]] JI, for some 0= d <4 < 1, uniformly in f, 2, f as
r — oo, where o3 and & are as in (C.2).

(F) Support of the mixing prior is finite and (3, fﬁ}l falls in the interior of the support of the
mixing prior. The dervatives of log cix, f) and 7y {2, ), up o the sixth and fourth orders,
respectively, are bounded in a neighbourhood of (3, fﬁ}l, and 7y (2, ) and the determinant
of the Hessian of — log oz, §) are bounded away from zero at (3, fﬁ}l.

(G) E“L'hﬂ. = of 1) uniformly in (=, f)as p.r — oo, where by, =E\+ B2+ Ex+ Ey
15 obtained by replacing ﬂ'hy r},- and A; by A|; in the definitions of E|, E;, E; and E; in
Egs. (22)-(25) below.

Foreachi=1,2,..., p. conditions (A) through (E) determine a certain range § © &
within which (; must lie. Our approximation goes through for those data sets for which
el i=12..., ptoand also conditions (F) and (G) are satisfied. Condition (F) 15 in

the spirit of Kass et al. (1990).
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We first prove the theorem under these assumptions and then discuss what can be done
il some of the assumptions are violated.

Theorem 1. Suppose we have data y; ={vi1, viz. ... v fi=1,2, .., P, with ¥; having
Jointdensityas shownin(1), fori=1,2, ..., p. Further assume that conditions (A) through
(E) above are satisfied foreach U, i=1,2, ..., P and also conditions (F) and (G) hold.

Then logm: —logma =o(l).

We write the proof so as to indicate how the assumptions arise. A key implicit step in the
proof is o allow i 1o getelose w the boundaries of the natural pammeter space & and then
control the growth or decay of denvatves of the likelihood. Then some standard arguments
for handling the remainder for the Laplace approximation to m under a fixed true iy (see,
for example, pp. 35-39 of Ghosh and Ramamoorti, 2002) break down. New appropriate
assumptons and arguments have to be invoked to make the remamder negligible. The
general assumptions lead to specific orders for the emainder in several examples, namely,
normal, binomial, Poisson and exponential. In a sense these orders are the worst possible
ones. One can also get more precise orders that depend on the values of the E’;'S.A numerical
illustration of this is given in Section 5.

As we are giving a proof for & = 1, we are dealing with scalars only, Lemma 1 s a key
step in the proof of the theorem. We begin with its statement and proof.

Lemma 1. Under conditions (A) thiough (E).
5z, ) = Lz, )1+ O(hy, ),

where hj, — Quniformlyvinias r — o0, and f;{:, ) has been defined in Eq. (6) in Section
2.1,

Prool. We suppress the @ for notational convenience. For the same reason, we shall use
notations [ and I instead of 1 (=, ), f{z, §) throughout the proof of Lemma 1. Also, by an
abuse of notation, we use mi ) w denote explaf + SA(D)} for this proof.

Here, we are trying to estimate the guantity |7 — I|= | fH u“”]n{tl‘}dt! — c’-l”],-.:{t“}}
[ ePE=0AT gy where L(0) = {10 +r A(0)} and n(0) = exp{af+ SA(0)}. Define

c.r_[fJ]—J'.LI'J] if e @,

10
0 if e &°. e

fO) = l
Then | — {] = uj'[ﬁ][fﬁ{-f.{r}}n{ﬂ} — r(Dyetrm@-iEATiy qg)
Let Ay ={0: |0 -0 <clogr/J/r}and Az ={0: |0 — 0 = ‘I‘#} for some constant

W

¢ = 0 chosen sothat Ay < @, for large enough r. Then
”- - fl'ﬂl:“'”] If |_f{”::|1'{{“::l _ r‘,_,{E}::IE[J'."l]I'I'.I—I'J:I".-'I”I.I'ﬂl di
.4.]

+[ Fim(O)do+ nu"r}[ u””]”“ﬁ]:-'“lf”dﬁ}_ (11)
v A2 JAz
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We shall first look at u“m Fas _,F{U}lrz{lr)}dﬂéu“ﬂ]{supﬂ&h £} fpe 4, =i d0. By the
concavity of L(), we have B

. ok (i cl‘.[ﬂ—'ﬁ log e/ JF) el (il —clagrf JF)
sup filh= sup — = max - i -
e, ey el eLih ekt
.4 Fom fis R
= EIIHH{I:[’ (2l r)m A [ff]]J:[: [log et A [flglh (123

whcr:: Efl 15 4 point between 0 and 0+ ¢ logr//rand L'FZ 15 4 point between 0—c logr/./r

and ). We can rewrite the rightmost expression in the string of expressions in (12) as
mix | ru-l,'z] log rA™ (07 e i lagr AT \i

Noting that we need to show that l:“”]f__,u Fim(th dit = o(f), we need po3lograA”ih

1“.""[ — r'A"{E"}t;’rz{ﬂ'} — asr — oo, wherecoz =c'3|."2 x 2, because we have assumed thatﬂ
falls in such arange that condition {C. 1) is satisfied. Now by assumption (C.2) on the order of

= P f & : g
A"((), we see that pealogrA” (W V| = rA”(0)] is at most of the order of 1/rlca/2)logs )'"=i-174,
S0, using the fact that _,I"”F__,h m(th di < 1, we have that

D foer, £ On(0) 40
CL[E']R{EI}JE_RI.-’{J[ —rA"(D)))

15 at most of the order of

1 1
Y L - :D( eqlbogrpl=3 ]) a-r—r o,
I,-——*-a——x | iy Ao
by assumption (E).
Let us now ook at

Ay L .
c“”]rz{l'.]'}l 1:“"]” =AY (i dn
e Az

ECL[EI]R{E}}I clogr | red

2eLn iy 1 1

o — - =—. (13}
‘I-"If[ —rA" (M) ¢ log njt — A"(fy) VT (et /20 log r A
The last expression in (13) is at most of the order of
L
e Wag(ih 1 1 &
— — = o), i14)

—g i e/ 2ilog )

T |
v —ra” () (ogr)

by assumption (C.2).



A Chakrabarti, J.K. Ghosh / Journal of Statistical Planning and Inference 136 {2006 ) 2847 - 2872 2855

Now we are going Lo estimate
CL[”] lf F_.fw}?l{”} A H”"}}u[.l‘."Z][l'-l—fnllz.-'l”[f.|]rdf!} )
Ay

The quantty above 15 kess than

cuﬂ]l Ij'l[tl'}—u“'”]‘”‘ﬂ]:-*”[ﬁ][m[i!}dE!+f rm[f}}—n{i!}p;“‘”””—ﬂ]z-*“[ﬁ]dE! \
Jay

Ay

First note

uL[fJ] [ | _ul’,".-'?][f.'—ﬁllz.-‘l”lﬁ]h{mdu
o Ajf

1] ’ 12 am el iy am
— c]'_I:I'-I:I f c[-' SHi=ih A [I'-I:II:':[J‘J'&:I[” h=A [”]] L ].l']I{”}dﬂ
Ay

i iy
‘.‘EI:L[”] sup (1) sup }I:le -1 c[J'.l'E][fJ—{.l] A [r.lldﬂ.’ (15)
e A ed, Ay

where (] is a point between ( and I, and

R() = gw — A" (16)
MNote that
f u"""lz][”_ﬂ]zf[ﬁ]dﬂg ; T = 17)
o VI —ra’o)

Also SUPjea, Eum”] - ll*;:{sup”l:__h |R{N|} = {sup”l:'_,l] ulR[””}. Now by assumptions (D.1)
and (D.2), we have

sup [R{(| — 0 and sup ulmﬂ]l — 1 asr — oo

e 4, e 4,
Apain, by assumption {E), we see that the last expression in the string of equality/inequalities
(15)is foil), where the o(1) term is determined by the order of [(logr)? /\/r]| A7 (1h]. by
assumpton (D.1).

Now look at

CL[”] [ ll_{{[}} _R,{H}EEU‘IE][”—H]'A”[”] d“
J 4y
— el 10— mh{r“jnlclrﬂ][ﬂ—{J]‘.-‘l”lm di, (18)
A,
where 0] is a paint between  and 0. The above quantity s less than

CL[fJ] F,E,}E.E % —v‘}.-'_n s sup |7 (0)]. (a9

VI i—rariy oo
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Note that = (0 = {a + A" (M=), so we have

sup |n'(th] <

|2 + 18] sup |A(H] § = sup =), (200
leA)

e, le Ay

The expression on the rhs, above s at most of the order of ={ ﬂ‘} ® (14 SUPy 4, | A by
assuming condition {E) and assuming » and f fall inside a bounded range. By assumption
(B). the quantity in (19) iso().

Finally combining all the different approximation rales, we gel

1 =11 +0(h)). (21)

where A, is givenby h, = E| 4+ E3 4+ E5 + E4, wheme

114 ! -
pealogrA (th ", '|I'|I| i A”{””

E = = : (22)
il
JI.[:3.-'2] I::_l;r.—‘t"[ﬂ]
e X —, (23)
logr 1|'."| — A"
o |
By {logr) x sup [A"(0)] x c[In_l;r]".-'\.-"f'x.mp..]”] |.-‘l‘”lr.|]|, (24)
VII'F NeA
E Iﬂgf' o rﬂ'r{ﬂ_:ll) fjj}l
4= ® sup | . 2
\"IIF feAy

By assumptions (A) through (E), iy, — OQuniformly infasr — oo, So Lemma 1 1s proved.

O
We now complete the proof of the theorem.
Proof of Theorem 1. Using Lemma 1, fori =1,2, ..., p, we have

P P P
[l p= (H f.-{:.m) X1 +L‘.~{hn-n] ; (26)

=l =l =l

Then under assumption (G), and using also the fact that the O(f;,) terms above are i fact
all of 1) uniformly in i, = and § as r — oo, it is easy o venfy that

s n F P
[T i p= l[‘[ f‘-{:.m] x {1 +”(Zﬁw) ] = l]‘[ f‘-{:.ﬂ}] x {1+ o(1)),

=l i=l =1 =l

(27
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asp, r — oo Note that the o(1) termin( 27 converges o0 uniformly in {2, fas p, r — oo,
We will now look at the approximaton of

[ [ {ﬁ ‘;*"lﬂ?]C”immm{:,mumﬁ

{m"'fﬂ} pk 1;[:-' E.!IJ.-J f:I-' +r EIL] Al EI.- ]
I, ﬁ.-fl —rA"(h)

5 [ [E[pmgmx.fnuzj’,,m+f¢zf’,,.4[ﬁn:m,[lﬂ}d:dﬂ_ (28)
We only need Lo approximate

- A f fl:['uIHP‘Cu"rﬂ_xz-r"lﬁ"_-ﬁzfﬂmﬁ"]E?{ﬂDﬁ,ﬂ}ld:dﬁ_ (29)

By assumption (F), the unique maximum i 3, ﬁ!} of the quantity plog Ciz, f§) +:Zf=||[}‘- +
ﬁZ"{L' Aty falls in the interior of the support of 7y (2, §). Then using standard arguments
for proving Laplace approximations for integrals of exponents of concave functions (noting
that p log Ciz, £ + :Zil i + ﬂzf;l A(fl;) 15 a concave function), we gel

— elplogCie fraa Tl B+l iy o _m@p % Ix

VIMG B

= Joncond (1 +U(--1-)), (30)
P

as by assumption (F), the functions log Ciz, ) and (=, f) are nice. Finally, combining
all the emor rates, the overall rate of approximation is given by

wofgmtiro )

i=l

lrw:u:md

Hiz = M2

=ma(l +o(l1)), (31}

as p — ooand r — og, finishing the proof of Theorem 1. O
2.3, Discussion

As mentioned before, all assumptions can be checked from the data. Assumption (B ) will
hold unless the mean of any block, i.e. f; forany i, is too large. For example, it is satisfied if
t; for each i is, say, at most of the order of r 129 Jogr, forsome 0 < d < =-__lf Assumplions
(C.2) and (D.2) will hold for practically all f}; s, unless some of them are extremely close to
the boundary of the interior of @ or extremely large in magnitude. Assumptons (C.1), (D.1)
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and (E) are basically assumptions on the contimuity of the denvatives of the loglikelihood
and the poor. Condition (E) reguires that the derivatives of 7 amre not very large at . For
usual priors, it sometimes means that f is not extremely close to the boundary of the interior
of @ and = is not too sharply peaked at 0.

We crucially need assumptions (A) and (F) for our approximation 1o be valid. For the
m.Le. 0; of 0; o exist and fall in the interior ©° of @, itis sufficient that 1; falls in —r A(@7).
If the boundaries of A(E7) have zero mass under each 0, this will happen with probability
1. All the abowve facts follow easily from Theorem 3.6, Theorem 5.5 and the discussion on
p. 149 following Theomem 5.5 in Brown (1986).

We now study the existence of {i,ﬁ'}. First observe that

n I
expyplogCia, i + 2 Z i+ Z Al
i=I i=1
is the joint density of ((h, 02, ..., Bp) given (a, §), where 0 ~ mi |, f). If we were to

solve the m.Le. of (2, §) from the above density, by exactly the same argument as above
for ; and noting that the distribution of sufficient statistics {Z}LI B Z:Ll AN will be
absolutely continuous for p = 1, there will be solution to the equations

n

o v
GlogClz. ) _ 1 Z i,

B p i=l

ClogClz, ) .
e Alh),
o S

with probability 1 for any random sample of size p from = |z, ). But we have here f“J',s
and A{El,-}'s instead of ;s and A{0; )'s. However, by assumption (A}, all the IFJ';'s ane i the
interior of @ and so we can as well treat them as if they are a sample from 7 |2, §), and so
the (3, ﬂj will exist with probability 1 in this case also.

The proof holds under the assumption that {fj',- e&i=1,2,..., p}oand that (3, ;5'} falls
in the interior of the support of oz, ). If, for some data sets, one has t},- e 5 for a
few indices @, one can use numencal integration for those indices and do our method of
approximation for the remaining indices. In specific examples ke binomial or Posson,
one can use Stirling’s approximation for those co-ordinates when one has f“]'; s falling on the
boundary of the natural parameter space, e.g. if the number of successes in a block 1s either
0 or r, in the Bernoulli case. One potential problem with {3, ﬁ} 15 that we are restricting
w2, ) to be within a bounded rectangle, not the entire natural parameter space. So, in
SOme cases, (3. ﬁ!}l will not be inside this rectangle. In those cases, one needs w0 use direct
numericil caleulations to evaluate the second-stage integral. We do not repont caleulations
based on these alternative methods in the present paper.

One natural question might be, why do we use A = {i} : |00 — EJ'I zclogr//r} ? Other
possible choices are Togr/ /T, (log r)'/39 /¥ for any 6 = 0, and r* / /7 where d = lz
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Note that Togr /.7 is chosen by Ghosh and Ramamoorti (2002, pp. 35-39, although
there is o Lypo). This is the smallest set of this kind for which the complement has negligible
probahility under the approximating normal. A common choice is r9 /7. This option is
excluded since in this case the ermor terms will become extremely large.

The problem with the choice of .ﬂ@ff is as follows. If one is using . /Tog r/./r, one
has et @ .IGJE-'t Syt di < oLt V[ sl l”” for some constant « = (), using assumption
{C.1). For our approximation to work, we r:u:;d

Ll
| At i)
— "~ 50 asr— o

2net D (d)
:

VI—raT @

A careful inspection reveals that, in general, unkess we allow |A”{E|'}li extremely close to
zero or have |A" ()] = &', for some positive constant &, we need (D) to be large (at least
having some polynomial mte of ) for the above to happen. Using {log r) : 'JI_‘E,.-‘V-"}_', for any
& = 0, removes these difficulties, as we can make Ei'g{} reasonably close to the boundary
(without having to assume that it is bounded below by some constant) and also we do not
need to assume anything unreasonable on the magnitude of (). We choose 8 = 4 10 make
our argument neater. B

Finally, it is worthwhile 1o mention that in specific examples, it is possible 1o estimate
the expected proportion of s (at least an upper bound of i) for which f; & 5, under the
assumption that M> is correct and () . mlx, B, given (2, f) and (x, f) ~ =) An
example 1s presented in the Appendix.

3. Discussion of the examples
31 Verfication of assumptions and rates of convergence for specific distributions

(1) Bernoulli distribution: In this case, A{l)=— log(1 +|:”}| and —oo = i) < oo, It is easy Lo
see that |A"(0)] < 1 always, So, the first requirement in (C.2) is always satisfied. Noting that
as 0l — oo, |A”(0)] behaves like ¢~ and as 0 — —oc, |A”(0)] behaves like ¢”, we need |0
to be at most of the order of log{log )Y forsome 0 < & < 1, to meet the second requirement
of assumption {C.2). Now noting that [A ()] < 1 and A™(0) = A"((H{2A( + 1}, we have
[{I{}gr}}fﬁ[supwm [A"(th] — D asr — oo, S0 we do not really need assumption
(D1} in this case. Condition (B) s also trivially satisfied. For condition (C.1), we need o
look at

rr rnl
A'O) _ s (+eh) ) 2 a2
A"(th {1 +c”‘§}'
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for all large values of rand all f € A, where d= 01 — 0. A similar inequality will hold for
the quantity A" {1 /A" (N, hence (C.1) is satisfied.
Mow let us look at condiion (E). Consider

- f
il . 1 4 e
=D e 25 (33)
i ) 1+¢
Note that by making rlarge enough,
i
Fid “ - 1 +L,I'.|
sup {—n}é 5e.u1:r{|:”_”]l:t sup | — | =2 134)
tea;, m  pea, geay 41 t+€

for any bounded range of  and . We can also verify that the other requirement of (E) is
also satisfied by all Lf-"['& that are at most of the order of logllog r }*5.

We see that all the conditions for proving Theorem | are satistied for all II?J‘-I'H. that are
at most of the order of logilogr ) for some 0 <d <1, as r — oo uniformly in i, provided
(3. ) satisfies (F).

We shall now look at the worst emror rates achieved for the first-stage Laplace approxi-
mations. Quantity Ep 15 at most of the order of

! 1
£ |jc\.5r|] & i e 5 ( 2 ”L-\,S”J & i ) {35}
Ir T amlth) re 1

1
1212 agr )1 J““g_l.]] 52

by condition (E). Quantity £z 15 at mostof the order of . The quantity
i

E3<[(log r'}'j’fﬁlc["’-';”l""'ﬁ' ~ (logr ) //7 for large r. Quantity E, is at most of the order
of log r',.-‘ﬁ for a bounded range of values of (2, ). So, E|+Ex+E1+ Ey=0i{logr }lfﬁ}
asr — coforeachi=1,..., p.Hence

Tk - pliogr)®
l_[ fifo, f) = l_[ itz B (1 +U(T)) (36)
i=l i=l

asr — o0, p — 00, assuming p{lugrf",.-‘v-"r' — Qasr, p — oo Now the error mte
for the second-stage Laplace approximation s O(1/ p). S0, the overull error rute for the
two-stage approximation will be obtamed from the fact that

b (0(7)) ()

=mzil +(}{J:|'”n}}g (37)

s
where [, , = mux{:’l" M’%‘jl}
W
(2) Normal distribution: As in BGM, we consider the case where the vanance s known
to be equal to 1 and there is a prior on the mean parameter. In this case, A(l) = —H‘ll.-‘l
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A" =—1,and A" {h = 0 while —o¢ < 0 < 0. Thus, conditions (C. 1), (C.2), {D.1) and
(D.2) are trivially satisfied. For condition (B), we need

logr (- logr .
& (H‘+c‘ B )_:.u asr— ooif 00

Jr Jr

and

logr - loer -

Er (!J'—:.‘E) —= 0 asr—ooif <0

S0, if we have ir}: at most of the order of JI:T for some () = 7" = %_ that will be sufficient
for the above to hold. But for condition (E) to hold, we need that if“ﬁ be at most of the order
of {Ii.:r;:u"}l"l_*\”]'fI for some 0= 48" < 1, noting that (C.2) is now satisfied with d = (. Also
(C. 13 1% satisfied with 2 = 1. S0 we have, in this case,

: 1 |
i VT =(}( ) By B
¥

,.gklngr.-'ll-{“}} JI.<-’ll'.zn_|.tr].-'-1—i (e /21 log r log r

12~

and E4 = O({log r}l_;f.\,-"ﬂ where = (2 — |’5rjll.-r2.

Therefore, the error in approximation for the first-stage Laplace approximation is
Qi pilog rylH [+/r). provided pilogr) '_3',.-‘\,.-"}" — (), and the overall rate in the Normal
caseis O, p), where

1 (logr)'+7

Jp.p = max ; FT i

In the above proof, we have assumed z and § are inside a bounded range. In the special

case of the normal distribution this assumption can be relaxed w include the Zellner-Siow

prior (1980} Nonetheless, our general method is less efficient for the normal case than in

BGM, as we are using approximations in both the stages, while the first-stage integral is
evaluated directly for the normal case in BGM.

(3) Exponential distribution: In this case A{0)=log{ —1) and (! = 0. Choosing the proper
range of E";'s so that the assumptions for Theorem 1 are satishied, the worst possible ermor rate
is O(J,. ), where J, p =max{1/p, p/r'/**7}, for some 0 <y < }, assuming p/r'/**7 — 0
asr, p— 00

(4) Poivson distribwtion: In this case Al = —e and —o0 < 01 < 0. The worst possible
rate in this s O0J, 5 ). where J, , = max{1/p. p{l{}gr}";"fﬁ}, for some 1 —d <=1
provided pilogr)*7 //r — Oasr, p — oo, Here ) < 8 < 1 is chosen to satisfy condition
(C.2).

220 Hustration of application of vesults in some model selection problems

{a) Multiple regression problem: Consider the problem of selecting a model from among
several multiple regression models. Typically in such stodies, the object of interest s the
dependence of an observed vanable on several explanatory variables through multiple re-
gression models. Often the study would be undertaken in closely related populations in
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similar geographical areas, like the states of the US or the countries of Europe or smaller
such local regions. For example, one might want to study the dependence of the price of
a commodity on a fixed number of possible economic parameters like average income in
the populations, demand, production ete. Let us consider, for population i, the regression
model, expressed in a Linear Model as

Yi=Xf +e. (38)

where ﬂ‘. = {ﬂﬂﬁ‘l ..... ,I‘.i"ﬂ} Xj s an N » K matrix such that the columns of X; are
orthogonal o each other and are of length 1, (N2 K) and g; ~ N{0, Ix.x). For the
ith population, we have r observation vectors; denoted ¥ 1, Y52, ..., Y; p. where given i,
¥;; g N(X; ' Iyuy)for j=1,2, ..., r. We consider p such populations and for each
population we have r observation vectors. We can express the whole thing in o big linear
model/multiple regression setup as

Y=Zfi+e, (39)
where ¥ = {(¥) )", (F12)",.... (V1 )s e e (Yo 1) . (Yp2). ..., (Yp, )Y, B is given by
B={(FY. (p%, ..., (7Y} and Z is o matrix of block-diagonal structure, given by

1,8 X, 0 | gp—— 0
“ lJ' @Xl “ vee “
L=
e 4 b

S0 we can also write

n
Y= E Zp +e (40)

where cach Z; 15 an (prN x K) matnx. Notice that in this formulation, each element of
E(Y) is expressed as a linear combination of pK parameters, although the design matrix Z
i5 such that only K of these will have possibly nonzero multipliers. We will consider model
selection in this setup.

As the populations are similar, we can assume that i sy BP are exchangeable. Let ﬁj’-
be the sample regression coefficients based on the jth data vector in the ith group. (Note each
ﬁf is 1 K-dimensional vector.) Then, fora given i, “j-'- g N{ﬁ‘., {X;X,—}_l =Igur)for j=
1.2.....r. Wewill work with B={(8')", (B2)'. ... (BP)'} where B ={(Bi*Y. .... (B5)Y.

The competing models we consider here correspond to which variables are included in
the regression (in Eq. (400). So, we consider 4 nested sequence of models My, C M2 C

- C Mg where under My, {ﬂ:} =0forh=I+1,.... K and foreachi= 1,2, ..., Pt This
15 a reasonable hypothesis to consider since the populations are expected 1o be similar. Note
that under M;, each vector ,;3_;'- will have a mean vector such that the last (K — 1) elements
are zero.
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Let m(M;) = 1/K, 1< K <1, 1.e. we assume that each model is a pnori equally likely.
Then a Bayesian selects a model {* with highest posterior probability I-:{Mf‘lﬁjl =MmaX| < < K
r{{M;iﬁ}: or equivalently the model [* such that the mtegruted likelihood m(l*) =
max) <7« g mil). Since m{/) cannot be calculated exactly in generl, this can be approxi-
mated by the two-stage Laplace approximation method and GBIC deseribed in Section 2.
Then the model ™ for which one has GBIC(!I™) = maxy(GBIC{{)) or logm{{"™*) =
max;{log m{{)} should be selected; where m(l) and GBIC(!) have obvious meanings.

Towsards that, under each model My, | <1< K, we assume a prior distribution on f# which
gives point mass 1 at 0 for each coordinate of # which becomes zero under the model and
for the remaining [p coordinates, denoted by fi;, assumes a conjugate mixture prior of the
form

il
m(fy) = [ [l_[ {explagBy + yABDINC, (=, pImi(ay. v) day dy, (41)
dagpd
where (9. 7) denotes the [ + 1 hyperparameters of the conjugate prior. Note thal, un-
der M;, the prior has support on an {p dimensional subspace of Y The exact form of
log mil)and GBIC{!) can now be obtained using Egs. (4) and (9) in Section 2. For example,
we have

P P

— Ip N T 5 5 N
GBIC()= — — logr+& Y ' +7)_ A(R') + plog (i, §)
B i=1 i=l
n
pl I+1 pri& 1 “ i opn
+Tlugzr:— = It}gp—T k}g?r{—;zjﬁf_ B,
B B B "=l
where fi;'_ 15 the vector consisting of the last K — [ coordinates of ;‘ij foreach j=1,..., r,

hence 15 a vector of dimension (K — 1) = r.

(byApplication af variable selection in a multivariate binary data model: Suppose one has
several groups of observations, each group having r observation vectors. Each observation
vector 15 composed of the values of p andom variables taking values 0 and 1 only. This
kind of multvariate Binary Data has been considered, for example, by Wilbur et al. (2002},
where, corresponding to cach of 4 agronomic treatments applied to a certain soil (two of
which are known o increase yield, but the biological reasons are not fully understood),
one has n; observation vectors, § = 1,2, 3,4 where each vector indicates the presence
or absence of p micro-organisms in a soil sample from the treatment group. The basic
goal of that study was o identify those micro-organisms which help differentiate between
treatments, and so may have biological significance. Statistically, this is a problemof variable
selection.

For simplicity, let us consider the case where one has only 2 groups of observations. Let
Xia‘k be the kth component of the jth observation vector in the ith group and let {P{Xj.'x =
D=0y, k=1,..., P} be the probabilities for j =1,2, ..., r.One way of knowing which
variables help differentiate between the groups is to test hypotheses of the form

Hy, bkt [, =0opy o iy = gy e Py, = Oy, } (42)
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for 1€k <k =---<k<pand 151 £ p. For example, if H) » 15 indeed true, then the
probabilities for the first and second variables are invanant under both the treatments and
hence these vanables are not important in diseriminating between the treatments.

For treatment 1, we have r observation vectors, X:-, i=1L2..., r, where X!l. =
{XJ 1s X_}l ..... X_!,-p]lr. Similarly for weatment 2, we have r observation vectors, X}, ji=

idd. ? B ST
1.2,....,r. Note that, X:i. XII.R ..... XJ'_A =~ Bernoulli{t!g) for 1 k< p. Similarly Xllr
i, 5 . O

X:_-.t ~ Bernoulli{fly ), for 1 <k < p. Expressed as an exponential family, we can

say, for a given { and £, the pm.f. of U{h, Xi‘ ..... X:.A}lr is fitiglniz), where
Fitiln;p) = expltieny, — rlog(l 4+ &M}, (43)

In the above, —oo < K, < 00 and fy = Zi;:'Xj,\. Let Xip = (Xi,, ..., xi) and ;=
Mgy oo rh-‘,,}lr fori =1,2and k=1, 2, ..., p. Then the likelihood of the whole data can
be wrilten as

friXn, X, .., Xiplm) folXa . X2, oo, Xaplnz2).

where fi(Xi1. X, ..., Xiplm) = TTi_, £ (tixlnig)-

The prior mi{g . g2l == ! i jlnl{ql}l 15 chosen as follows. We first find the average of the
estimated values '!_rz;_=| (. foreach k=12, ..., p. where i, = (1 ;’r'}z_ﬁ-ﬂX_"m. For
those £'s for which this estimate s between 0.2 and 0.8; we will assume exchangeability
of the coresponding i, "s for a given treatment i. Similady we assume exchangeability of
NS for those £'s having the above estmate less than 0.2 and also for those ;. ’s having
the estimate greater than (L. In the example from biology, this will mean that the micro-
organisms with similar probability of appearing in the soil are similar and $o may be treated
as exchangeable. The middle group has aninteresting property, the model vananee is stable
at about 0.2 as pointed out by Cox (19700, It is worthwhile noting that the same parameters
will be considered exchangeable undereach treatment, although the priors forthe parameters
under the two treatments may be different. To some extent, the prior is data dependent in
that the vanables are grouped on the basis of data.

Under the model with unrestncted parameters, e/ = 0 in (42), cach prior rz"{m}l will
be a product of 3 parts, each part putting an exchangeable conjugate mixture prior for the
parameters inside that group. 11 2 1, then the prior under that model will be a product of
at least four parts. The coordinates which do not appear in the hypothesis, will be treated
as before in terms of exchangeability. The coordinates which appear in the hypothesis will
have o common parameter vidue for each treatment. These (unknown ) common values will
be given an exchangeable prnor if the coordinates belong w the same group (as described
before), otherwise coordinates will be separated according to which of the three groups they
belong, and they will be given separate exchangeable priors. IF the number of coomdinates
involved in a hypothesis (or the number of components among them which fall inside a
particular group) is not large enough, then we may have o reson to direct integration on
some or all such parameters. It is worth mentioning here that in this way, under a given
hypothesis, observations corresponding W both treatments for the same variable will be
treated wgether, if that variable 1s included in the hypothesis.
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The method of two-stage Laplace approximation and GBIC can be applied here in ex-
actly similar way as in the previous example. For each model/hypothesis considered in
(42) (assumed equally hikely a pnori), we will approximate the corresponding integrated
likelthood using our resulls in Section 2 and the modeVhypothesis for which the eritenion
based on either of them s maximized will be chosen as the correct model/hypothesis and the
vartables for which the probabilities are the same for both treatments in the cormesponding
modelhypothesis will be discarded in the further analysis of the problem.

4. Inferential implications

This section presents the connection between our approximation method and postenor
normility, stochastic complexity and model complexity. Finally, we comment on the penalty
of GBIC vis-a-vis that of BIC.

A careful inspection reveals that our approximation to log ms also shows that the postenor
distribution of the ;s given ;s s approximately normal with mean vector 1 EJF}'

ptta oo Ly
and a diagonal variance—covanance matrix with diagonal entries {1/ .,r."ll - r'A"{ﬂ',-}l,, =
[F— phoIt can be used to caleulate the Bayesian measure of model complexity

P (¥, @, () = Egy[—2log p(y|)] + 2log p(yIf(y)),

introduced by Spiegelhalter et al. (2002, Eqg. (9)) for high-dimensional p. According to the
notation used in that paper, v is the data, & the parameter space and {y) is some estimate
of (. As shown by these authors in their Section 3.2, if posterior normality holds (as it holds
here approximately), the model complexity is approximately p, using (v} as the posterior
mean. This in tum implies their interesting, new model selection rule (Eg. (37) in their
paper) i1s eguivalent to AIC even in high-dimensional problems.

A related notion s stochastie complexity, as formulated by Rissanen (1987, Eqg. (2.1
In our problem, it reduces o

I(x) = —log[4 f(x| M) + 1 f(xIM)], (44)

where x i the data and f (x| M;) 15 the marginal density under M;, i = 1. 2. Conditionally
on M, the stochastic complexity becomes

Hx[Mz) =—log fx|M2). i45)

If x comes from M7, then one expects T (x) to be well approximated by 7{x|M32). In any
case, GBIC 1s an approximation to 7 (x| M, ) (without the negative sign).

Thus, both AIC and GBIC seem to play an important role, at least as approximations 1o
interesting inferential quantities.

We shall now try o give an mterpretation of the difference between BIC and GBIC. Let
us look at the Normal case first, in which

1 log
GBIC=BIC— £ 1og{ —75) - & - 22 (46)
2 P 27~ T2



2866 A Chakrabarti, J.K_ Ghosh ? Jonmal of Statistical Planning and Inference 136 {2006) 2847 - 2872

Note that GBIC is larger than BIC whenever

b I

Yy-=- :

P exp[l + log p/pl
which s more likely to happen when M s true. Similarly, GBIC is smaller than BIC
whenever (1 p)¥'y is bigger than the threshold shown above, which will happen more often
under Mo, If 7 #= 1, the threshold will depend on . S0, as we can see, the GBIC has an
adaptive penalty (dependent on the data) which penalizes the maximized log-likelihood in
amore conservative wiy than the BIC in sense that it penalizes more when the maximized
log-likelihood is large {which corresponds to large (1/p)¥ ¥) and vice-versa,

In general, we can wrile

n

P
s 1 -
GBIC =BIC + ) _ log{m(li|2. $)} — 5 Y log(|A"(U:)])
=l T i=l
Pk k41
T log 2 — 5 log p. (47)

Observe that for the Bernoulli case, %_Zf=| bogi) A"{f}; M1 — p log mhappens to be the sum
of the logarithm of the conjugate prior n(f); |z, ) coresponding tox= 1. =1, and f; = 0;
fowri=1,..., p. Thus, the first term after BIC in the th.s. of Eq. (48) will always dominate
this quantity. Hence, GBIC will be bigger than BIC for the Bernoulli case if the difference
between the two quantities mentioned above 15 bigger than plogr4+-logp —(p/2)log 2,
and smaller than BIC otherwise.

The last two terms in Bq. (48) always add up to something positive, so they reduce the
high penalty of BIC o some extent. On the other hand, the first two erms after BIC may
be written as

p .5 B
E log M
i=1 T-!j“-"jil.ﬂ}'

where ;15 the vsual Jeffreys pnor. As Stem’s example shows, the Jeffreys prior is not
suitable for high-dimensional problems. A hierarchical prior of the kind described in this
paper is more appropriate (as indicated by the frequent use of the Zellner-Siow (198(0)
prior for normal problems). It tends to zero Faster than the Jeffreys prior at the tails. The
abowve quantily may be interpreted as the information in the hierarchical poor relative to the
Jefireys prior. Thisdifference has to be interpreted as the evidence in favor of the alternative.
If this difference is bigger than the remaining terms in the adjustment of BIC, we adjust
BIC upwards in favour of the more complex model. Hopefully, our representation of GBIC
will ultimately be useful in better understanding what constitutes a good objective prior in
high-dimensional problems.

5. Numerical study

This section presents the results of oursimulation study for Bernoulli, normal, exponential
and Poisson distributions. As mentioned in the introduction, we think that —(p /2) log{r)
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Tahle 1

o r long s ling siis BIC GBIC g i

1t 1K) —4E74 (K8 —4874.220) —4E872.829 —48T3 095 —093 1472
25 il —3220.397 —3X20.378 —3191.230 — 32N E58 —3465.736
25 500 —0h 2 Bah —H629.968 —h5E4.BE3 —B02E 231 —Rih4. 340
Sl 310 —H118.026 —4018.072 —4052.757 —418 587 —093 1472
Table 2

o r log s lig diia BIC GBIC lovg g Cp

1 1000 — 14238110 — 14235088 —14226.334 —14237.735 —28477 509 2857
25 aill] —THIZ068 —T302.061 —T2R0.659 —T301.840 —11616.155 L7l
25 500 —17750.503 —1TT36.557 — 17720352 —17755.954 —525 523 5.581
Sl 0 —14261.908 — 1426 1908 — 14247053 — 14261 676 — 15678 1.596
Tahle 3

o F long sz lng iz BIC GBIC long sy

1l (ALY —4 5248 550 —45248472 —4 5228 558 —45245.504 —2742 e W
25 il —49323 p93 —93X3R17 —493 19 807 —49323.621 — 13700164
25 500 —HE45 028 —6E45 688 —OB47 959 —0E45.021 —B9096ET
50 0 —22186.19 —22186.100 IR 286117 —d 146,644
Tahle 4

n r log mia log #iia BIC GBIC log g

10 1000 — 16581.437 — 16581458 — 16577887 — 16580974 — 23024404
25 20 —5724. 2995 —57T24.374 —5725.4977 —5TH 219 —6415.674
25 50 —14511.767 —14511.781 —14517.795 —14512.137 — 15648107
50 200 — 157 585 —15THAa18 —15713.139 — 157054010 — 1851 8. 298

should be used as the penalty term in the definition of BIC in our setup. If we use —{p/2)
login) instead, the performance of BIC becomes terrible. In the tables, —(p/2) logir) is used
as the penalty in BIC. For Tables 1, 2 and 4, we use (0 = 0 for caleulating logm |, while for

Table 3 we use y = 1. Tables 1-4 list simulation results for sampling from the Bemoulli,
normil, exponential and Poisson distributions respectively, the priors used therein being

listed below.

Bernoulli distribution: Prior used: n(@) = [ [ CP(x, ) expla
&l Wiz, fydadf, where mla, By =1/(75 — 53), 0o <5, 2= fi<]l5.

Normal distribution: Prior used: Zellner-Siow prior,
Exponential distribution: Prior used: n(8) = [ [ CP(x, fexpla Xl 0 + X1,

log{—0; )y (o, frdad f, where o2, f) = 9—19, (2, e [1,10] = [—1, LO].

0 — Byl log(l1+
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Table 5

[Mstrbution n r logmia log s BIC GBIC Loz ety
Mommal 5 2 —165.322 — 165717 — 125445 — 165.506 —192571
Bemoulli 5l 1 —327.45 — 327684 —M9577 —327.8B63 —346 574
Exponential 5 1 —6h2 526 —ph 19Ty — 6320 — il 184 — 1026271
Poisson 5 11 —671.504 — 670775 —6RT. 383 —671.374 —Hi 9

Poisson distribuwtion: Prior used: =(@) = JI"JI" CP(a, [expla j‘”=| f — IHZJ'”:' el b
(o, By d=dfi, where m (=, ) = m, (z 0) e [1,10] = [1, 846874].

In all of the above simulations presented in Tables 14, either both p and r are large or
p s moderate and r is large. For all these cases, logma approximates logmz extremely
well, and so does GBIC. Another point worth mentioning here 15 that the performance of
BIC is much worse than GBIC as an approximation to log mz, even though both are only
supposed o approximate log mo up to O 1) For moderate values of p (< 10) and large r,
the performance of BIC is reasonable. Bul, for large values of p. the difference between
logm: and BIC is so large as to cast doubt on whether it actually approximates logma
even up to (0 1) when p — oo and r — oo, This phenomenon 1s observed for all the four
distnbutions we considered in our simulation study, and becomes even more severe for the
normal distnbution. [Uisclear that the BIC is a poor measure of evidence in high-dime nsional
problems.

We also made some limited numerncal studies to see how our approximation works for
moderate/small r and very large p. The results are presented in Table 5. The priors used
were as before.

For the nommal example, the cp value was 16891

We see that for these cases also, our approximation works pretty well while BIC perfonmns
terribly. But comparing the result for the normal with the comresponding approximalion in
BGM, we see that their approximation is more precise for small values of r. The reason for
this 15 explained in Section 3.

For allthe simulations above, data are generated assuming Mz is troe. We did some limited
simulation studies by sampling data when model M s true. As expected (see e.g. Theorem
4.1 of BGM), the approximation of logm; is less accurate in this case but log ma appears
to be within o{logmi2) of the correct value. In some cases, the (3, ﬁ!}l vitllues fall outside
the support of the second-stage prior (2, f). In these cases, one has 1o use numerical
integration o gel a good approximation.

The error mtes actually observed are much better than the worst error rates indicated in
Section 3. The error estimates appeanng in the proof of Theorem 1 are based on worst-
case scenanos. Better heunstic ermor estimates can be obtained by keepimg higher-order
terms in the Taylor expansion before integration and retaining the sign of the error in
approximatng f; by I;. These two factors mmprove the error estimates substantially. We
perdformed one simulation with the Poisson distribution and a conjugate Gamma prior with
p =30 and r = 400. We estimated [17_, 1i(a. = [ [ -~ [ T1, £l 00m(0: 1 f) do;,
by l_[f':l fi(4. ﬁ!}l, where symbols have meanings as before. The actual mtio of the integral
TG =TT, Bis Brand 73, By =TT/, K. f) is 0.819534, ie. the actual relative error
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in approximation [T, ;ﬁ!}l — & ﬁ}lif!{ﬁ:,ﬁ!} = (0.2202. The estimate of this relative ermor
in approximation, using the heuristic method desernbed above, tums oul to be % =
0.2172.

6. Heuristic approximations for more general examples

Now consider acase where the y;"s are not necessarily arisingout ofa general exponential
family. Consider y;; ~ jj-{_v‘-J-!EiF‘-}, =12 ..., r;, where 8 is of dimension &;, k=1,
i=1,2,.. .,p. Assume that the #;'s follow m (8o, ..., #e)y £ =1,2,...,p, where
¥ R oy 18 4 common sel of hyperparameters for all the m;(.] )'s. We then use a second-
stage pior Ty, ..., 2y ) on the hyperparameters. We need 1o approximate

»
mz=f—--f l_[ Jilwi 10w (B oy, ., a) ¢ myloy, ..., ag )dfy - dBpday . day,
i=l

(48}

where fi{v;|8) = 1_[;:1=| _.f]‘.h_.llﬂj}

Using approximations as in Secton 2, we gel

Poh
log iz = Z Z log fi (xij|6;)

i=1 j=I
1 oL # [ ‘
——p1— Zlug e Z log fi (vipl8)
2 P~ e | < .
=l | J=l |ﬂa=ﬂi
$id 5 o : ik
+pi— ZIngm.{{}j.[:|,.__,:_,.}+— Z? log2n
P i=l r =1 -
I | & [& . |
g log |_Ea,3 E log m (@fxy, 02,0004 )
- i= - PR L -
i
-+ 5 log2m + log mgid, ..., &) 49
and
3
GBIC = logma — = log2m — log mgr (3, . .., Bg). (30

It would be extremely diffic ull o try to prove this approximation rigorously, but the results
of simulations are promising. We draw samples from Caochy distibution with a location
parameter p;. We use by = land i =vr, fori=1,.. ., . a nommal prior on the location

i
parameter g, with u; v Nit, 1) given fand another prior ont ~ N(1, 1). The density of
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Table &

] r log w12 log sia GBIC

25 11X] —6449, 2834 5 —449 31246 —6450.429192
15 20X} =TT3T.03%4 1 —T737 05933 —TTAT.019305

the ith sample is
ﬁ 1

=i il + (x; —}:J-jll}-

Considening the kind of genemlity we are looking at this is an extremely simplistic
situation, but this will give us an inkling of how general the structures (4) and (9) are.

Table 6 indicates that even for a non-exponential family situation, our approximation
gives pretly accurale results. In principle, it can also be applied to the ecological example
{ Example 5) of Ghosh and Samanta (2001 ), treated via Bayes factors. Thisexample appeared
carlier in Burnham and Anderson (1998), It can also be applicd in principle to the similar
eccological examples discussed in Brooks et al. (20007,
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Appendix

We present here one simple example (normal case with - = 1) to show how one can
et an upper bound for the expected proportion of co-ordinates § for which one might have
il & §. Fix any arbitrary £ = 0. Then

Pl ¢ Sy= Pl0; gS.10; — 0| <e} + P{: S, 10 — 05 > &}
< PO € S’} + P{I0; — 05 = 2},

where § 15 determined from S and the value of & First note that,

Pl — 0] =&} = [ P — 0;] = £0; b0 dO;
'1
3 (51)

&2

=

SInee FJ', 15 the sample mean and .E[Jf“.i'j - E}‘-}l = 1/r. As mentioned in Section 3, we need
ifj',-l = K({logr)¥ for some constant K = 0 and () < 3 = 1, for all large r, in order for ﬂ'; tor fall
inside §. S0 in this case we can Ltake

§ ={K(ogr) —e ool U {—oe, —K(logr) +&}.
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Then, ook at
Pl = Kilogr)' — g}
= f f Pl = K(logr)" — gla, fim (o fdadf. (523

For the conjugate prior we are considering, one has, in general, m(f; |2, ) ~ Niz/f, 1/ f.
Assuming that x is bounded and f is bounded away from zero and infinity, one has

. 1
Pill = K{logr) —glz, fl =0 ({Iug—r}*)’ (53)
asr — oo, uniformly in 2 and . So, one also has, for large r,

% 1
Pilh = Ki{logry —g}=0 (—) . (54)
(logr)”

Similar estimate can be obtained for P{; <— K (log r )" +&}; hence, the expected proportion
of i’s for which ﬂ'; & 5 when ris large 15 seen w be O f{logr 1), which is neghgible for
sufficiently large values of r.

In general, if one has mi 2, f) and 702, §) suchthat the mean and variance of (f are both
finite (with non-zerm variance ), the same estimalte for the expected proportion of coordimates
i forwhich EJ; & & asobtained above will be true, 1e. this expected proporton willbe bounded
above by a guantity of magnitude O(1/{logr)¥). The condition that  and § be bounded
and f§ =0 will not be needed in that case.
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