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Abstract

In this paper we propose a new approach in genetic algorithm called distributed hierarchical genetic algorithm (DHGA) for optimization
and pattern matching. It is eventually a hybrid technique combining the advantages of both distributed and hierarchical processes in
exploring the search space. The search is initially distributed over the space and then in each subspace the algorithm works in a hierarchical
way. The entire space is essentially partitioned into a number of subspaces depending on the dimensionality of the space. This is done in
order to spread the search process more evenly over the whole space. In each subspace the genetic algorithm is emploved for searching
and the search process advances from one hypercube to a neighboring hypercube hierarchically depending on the convergence status
of the population and the solution obtained so far. The dimension of the hypercube and the resolution of the search space are altered
with iterations. Thus the search process passes through variable resolution (coarse-to-fine) search space. Both analytical and empirical
studies have been carried out o evaluate the performance between DHGA and distributed conventional GA (DOGA) for different function
optimization problems. Further, the performance of the algorithms is demonstrated on problems like pattern matching and object matching

with edpe map.

Kevwards: Genetic algorithm; Optimization; Coarse-to-fine; Distributed: Variable resolution: Pattern matching

1. Introduction

Genetie algorithm (GA) is a class of stochastc search
methods inspired by the Darwinian’s concept of survival of
the fittest individual in natural selection and hence catego-
reed as a class of evolutionary algorithms. The technigue
was first formalized by Holland for use in adaptive systems
[1]. It has attracted a great deal of attention from researchers
in numerous fields as a way of effective and efficient search
for optimization in complex, multi-dimensional space. GA
represents a parallel adaptive search process which is ex-
ccuted with modification of genetic parameters in a wide
variety of problems [2-5].

Such evolutionary computation technigques try W itera-
tively reach the optimal solution of a problem closest 1o the

actual or global solution. The algonthm starts with a set
of individuals (called population) and advances wwards the
solution with three basic operations namely, reproduction,
crossover and mutation. However, there 15 always a possi-
bility that the solution vector gets stuck i a local oplimum.
Several modified algonthms have been proposed and im-
plemented o jump out of this optima. One possibility 15 o
maintain the diversity in the population and/or o distribute
the individuals all over the search space as uniformly as pos-
sible. However, this usually keads o increase in the compu-
tational complexity of the system.

Among several approaches for improving performance,
Cavicchio introduced o method in 1970 that preserved the
best individuals by replacing the inferior parent if the off-
spring’s fitness exceeded that of the infenor parent [6].
De Jong's crowding scheme [7] also aimed to retain the
diversity and best individuals in the populaton by replac-
ing the maximally similar strings. In 1987 Goldberg and
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Richardson [8] vsed the shanng metaphor w induce niche
and species in their new technigue. In this scheme a sharing
Junction 1 implemented in distnbuting the individuals over
the search space, determining the neighborhood and the de-
gree of sharing for each string in the population. Similary,
Eshelman in his CHC algorithm [9] combined a conservative
selection technigque that always preserved the fitest individ-
ual found with a radical recombination operator that gener-
ated offspring with maximum difference from their parents.
Fogel [10] as well as Back and Schwefel [11] tested some
optimizing functions for their algorithms o show how the
evolutionary method with self-adaptive mutation performed
better than the method without self-adaptive mutation.

The implementaion of genetie andfor  evolutionary
algorithm for solving various complex problems oftlen in-
creases the computation time and the researchers try w
increase the speed of the algorithm using parallel/distributed
GA/EA when the computation time for a problem increases.
Various implementations of parallel GAs are discussed m
Refs. [12,13]. GAs are naturally suited to implementation
on parallel architecture. Two approaches of pamllel GAs
namely, the infand model and the diffusion model, are dis-
cussed m Refs. [14,15], respectively. The inland model di-
vides the population in a number of smaller populations. The
migration of individuals among the subpopulations occurs
periodically during the progress of the search. However, the
number of individoals to be migrated and the occurrence of
migrabion are important debatable problems [12]. On the
other hand, in diffusion model each individual is associated
with a spatial location on 4 low-dimensional gnd. The pop-
ulation 15 considered as a system of active mdividuoals that
mteracts only with neighbors. Another useful application of
distributed GA is in the performance driven VLSI mouting
problem which 1s capable in handling both wpological and
electrical constraints associated with this problem [16].

In addition, the implementation of parallel GAs are also
found in solving the well-known NP-hard Travelling Sales-
man problem on a cluster of nodes [17]. A master-slave
technigque 1s used o implement the parallel/disributed GA
o obtain the optimal andfor suboptimal travelling path.
Moreover, in labor scheduling problems the distnbuted
GA s applied to detenmine the number of employees and
their work schedule o minimize the labor expenses and
expected opportunity costs [18]. Multi-objective oplimiza-
ton problem i also solved by parallel genetic/evolutionary
algorithm. A major computational bottleneck in many
contemporary  multi-objective evolutionary algonthm ap-
plications as well as i other numencal or real-valoed
designfoptimization problems is the caleulation of complex
non-lincarmulti-objective problem functions. Such a situ-
aton implies algorithmic parmllelization towards the 1im-
provement of computational complexity. The major parallel
multi-objective  genctic/evolutionary  algorithms  are dis-
cussed and some observations included in Ref. [19].

The GAs have been employed in pattern mecognilion
and image processing problems such as medical image

registration, contour recognilion, geomelric primitive ex-
traction are available in Refs. [20-22]. Other applications
like normalization of Chinese handwnting, classification of
endothelial cells and evaluation of canthquake risk for ge-
ological structures are also reported in llerature [23-25].
Moreover, the GAs have been employed in emor-correcting
graph isomorphism, oplimization of feature extraction and
dot patiern matching [ 26-28].

In this paper we propose a modified scheme of dis-
tributed GA named distributed hierarchical genetic algo-
rithm (DHGA). We have utilized the power of distributed
as well as hierarchical techmigues. The distnibuted method
strives o minimize the drawbacks of the stochastic search
method in exploring the search over the entire space. Here,
the whole space § 15 mitially partitioned into a number of
subspaces s;’s, ¥i € {1, ..., m} depending on the num-
ber of hyperplanes (each plane is perpendicular to each
other) required to represent the function to be solved to
distribute the search. The algorithm (DHGA) starts with m
independent populations that are distnbuted inm subspaces
of identical dimension. This criterion helps o run m GAs
in m subspaces concurrently. The salient features of the
proposed hybrid scheme are that 1t conducts the genetic
process concurrently in wvarous segments over the entire
space and simultancously in each segment the sequential
GA s processed hierarchically in parallel. The pedomance
of DHGA s compared with the distnbuted version of the
conventional genetic algonthm (CGA) named DCGA. Here,
the search space 15 similady partiioned i subspaces as
done in DHGA. Then the sequential genetic process (CGA)
15 spread over the space and runs in each subspace parallely.

The hierarchically processed sequental GA 15 4 coarse-
to-fine search techmgue [29]. Here, the search space res-
olution n each subspace 15 mmereased with the transfer of
the search from one hypercube o the neighboring one. In
multi-dimensional space the search shifts from one hyper-
cube to the neighbonng hypercube Ty, times depending on
the convergence of the existing population and the solution
obtained so far and continues for &, 4 iterations, The GA
mitially starts with string length [ and resolution ) where
the search space 1s the entire area of a subspace. In the sec-
ond stage GA jumps to the neighboring hypercube (smaller
in size than the previows one) sumounding the current best
solution redefining the search space. Since the new search
space 15 now smaller in siee and the stnng kength remains
the same i.e., [, the present esolution ra of the search space
or the hypercube is more than ry e, r2 = r (elaborated in
Section 2.4). In the subsequent stages, o similar procedure
15 followed and eventoally the precision of the oplimizing
functon is increased.

The rest of the paper is organized as follows. Section 2
desenbes the hierarchically processed GA as well as the
basic steps of a conventional GA (CGA). This also dis-
cusses the vanation of secarch space resolution and the
alteration of its physical size n successive steps. The pre-
sentation and implementation of the proposed evolutionary
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algorithm (DHGA) 15 described in Section 3. Section 4 in-
cludes the analysis of the empirical results of using DHGA
on several interesting and well-known unimodal and multi-
modal optimization functions compared with DCGA. It also
discusses the performance evaluation of the algorithms on
pattern recognition problem involving dot pattem matching
and object matching with edge map. Section 5 concludes
the paper.

2. Function optimization by genetic algorithms

A global optimization problem can generally be formu-
lated as a pair (5, f) where § € R" 15 a bounded set on
R"and f : § — R is a n-dimensional real-valued function.
The objective of the problem is to find a point X5, € § on
R" such that fi{X,p ) is a global optimum on 5. We have
o find x5 € § according o the following equations for
minimization or maximization problems, respectively:

VX C 5 fXap) = F(X), (1)
WX C 8- fiXap) 2 F(X), (2)

where f may not be a continuous function but it must be
bounded. In this paper we consider the unconstrained fune-
ion optimization only.

21, Conventional genetic algorithm

The CGA with self-adaptive mutaton s algorithmically
represented in the following steps.

Step 1: Generate randomly the mitial population of g in-
dividuals and let g = 1. Initialize 6 and n where § is the
crossover probability and 5 15 the mutation probability.

Step 2: Evaluate the fitmess score for each individual
oY e Ly pi} of the population based on the objective
function, f{x; ) where x;°s are objective vanables.

Step 30 Select a pair of individuals X, and xg at ran-
dom depending on their fitness values (using roulette wheel
method) from the population of p individuals.

Step 4: Conduct crossover between the chosen individuals
Xy and xg with d and mutate each of their bits with adaptive
mutation probability g, such that

He =M + : (3)

where (7, 1 the maximum number of terations and n, is
the initial mutation probability.

Each pair of parents (X5, Xp) thus creates a pair of new
individuals called offsprings (x],, x:rf}l W generale a pool of
individuals, x;-, Vi e {l.....pn} as a population of next
seNeration

Step 5. Terminate the process if the stopping criterion
(g > Guay) 1s satisfied. Otherwise, g = g + | and go to
Step 2,
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Fig. 1. Transfer of GA search from one sguare to the neighboring square
in a space in three stages tending to increased resolution.

2.2, Hierarchically processed genetic algorithm

The search space 1% initially partitioned into 4 number of
subspaces o distnbute the GA over the entire space. Thus
the algonthm enhances the scope of exploring each part of
the space uniformly as much as possible. In each subspace a
repetitive stochastic search 15 conducted from coarse-to-fine
resolution hierarchically with all three basic operations of
classical GA namely, selection/reproduction, crossover and
mutation. The details of cach basic operation is desenbed
in Ref. [30]. The genetic process starts with a populaton
P'g) (where 15t Ty and 1€ g < G ) of i (popula-
tion size) randomly created individuals and 15 implemented
with adaptive mutation. The hierarchical GA in a subspace,
however, differs from the CGA for the convergence status
of the population in the following manner:

1. The search 15 transferred from one hypercube to the
neighbonng hypercube for a specified number of times
Tnax In a search space shown n Fig. 1.

2. The search space resolution and mutation probability
are redefined (according 1w Eq. (5)) with the transfer of
the search to the neighborhood hypercube.

Let us now define the parameters of the problem f(x)
in R¢. where x = (v, x2,...,. ) and RT. represents a
subspace with n-dimension. The search starts with low
resolution space and the algorithm finds a best solution
L G | I hieh e e . r L
T =I(Xp s Xp 2y ey vy . ) which is not changed for several
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conseculive K, generations. We have chosen K, =5 m our
experiment. Since the search advances from lower to higher
resolution in severl (Tyge ) steps, at tth stage 1t 15 assumed
o be converged if the best solution xj; remains unchanged
for K, times. Subsequently if there are no change of GA
parameter values with further iterations then the algonthm
cannot normally find a better solution than the solution (best
at the current step) obtained so far. The search in such a
situation 1% transferred 1o the neighbonng hypercube. The
ransfer of the GA search process in successive steps s de-
picted m Fig. 1 and in a subspace at ith stage the hypercube
with dimension 7 can be represented as follows:

I o S BN T
Rgg = {rgg.reg.--.. rgs Is (4)

Once the search has converged at {r — 1)th step the GA
is reinvoked from the hypercube R_{;}I'” W the new hyper-
cube R_f:.'_;.r with higher mutation rate and higher resolution
scarch space (discussed in Section 2.4). The adaptive muta-
tion probability g, at th stage is defined below:

= !;I *F, (5)

where | < < Ty and r,l' 1% the initial mutation probability
are =1.

The population P'(g) at rth step is reproduced afier the
transfer of the search o RIE.‘; hypercube. The individuals
that are located both in R_IE-__.:-I'” and in RI.:-J; except the eli-
st individual in RE.I'" will be destroyed from the pop-
ulation P! (g) where {1 <1< Tpae) and (1 < g £ G ).
A new population P'{g) of 1 individuals is regenerated with
pt— | mndomly created new individuals and the elite one of
P~ Yg). Thus, the diversity of the population is automati-
cally restored at each stage.

Each individual in a population 15 a string of bits which in
two-dimensional space generally represents the values of x
and y-coordinates of a probable solution for the optimization
of mathematical functions. In case of patlern recognition
problems for either patlern or object matching, the same
process 15 followed. Here, an mdividual consists of three
parameters instead of two. Since the pattem matching should
be done not only by tanslation but also by mtation, the
problem invokes one more degree of freedom. Again if an
angular resolution of ry 15 expected, then the chromosome
(an individoal in the population) kength should be increased
by & accomding to the following relation and the angular
resolution remains unaltered Gll the end of the algorithm:

S

2.3, Redefmition of search space

It is now understood that at mth stage (f = 1) the search
- 7 sreanins =11 e :
moves from one hypercube Ro " to the neighboring hy-

LI - - . .
percube Ko if the solution is unaltered for K, generations.

w il s .  mi—1,
The areaof Rrgf; 15 subsequently reduced from that of R_f;_g i

Fig. | pictorially shows the transfer of the search process in
three stages in two-dimensional space.

Let us now discuss how the search space dimension is re-
defined with the change of the search from one hypercube
to the neighbonng hypercube. Initially, let the subspace be
represented by the area ABCD and consider the chromo-
some length be 6 bits where 3 bits are used w represent the
x-coomdinate and similardy 3 bits for the y-coordinate. The
space ABCD is thus partitioned into 2 ie., 8 equal parts
both along xand y-uxes. The GA then begins its search over
the entire space ABCD and finds the first best solution x!
{shown by the point P in Fig. 1) at the first stage when xﬁ
is not modified for K, genertions. At stage 2, the process
shifts its attention to the new search space A'B'C' DY (shown
by a different shade in Fig. 1) and starts the stochastic search
process with a new population P2(g) (where t = 2 and
| <= g< Gy ) over the space A'B'C'DY, instead of ABCD.
From Fig. 1 it is understood that A'B'C'DY is dimension-
wise smaller than ABCD. The space A'B'C'D' s formed
according to the following steps.

Srep 1: Consider the point P in the search space ABCD of
Fig. 1.

Step 2: Diraw two perpendiculars from P on the lines AB
and AD. The perpendiculars cut AB and AD at M and
N, respectively. Similarly, the perpendiculars cut A"B' and
A'D at M and N', respectively (see Fig. 1).

Step 3: Extend the line A'B' from the point M’ to both
A" and B until M'B' = MB/2 and M'A" = MA/2 so that
A'B =AR)2.

Step4:1f M'B" < MB /2 then M'A'=MA/2+ (MB/2—
M'B’). On the other hand, if M'A" < MA/2 then M'B" =
MB/2+ (MA/2— M A") (see Fig. 1).

Step 5: Similady, A'D 15 drawn following the Sweps 3
and 4 for the formation of the rectangle A'B'C' DY,

Mow the new search space A'B'C' D’ is again divided into
2* i.e., B equal parts along both x and y-axes in R as before
since the chromosome length remains 6-bit. Similarly, the
GA finds the current best solution xi in the new search space
{depicted by a point P* in Fig. 1) when the solution is not
altered for K, generations. Al the third or final stage (1= 3),
the GA again moves to another search space surrounding x}?
following the same procedure. The current newly defined
rectangular search space 18 A"BYCY D" and the partitioning
process 15 repeated as before. GA restarts its search over this
space and finds the global or near-global solution x'}j, which
is actally identified by F in Fig. 1.

2.4, Variation of search space resolution

From Section 2.3 it is noted that the search space meso-
lution is changed with the trunsfer of GA from one hyper-
cube 1o the neighboring hypercube. Fig. 1 illustrates how
the genetic search at rth step shifts to the neighbonng hy-
percube RIE.‘;. from the hypercube REI'" and how 1ls res-
olution s modified. Variable resolution search is similar
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Fig. 2. Variation of resolution with constant chromosome size of g-hit in
one-dimensional.

o the dymamic parameter encoding (DPE) technigque [31]
but the search space division scheme is completely different.
We discuss the variation of search space resolution in R?
{see Fig. 1).

We can achieve the variable resolution search space in
subsequent stages (starting from lower to higher resolution)
in the following way. Figs. 1 and 2 depiet the change of
resolution with the progress of the mnodom genetic search.
At first, the search starts with lower resolution and detects a
solution faster when the solution 1s unaltered for K, gener-
atons. At the second stage the search 1s similardy performed
with a higher resolution (Le., higher than the previous reso-
lution of the previous search) resulting in efficient detection
of a solution (may be a global optimum or near-optimum)
as before but better than the previous one in value. Fg. 1
shows how the resolution of the search space 1s modified in
SUCCESSIVE Slages.

From the discussion in Section 2.3 and Fig. 1 in R? it is
clear that at each stage of the hierarchically processed GA,
the dimension of the search space 15 reduced. Fig. 1 illus-
trates three rectangular search spaces (ABCD, A'B'C' Y and
A"B"C" D"y with different shades. Al each stage the space
15 partitioned into the same number of equal parts along both
x and y-axes. However, the dimension of the newly defined
search space at each step t (1 < £ £ Ty ) 18 reduced in size.
This phenomenon of GA eventually increases the resolu-
ton of the new search space at each subsequent stage since
the same number of chromosome bits represents a smaller
physical space. Thus, the precision of the solution of the
optimizing function is also increased.

The process s illustrated by another example in
Fig. 2 which depicts an arbitrary function y = f{x) in two-
dimensional space. Atr =1 the search space is represented
by a string or chromosome of g-bit and let the length of the
space (along y-axis) be L. AL = 2 the search space length
is L/2 Nowatr=1, L is divided into 29 equal parts and
the length of each partition is L /29, Similarly, the search
space at + =2 15 divided with the sume string kength of g-bit

. . L2 . e
and the length of each partition becomes 5 e, L/29 .

Thus, al every stage the search space will be halved and
partitioning of the new search space will be continued sim-
tlarly with the same stnng length if the number of stages is
more than two. Thus, in Fig. 2 the resolution is increased
at stage 2. However, in case of CGA the initial and final
search space is same with length L and it is partitioned
into 2% equal parts to maintain the identical resolution of
hierarchically processed GA. As a result the chromosome
length in this technigque becomes (g 4 1) bits.

3. Distributed hierarchical genetic algorithm

In the proposed scheme the entire search space s divided
into g number of segments which are either equal or differ-
ent in size. The hierarchically processed sequential GA s
then distributed in cach segment with a population of ran-
domly generated poindividoals. Here we have discussed how
DHGA advances its parallel searching process over the entire
space .

I Distribution of population

In the simple sequential GAS there is a possibility that af-
ter a few iterations the GA search may be confined to a local
optimum. This may happen doe to the dearth of diversity in
the population for which the scarch cannot explore the en-
tire space uniformly. Thos, the best solution oblained so far
15 not updated for several consecutive generations and the
search 1s eventoally terminated without reaching the global
optimum. This nature 1 exhibited either for the deviation
of the GA from the location of the global optimum solu-
tion or due to the inefficiency of hill elimbing. The prob-
lem can, however, be either eliminated or reduced if the
search s distnbuted vnmiformly as far as possible over the
entire space §. The whole space 15 imibially divided into m
smaller subspaces of equal dimension where the number of
subspaces 575, ¥i € {1,..., m} is determined by the num-
ber of hyperplanes required 1o represent the optimization
function. The population of equal size 15 then distributed
in each segment. Thus, in the entre space (with segmented
subspaces) the population s more distributed than the pop-
ulation distnbution of GA over the entire single space since
each s now contains pindividuals. This technigue invokes
the advantage of spreading the search over a broader space.
Simultancously in each subspace the GA progresses hierar-
chically from coarse-to-fine resolution which results in an
efficient search to find the global optimum. Let us now con-
sider m independent populations P/ (g)’s, ¥i € {1, ..., m}
to be distributed in m subspaces where Plig) # leg}h
Yiij e {liiag m}oand 1=t < Ty I the number of hy-
perplanes is n, then we can define m as follows:

m=2" )]

where n 22,
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Fig. 3. The entire space patitioning on two dimensions,

The partitioning process of the entire space 15 shown in
Fig. 3 withn =2 for the function, 7= f(x, ¥) in R*. Now the
GAS in each subspace run concurrently in successive sleps
with an independent population of p individuals on m in-
dependent nodes. Thus, DHGA distnbutes equal number of
individuals at each segment of the search space § from the
beginning till the end of the entire search process. This tech-
nigque helps to reduce the possibility of the solution being
trapped in the local optima of the optimizing function since
such distribution partially corresponds to uniform popula-
tion distribution over the entire space S. In 8" (n > 3) each
subspace 5; 18 4 hypercube.

Similarly, the entire space 8 15 divided into m subspaces of
equal dimension for distnbuted CGA (DCGA). Now CGA
with a population of randomly created p individuals is dis-
tributed inom subspaces sothat m CGAS can run concurrently
like DHGA.

3.2, Pmgress of DHGA

The entire space § s partitoned into m subspaces and
in all subspaces andfor hypercubes the hierarchically pro-
cessed GA 1s invoked in parallel with an mdependent and
randomly created population. Thus, the process starts ineach
subspace 5, % £ {1..... m} with a population P/ (1), ¥i €
il m} of pindividoals which are not analogous 1o each
other. In each subspace s, the hierarchical genetic process
advances through varible resolution search space when at
each stage the search is transferred w0 a neighbonng hyper-
cube depending on the convergence status of the population
and the solution obtained at the current stage. Finally, the
GA lerminates in each subspace after a given number of
generations. DHGA thus converges faster o the global or
near-global optimum.

Now, in ith subspace 5.¥i € {1,....m} in R" a
global optimization problem can be formulated as a pair
(s;, f) where 5; C R.J':E.E'.I is a bounded set on R.Jst.s'.f where
R = {Rs5 1. Rig0. - Rggmband f 2 5i — Rggjis a
n-dimensional real-valoed function. The objective of the
method is to locate a point X,p ; € 5 on RS, such that
SiXopr i) 15 a global oplimum on 5.

The search starts with low resolution in each subspace
5. ¥ e {l,..., m} and the algorithm finds a best solution
Xp = i.ﬂf _|,.1'f.3f_1 ..... .1';;?_”} in 5 which is not changed
for several consecutive K, generations. The search in ith
subspace 5, % € {l,..., m} 15 then transferred to the
neighboring hypercube. In ith subspace and at nth stage
the hypercube can be represented as follows according to
Eq. (3):

I i .2 I
Rggi=1rgg;: rssir---» rsits
where i = 1,2,....m, 1<1<Ty and rl >0, j =
1,2, ....m.

Onee the search has converged at (f — 1)th step in s; the
GA s reinvoked from the hypercabe R_IE.E_IJ.'" Lo the new hy-
percube R{;g‘ with a higher mutation rate and higher resolu-
tion of search space. The adaplive mutation probability i, in
si.¥ie{l,.... m} at mth stage (r = 1) s evaluated according
to Eq. (5) with the transfer of the search to the neighbonng
hypercube. The new population in R{)g‘ surrounding x{m in
5; 15 then generated following the same procedure desenbed
in Section 2.2,

A3, Extraction of the global optimum solution

In cach subspace 5, ¥i £ {1...., m} the hierarchically
processed sequential GA 15 invoked for T, times and
runs simultaneously in all subspaces in parallel. The GA in
sach & terminates after 7y, iterations finding a best so-
lution within each subspace although the best solution in
the comesponding subspace may not be the global optimum
of the optimizing function. Since the entire space § 15 di-
vided into m subspaces such that § = {s, 52.83.... .. Smls
the number of optimal solutions are also m which are rep-
resented as Xope 1. Xopr, 2o - - - s Xopran Such that in ith sub-
space 5, the optimum solution is X, € 5 on R‘_;._.:,J. Wi e
(L @y m}. Now, the objective of the problem i to find
a4 poinl X, € § on R so that f{x, ) is a global opti-
mum on §. The global solution can be achieved by either of
the following ways depending on the nature of optimizing
func tion:

Xopr = Min{-‘:.-,u:.l - Xopr 2. o e -‘u,l:u.:r:}'

VXS 8 fiXgpr )= FUX), (7
Xopr = Maxi{X,pr 1. Xopr, 2. - -4 Xopt )

VXC S ¢ f(Xopr) 2 F1X). (8)
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4. Experimental studies

We have considered a combination of seven unimodal and
multi-modal functions ( fi-f7) for optimization in our ex-
periment. The detailled descoption of the functions is pro-
vided in Section 4.1, The functions are selected to maintain
a varying number of local optima from one o a few num-
bers. The variation of local optima also helps o wst the
performance of GAs when tmpped o any local optimum
in the optimizing function. The analysis of the test fune-
tons shows the performance of the proposed scheme with
DCGA. A comparative study on the pedformance of DHGA
and DCGA s also discussed for optimizing functions f5. fe
and f7 with different function dimensions to show the suo-
penornty of DHGA over DCGA. Moreover, we have carmied
out our experiment on problems like object matching with
edge map as well as dot pattern matching.

4 4. Test functions used for optimization

The functions { fi—f7) [30.32-34] along with the param-
eters given in Tables 1 and 2 are considered for empirical
studies. Among them, f; 1 a well known unimodal function
and s popularly called De Jong's Test Function. The dimen-
sion of the function 2 1$ 3 and each parameter s represented
by 7 bits for DHGA and 11 bits for DCGA in the range — 10
o 410, The length of the string [ =7 = 3 hits for DHGA and
I=11x 3 bhits for DCGA. The function is used for finding
the global maximum value X, € § in B space.

The example of another unimodal function used for max-
imization is {7 with dimension n =5. Each parameter of the
function for encoding also requires 7 bits for DHGA which
implies the string length [ =7 = 5 bits and 11 bits for DOGA
with string length [ = 11 x 5bits. The function finds the
global maximum value X, € § in B" space in the range
between —1 and +1.

Table 1
Mathematical functions for maximization used in the experimental study

Fig. 4. Two-dimensional version of f3.

The function f3 15 aninteresting bell-shaped functoon with
n =4 for finding the global maximum value X, € §in R"
space. The function 15 shown m Fig. 4 in two-dimensional
space. In DHGA each parameter 15 encoded by 7 bits with
string length { =7 x4 bits and DCGA requires 11 bits with
=11 x4 bits for representing its parameters. The range of
the function is from —10 o +10.

The Six-Hump Camel-Back Function s given in Table 2
as the minimization function fj with low dimensionn =2
compared to other opimizing functions and ithas only a few
local minima [32]. The number of bits required to represent
a parameter and the string length £ are 9 bits and 9 = 2 bits,
respectively, for DHGA. Similady, DCGA requires 12 bits
and 12 = 2 bits, respectively, for encoding parameters. The
range of this function is [—5, 5].

In Table 2 the functions { fs— f7) are used for finding global
minimum value X5, € § in BR" space for three different

Function [Dimension (1) Range Maximum value
fii =37 xf 3 —10= 5= 10 3000

fx =37 lxe'™ 4 il —x et 5 1=yl £.30
fixi=1+ Zj_] m 4 0= 5= 10 5000

Table 2

Mathematical functions for minimization used in the experimental study

Function [Mmension (7] Range Minimum value
faix) =dxf — 20 + Faf 4 xgwe — daF 4 dad 2 S5 S — 1031628
fei =37 lx+TT0, i 5 & and 12 —I0= 5 = 10 0.00

fatm) = g 20y x — [ eosth) +1 5 & mnd 12 —15=h %15 0.00

frix =57 (2% — Weosi2meg) + 10] 5 & md 12 502y =512 {01001
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Fig. 5. Two-dimensional version of fg.

dimensions n = 5, 8 and 12. The function f5 15 also a uni-
modal function and known as Schwefel’s problem 2.2, Each
parameter of the function is represented by 10 bits with string
kength [ = 10 % n bits (where n =5/8/12) for DHGA and by
15 bits with [ = 15 x n bits (where n = 5/8/12) for DCGA
in the range —10 to +10. fr and f7 are two interesting
multi-modal functions where the number of local minima in-
creases exponentially with the problem dimension [33,34].
The function fi in two-dimensional space is illustrated in
Fig. 5. fs 15 a welkknown Generalized Griewank Function
for minimization in the range [—15, 15]. On the other hand
J7in Table 215 popularly known as Generalized Rastrigin's
Function spread over the range between —5.12 and +5.12.
Each pammeter of fs and f7 1 encoded by 12 bits with
chromosome length [ =12 % n bits (where n =5/8/12) and
by 17 bits with{ =17 = n bits (where n=5/8/12) for DHGA
and DCGA, respectively.

4.2, Experimental setup

In our experniment the self-adaptive mutation 5 used for
both distributed genetic methods. The population size s al-
ways 50 with the initial population P (g) # Pj{g}, Yi.j e
(e m} for DHGA and DCGA. The crossover probabil-
ity 4 in the range [0.5-0.9] and the nitial mutation proba-
bility  in the range [(LO02-0.009] have been used as input
in our test cases. For mathematical functions the initial pop-
ulation of g individuals 15 generaled mndomly within the
specified range in Tables 1 and 2 for both GA technigues
discussed here. The chromosome length in cach method s
different as it is dependent on the resolution of the search
space and remains constant till the search process conlin-
wes. However, the reduction of the search space dimension
in subsequent stages for DHGA increases the resolution of
the present search space or hypercube. To maintain the same

resolution in both approaches, the sring length in DCGA
is 35-606 larger than DHGA. The total number of stages
T in DHGA 15 always 4 m our expenment. I may be
increased to a higher number for higher search space reso-
lution with the string length of DCGA being increased ac-
cordingly. The chromosome length ! defined in Section 4.1
15 evaluated considering Ty = 4.

For pattern recognition problem (7. inoeach runis 100
and the population of g individuals s also randomly gen-
erated. The chromosome length 1s always maintamed 50%
longer in DCGA 1o maintain equal resoluttion of solution
space with DHGA. The resolution of the search space 1s
altered Ty (=4) times for DHGA to achieve the final finer
resolution for finding optimum solution. In the experiment
the values of other pammeters of both GAs are maintained
same 1% the mathematical function.

4.3, Experiment on various data sets

We have pedommed our test of both distnbuted GAs on
two categones of data. One test is done on several unimodal
or multi-modal mathematical functions for finding optimum
functional value of cach function. In the other test category
we have considered pattern recognition problem for dot pat-
tern matching and object matching with edge map.

4 3.1, Experiment with mathematical functions

Two sets of optimization functions in Tables 1 and
2 are considered 1o compare the performance between
DHGA and DCGA in owur experiment. Among  them
the first three functions fi—fi in Table 1 are tested for
maximization and the remaining four functions fi—f7
in Table 2 are tken for minimization. Two sets find
the global optimum by DHGA and DCGA according Lo
cither Egs. (7) or (8). The average results of 50 indepen-
dent runs are summanzed in Tables 3 and 4. Figs, 6-12
show the progress of the mean best solution and the mean of
average values of population (Figs. 6-9) found by DHGA
and DCGA over 50 runs for fi—f7. In Figs. 6-12 Best of a
method indicates the mean of best solution of the population
found by the comesponding process al each generation over
50 runs. Similarly, Average of a method in the graph repre-
sents the mean of average fitness values of the population
at each iteration {over 50 runs) found by the comresponding
Process.

The first set of experiments was aimed to compare the
convergence rate between DHGA and DOCGA for functions
Fi—fa. Figs. 69 show the progress of the mean best solu-
tions and the mean of average values of the population found
by two GAS over 30 runs for fi—F4. IUis apparent that DHGA
performs better than DCGA i terms of convergence rate al-
though DCGAS final results is identical w DHGAS for func-
tions fi, f> and fy. It is observed that DHGA approaches
the near global optimum value faster than the other pro-
cess for the said functions, except fi. Interestingly, it is also
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Tahle 3
Comparizon between DHGA and DCGA on fi—fy
Function Mumber of genemtions [DHGA DOGA

Mean best Std. dev. Mean best Sad. dew.
fiix 400 09,7071 29 107! 9071 29 10!
frix) 500 £.2436007 56 % 1072 B.243607 s6x 1072
faix 200 5000 (.00 450900 31 x 107t
faix 150 — 1031628 (11K — 11316 30w 1077

All results have been averaged over 50 runs. “Mean best” indicates mean best function values found in the last generation and “std. dev.” stands for

standand deviation.

Tahle 4
Comparison between DHGA and DOGA on f5, fs and f5
Function [Mimension (n) Mumber of generations [HGA DCGA
Mean best Std. dew. Mean best Std. dey.
Faix) 5 10K .00 (.00 (.00 (LK)
& 100 000 .00 55x 107 L1 = 1072
12 L0 (.00 (.00 75 %1073 .1 1072
falx) 5 3000 2.8 % 107% L L 331072 52107
& 3000 10 = 1072 23 =10t ail = 1072 .1 = 107!
12 3000 3.4 x 1078 1.1 % 1072 i1 x 1! 1.3 x 107!
frix 5 3000 000 (LK) I 21 = 107 F
& 3000 10 = 1079 1.9 % 1079 211075 44 % 10°F
12 3000 77 =10 1.2 = 107 236 248

All mresults have been averaged over 50 runs. “Mean best” indicates mean best function values found in the last generation and “std. dev.” stands for

standand deviation,
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observed that DOGA arives cardier than DHGA o the vicin-
ity of the global optimum for f3, although only DHGA fi-
nally finds the global optimum. The mean of the average

fitness values of a population in Figs. 6(b}-9{b) show the
progress of the population for both distributed methods. It
is noted that the overall population of DHGA is gencrally
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better than DCGA except for fi. However, the performance
of DHGA 15 not much better than DCGA for the lower-
dimensional functions except f3.

The remaming functions f5—f7 in Table 2 are for higher-
dimensional problems. Of these, fz is a unimodal function
and Table 4 summarzes the pedformance of both DHGA
and DCGA for three different dimensiwons =5, 8 and 12,
The pedformance of DCGA is reduced with the increase in
problem dimensionality. Fig. 10 shows that DHGA always
converges faster than DOGA and reaches the global mini-
mum value for all three dimensions of f5. Forn=35, DCGA
zoes Lo the exact global minimum but it cannot perform so
wiell forn =% and 12 (see Table 4).

We have added two other interesting and well-known
functions fi and f7 to verify the superiority of DHGA over

DCGA. Both of them are high-dimensional mult-modal
functons and they appear o be the most difficult class of
problems for many optimization algorithms. Table 4 com-
prises of the final results of DHGA as well as DOGA av-
eraged over 30 independent runs. For fi; DHGA performs
better than DCGA as illustrated in Fig. 11, Itis observed in
our expenment that both DHGAS and DCGAs perdfomance
come down with the mcrease of the problem dimensionality.
However, DHGA outperforms DOGA in all three cases (for
n=>5, 8and 12) as shown in Fig. 11. Function f7 is also
tested for three different dimensions for finding whether or
not the dimensionality of f7 plays a vital role in restricting
the GA o reach the global or near-global optimum. Inter-
estingly, the superiority of DHGA persists over DCGA for
all three problem dimensions. The performance of DOGA
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deteriorates considerably for n = 12 compared 1o forn =5
and 8. However, DHGA performs consistently better for f7
compared w DCGA and reaches either the global optimum
for n =35 or the near-global optimum for n = 8 and 12 (see
Table 5 and Fig. 12).

4.3.2. Pattern matching experiment

We have also conducted our experiment on two types of
pattern recognition problems namely dot pattem matching
and object matching with edge map. A dot pattern 15 4 set
of dots or pomts in two-dimensional or three-dimensional
space aranged o represent some physical objeets or class
of objects in the feawre space. Such dot patterns are en-
countered in astronomy and astrophysics, geographic and
cartographic data, remote sensing, spatial information sys-
em, biomedical imaging, image texture analysis and some
other disciplines of computer science [35-38]. The studies
involving dot pattern includes shape identification and set
estimation, classification and clustering, and point process
parameter identification.

The dot pattern matching problem is deseribed as fol-
lows. Given a test dot pattern T we have to identify it in an
unknown scene of dot patterns § (a set of dot patlerns or
objects). So T should be translated and rotated to find the
position of best match in 8. To ranslate T, a reference point,
say the centroid of the coordinates of the dots of T is used.
Let this centrond be €. The translation of dot pattern Lo a
point P in the space § means their centroid 15 translated o P
and while its rotation by (f means rotation of the pattern(s)
with ( as origin.

The matching score of two dot patterns T and § are com-
puted as follows. After transformation and rmotation of T with
respect 1o the origin O, the distance &1, 5 ;) between a point
tj of T and each of the ponts 5; of § 15 measured and the
minimum distance 15 taken into consideration. If the num-
ber of points of T i1s 2, then the sum of minimum distances
Dyyin for all 2 points 15 as follows:

x
el



224 . Garai, BB, Chawdhuri / Pattern Recaognition 40 {2007 ) 212 -228

100

10} Bostcd DOGA - -

01t

0.0
0.001
0.0001 +

1e-05¢

1e-06— %00 1000
{nl

100 T T T T T ]
Bestol DHGA —— |

100, Bes1of DCGA  ---- o
; i, ] 1

. T ]
l-_._\_‘_‘_“_‘__:

0 500 1000

1500 2000 2500 3000

Fig. 12. Comparison hetween DHGA and DOGA on 5 for three different pmoblem dimensions. The vertical axis is the function value and the honzontal
ais is the number of genemtions. (1) shows the best results for 2 =5, (b) shows the best results for n =8 and (c) shows the best results for v = 12 All

results are averaged over 50 runs.

where t). B, ..., ty and 5, 52, . .., 8 are the points of T
and 8, respectively, and < . The value of Dy, is the best
matching score of two dot patterns or objects for a solution
in a population.

In pattern recognition problem the performance of DHGA
has been tested with the distributed approach of two GA
based methods. One of them is DCGA and the second one
is GA for affine point pattern matching (called APPMGA)
[39]. We have slightdy altered APPMGA to suit it with our
patternfobject matching problem. The process s basically a
sequential one which 15 converted o a distnbuted process
s that the other two distributed approaches do not get any
undue advantage. The APPMGA approach has considered
the following two matrices for the affine transformation of
the test data set:

[“"“'1] and [y BT

a1 an

The first matrix is 4 rotational matrix and the second one
15 a translation matrix. We have changed the clements of
the rotational matrix according W the formulation of our

proposed method as a)p =cosf), a2 =sinfl, a3 = —apz
and ax = ay where 1 is the rotational angle. Moreover,
the fitness function of APPMGA is dependent on Hansdraff
distance. However, we have wsed Ewclidean distance in this
expenment. In this case the distance of each point of one
point set s evaluated from each point of another point set.
As a result each point of both input point $ets s taken into
consideration during distance measurement which eventu-
ally helps to identify the decrease or inerease of ponts in
the input point sets.

In dot pattern or object matching problem 5 is a set of dot
pattems of different shapes as shown in Figs. 13 and 14 and
we have taken one of them as a test pattern T and matched
it with §. The scores for matching between T oand § for
DHGA, DCGA and APPMGA are depicted in Tables 5 and
6. Here successful matching score 15 given as a ratio of the
number of times the solution has been reached out to the total
number of trials in percentage. We can consider two types of
matching namely perfect matching and imperfect bul visual
matching. For visually matched patterns we see that T is
superimposed over § without any visible error, although the
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Table 5
Matching msults of DHGA, DOGA and APPMGA on dot pattems

Dt pattem DHGA O0GA APPMGA
Successtul Unsuccess ful Successtul Unsuceesstul Successtul Unsuccessful
matching (%) matching {%) matching (%) matching (%) matching (%) matching (%)
Perfectly Wisually Mot Perfectly Wisually Mot Perfectly Wismally Mot
mutched matched matched matched muttched mutched mitched matched muttched

P 57 43 [} 14 T3 13 15 75 1

P2 41 il i 10 T 20 101 T5 15

(] 2] I7 i} 100 a7 23 10 T 20

L4 4 il il 101 o i 4] Wl il

The tollowing data have been summurized over 50 muns for each DE In each mn the space is mdefined 4 times.

Fig. 13. A scene of multiple dot patterns in two-di mensional.

matching emor i computationally reasonable. On the other
hand, in perfectly matched sitwation the computed emror of
matching between T and § s very close o zem. Naturally,
the pattern or object is visually matched.

From Table 5 we notice that for DHGA the success rate
is 100% for all four patterns by perfect and visual matching.
The best performance of DHGA s achieved for DP3. On
the other hand, the Calure mte is at most 23% in worst case
for DCGA. However, it can also achieve a success rate of
100% for matching the pattern DP4. The performance of
APPMGA s almost equivalent to DCGA.

The other pattem recognition experiment done here s
matching of edge maps. Here the object scene is a combi-
nation of four different objects. Initially the scene is a gray-
tone digital image in the space of 512 = 512 pixels with
256 possible gray levels. It is then converted into a two-lone

Fig. 14. A scene of multiple objects with edge map in two-dimensional.

edge map using Sobel Operator [40]. The edge map may
be considered as a discrete dot pattern where a dot is repre-
sented by 1 and a blank (white space) 1s by O (see Fg. 14).
In the scene three objects (P1, P3 and P4) are very close and
touched each other. The other one (Le., P2) 15 separte.

The experimental results of object matching is tabulated
in Tablke 6 for the approaches based on GA. It 15 observed
that the suecess rate of DHGA s not always 100% as hap-
pened for dot pattern matching problem. In case of P1 and
P2 the success of DHGA is 1004 and its failure rate is
maximum 6% for matching P3 and P4, The pedommance
of all three technigues is best for matching P2 which is an
isolated object in the scene. I s noted that DOGASs perfor-
mance deteriorates when the objects are close to cach other.
In object matching situation the APPMGA performs similar
o DCGA.
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Table &
Matching results of DHGA, DOGA and APPMGA on objects with edge map

Dt pattern DHGA DG A APPMGA
Successful Unsuccesstul Suceesstul Unsuccessful Successtul Unsuccess ful
matching (%) matching (%) matching { %) matching (%) matching (%) matching { %)
Perfectly WVisually Mot Perfectly Visually Mt Perfectly Wisually Mot
mitched matched matched mutc hed matched mutched matched matched matched

Pl i3 67 L] L] H T i} i35 65

P Th 24 i 10 L] d 10 65 a5

P3 x 67 fi 3 10 L1 5 10 B5

P4 17 L1} E] {1 I T3 i} 30 0

The following data have been summarized over 30 mns for each DE In each mn the space is redefined 4 times.

5. Conclusion

We have proposed DHGA to enhance the performance of
GA and compared its performance with DCGA. Here the ge-
netic search starts with small chromosome size. The method
15 4 hybrid of distributed as well as hierarchical technigques.
The search is first scattered over the entire space for uniform
population distribution and simultaneously in each subspace
the sequential GA is progressed hierarchically in parallel
with coarse-to-fine resolution. Initially, the small chromo-
some or the stnng length of an individual x;, %9 {1, ..., I
represents the search space with coarse resolution. In sue-
cessive stages, however, since the search space dimension is
reduced (see Fig. 1) and the stnng length remains constant
thereafler eventually increases the resolution of the search
space.

DHGA and DCGA deal with multiple populations. The
entire space 1% initially partitioned into a number of equal
sized smaller subspaces hke Fig. 3. In each subspace
5, ¥ie{l,..., m} the distnbuted GAS run simultaneously
starting with an independent populaton. The process stans
searching over the entire space and runs concurrently in
m subspaces. Thus, DHGA reduces the possibility of the
algorithm to be trapped in a local optimum of the optimiz-
ing function and is faster in terms of convergence rate of
the population compared o DCGA.

We have demonstrated our approach on various optimiz-
ing functions. A set of functions fi to fi are used to find
the global maximum value and the other set consisting of
Ja o f7 oare used to locate the global minimom value.
The nature of the functions differ widely from one another.
Some of them are unimodal whereas others are multi-modal
functions. Moreover, two comphlicated functions fs and 7
are included in our expedment for which the number of
local optima increases exponentially with the problem di-
mensionality. In f and f7 the performance of DHGA as
well as DCGA deterworates with the increase of the prob-
lem dimension, although DHGA always outperforms DCGA
(sec Figs. 11 and 12). For the remaining functions ( fi— f3)
the performance is comparable with DCGA.

MNexl we have taken the matching problem between two
dot pattems or objects with edge map. The mateh between
two dot patlems/objects is obtained by first ranslating the
test pattermn to a point P and then rotating by an angle 0
with respect w0 the mean point € as ongin. In dot pat-
tern matchmg DHGA always outperforms DCGA and APP-
MGA for all dot patterns with success rate 100% except
for DP4.

In ohject matching with edge map a digital image with
256 possible gray levels in a space of 512 x 512 mxels 1s
a combmation of four separate objects which are very close
and wuching each other. It 15 then converted o a two-lone
edge map using Sobel Operator [40] and transformed to a
dot pattem where the edge 15 indicated by a senes of dots.
The matching between two objects 1s done n 4 manner sim-
ilar to the dot pattem matching problem. In this experiment
DHGA performs better than DCGA as well as AFPMGA
but it cannot always achieve a suecess rate of 100% except
for objects P1 and P2, Similarly, the performance of DCGA
and APPMGA are best among all four results for the iso-
lated object P2 in the scene.
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