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ABSTRACT

A method for the detection of a bounded weak-echo region (BWER) within a storm structure that can
help in the predicion of severe weather phenomena is presented. A fusey rule-based approach that takes
care of the various uncertainties associated with a radar image containing a BWER has been adopted. The
proposed technigue avtomatically finds some interpretable (fueey ) rules Tor classification of radar data
related 1o BWER. The radar images are preprocessed (o find subregions (or segments) that are suspected
andidates for BWERs. Each such segment is classified into one of three possible cases: srrong BWER,
margingl BWER, or no BWER. In this regard, spatial properties of the data are being explored. The
method has been tested on a large volume of data that are different from the training set, and the
performance is found 1o be very satisfactory. Uis also demonstrated that an interpretation of the linguistic
rules extracted by the system described herein can provide important characterstio: about the underlying

ProCess,

1. Introduction

Supercell thunderstorms are perhaps the most vio-
lent of all thunderstorm types and are capable of pro-
ducing severe winds, large hail, and weak-to-violent
tornadoes (Dostalek et al. 2004). In general, howewver,
the supercell class of storms s defined by a persistent
rotating updrafl (i.e. mesocyelone), which promotes
the organization, maintenance, and severity of thunder-
storm. The weather surveillanee radars used by the Na-
tional Weather Service (Crum and Alberty 1993) pro-
vide vivid pictures of the mesocyclonic activitics. The
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mteraction between the updrafts and the vertically
sheared environment strongly controls the degree of
the organization of a storm and the severity of convec-
tion. Supercells and tornadoes are associated with mod-
erale-to-strong vertical wind shear and moderate-to-
high nstability.

A bounded weak-ccho region (BWER) 15 a radar
signature within a thunderstorm charactenized by local
minima in the radar reflectivity at low levels, which
extends upward into and is surrounded by the higher
reflectivities aloft. This feature is associated with a
strong updrall and 15 almost always found in the inflow
region of a thunderstorm (Markowskn 2002; Cotton and
Anthes 1989). In fact, a BWER is a representative of a
local storm that develops in a strongly sheared environ-
ment and tends to a steady-state circulation.

The weather surveillance radars used by the National
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Fig. 1. Volume coverage of a WSR-88D radar with a bandwidth
of 0957 and nine elevation scans, (From Smith 1995.)

Weather Service (Crum and Alberty 1993) scan
through thunderstorms starting at a low clevation angle
(0.57), and aflter completmg a full 3607 azmuthal sweep
they progressively increase the elevation angle until an
upper himit (19.57) i reached. This s shown in Fig. 1.
As the radar scan continues, a BWER first appears asa
region of relatively low reflectivities surrounded by
higher reflectivities at a lower elevation angle | Krauss
and Marwitz 1984). Then, at higher elevation angles it
becomes “capped”™ by a broad region of high reflectiv-
ity. The vertical cross section of a BWER 1s depicted in
Fig. 2, and Fig. 3 depicts the horeontal eross section of
a strong BWER.

There are several factors that make the radar signa-
ture of a BWER rarely appear very clear. As the dis-
tance between the radar and the storm increases, the
ability of the radar to properly sample small-scale [ea-
tures within the storm, such as a BWER, becomes more
difficult. This is so because the radar-sampling volume
becomes larger. There is another problem with rapidly
moving storms. By the time the radar scans upward
through the storm, the higher-altitude capping region
of the BWER may move significantly with the storm
and may no longer be located over the relative reflec-
tvity minimum detected at a lower altitude (Laksh-
manan and Witt 1996). There 1s also an error associated
with the vertical height measured by the radar (Howard
and Gourley 1995), and this error varies with weather
conditions.

Smalley et al. (1995) have proposed a method based
on the 2D structure but did not consider the 3D struc-
ture of a BWER in the decision process. The suceess
rate of this method (Smalley et al. 1995) 1s himited be-
cause it detects all local minima m the reflectivity Deld
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Fra. 2. Vertical cross section of a BWER. The contours repre-
sent constant radar reflectivity (Lakshmanan and Wit 1996;
Lemon 1980).

of the radar data. In this 2D scheme, the false-alarm
rate i very high,

Fuezy logiec has been used to mprove the perfor-
mance of meteorological mlormation processing $ys-
tems in the past, notably mn gust front (Delanoy and
Troxel 1993) and alko n BWER (Lakshmanan and Witt
1996) detection. Because of the various uncertainties
associated with the appearance of a8 BWER in radar
mmages, a fueey rule-based classification scheme 15 ex-
pected to work well.

An mproved method for the detection of BWERs
wits proposed by Lakshmanan and Witt (1996). In this
method they have considered the 3D structure of the

e e B T T

Fra. 3. Horizontal cross section of a strong BWER. The con-
tours represent constant radar refectivity (Lakshmanan and Witt
1996; Krauss and Marwitz 1984 ).
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BWER in their decision process. Their detection
scheme 1s designed based on the concept of fuezy loge.
Lakshmanan and Witt {1996) computed 23 features on
cach suspected region obtained from the radar image,
and these features are characterized by a fueey scale.
They also assigned a weight to cach feature. The dee-
sion 1% made based on a weighted averape of features.
Lakshmanan (2000) have wsed genetic algorithms
(GAs) for tuning of the BWER detection algorithm.

In this paper we propose a [uzey rule-based model
for the detection of BWERs, We develop an automatic
scheme for the extraction of fuzey rules for classifica-
tion of the suspected regions. We have used the dataset
that was extracted and wsed by Lakshmanan and Witt
(1996) and Lakshmanan (2000). Each feature vector in
the dataset represents a region or segment suspected to
contain 8 BWER or includes a part of a BWER. [We
use the words region, subregion, and segement inter-
changeably to represent a small portion of a radar im-
age that may conlam a BWER. Note that, the word
“sepment” has a different usage in the Storm Cell Iden-
tification and Tracking algorithm for the Weather Sur-
veillance Radar-1988 Doppler (WSR-88D).] We first
generate a set of mital fuezy rules from the dataset
using exploratory data analysis techniques to classifly
ecach candidate region into one of three classes—strong,
marginal, and no BWER. The imtial rule set is then
tuned using a gradient search for performance improve-
ment. We achieved an mproved performance on the
training st as well as on the test dataset relative to the
results reported by Lakshmanan and Wit (1996) and
Lakshmanan (2000).

We deseribe our proposed model in section 2. The
results are shown in section 3. Section 4 concludes the
paper.

2, Proposed model

The luzzy rule-based elassification model, a concep-
tual model to classify objects, s based on approximate
reasoning. The [uzey set theoretical classification
framework provides a degree of support o each polen-
tal class. A set of fuzy rules 15 used to desenibe a
particular class. The rules are defined on some features,
which are computed from the radar images. For any
new data (test data), the degree of the match of the
features with each fuzzy rule is computed. The class
label associated with the rule having the strongest
match (i.e., the highest firing strenpth ) defines the class
of the new data point.

The proposed method consists of the following three
steps: 1) peneration of the traming and test datasets
(discussed in section 2a), 2) generation of an initial
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fuzzy rule base (discussed insection 2b), and 3) refining
(tunmg) of the rule base (discussed n section 2e).

a. Training and test data

Lakshmanan and Witt (1996) and Lakshmanan
(2000) have collected data over 5 days, and we use the
same data. The radar scans obtained on 4 days (25 May
1996, 21 Apnl 1996, 2 June 1995, and 7 May 1995)
contain 186 strong and 39 marginal BWERs. For the
fifth day (1 June 1995) there was no BWER. Figure 4
shows a typical WSR-88D image from the Lubbock,
Texas, (KLBB) radar at 2136 UTC 25 May 1996, The
polar data were projected on a plain with a 1 km = 1
km uniform resolution Cartesian grid. The plane © tan-
pential to the carth’™s surface at the radar location. The
Cartesian prid was limited to 256 km in range. Figure 4
has a BWER as 1s marked on it. The typical tme to
process a volume scan 1s about 30 5 on a Sun worksta-
Licr.

These radar images are preprocessed to find seg-
ments (subregions) that are suspected candidates for
BWERs (Lakshmanan and Witt 1996). A segment 1s
ientified by looking for local minima in the radar ¢l
evation scans. Contiguous range gates that belong to
local mimima are connected to form a candidate seg-
ment. These segments are then labeled as having either
strong, marginal, or no BWER. Each such segment is
represented by a set of features, such as the number of
pixels in the sepment, the maximum and minimum val-
ues of the radar reflectivity, and so on. These data are
divided into two parts—one for trmining of our pro-
posed model and the other for testing the performance
of the tramed model. The traming dataset mcludes 3
days of data {out of 4 days) with BWERs, along with
50% of the Oifth day’s data without BWER. The obser-
vations of the remaining 1 day with BWERs along with
the remaiming 50% of data of the Ofth day are wsed for
testing. The tramming dataset contains 1479 strong, 735
marginal, and 4501 no BWER candidate segments, and
the test dataset contain 2113 strong, 642 marginal, and
4501 no BWER scpments. There are many segments
with no BWER, but we have randomly selected 4501
sepments for the traning set and the same number of
sepgments for the test set. We shall denote the traiming
set as X' and test set as X'

Each segment s represented by 23 features, which
can be divided into two major groups: geometric char-
acteristics (contains 6 features) and BWER character-
istics (contains 17 features).

We now provide a deseniption of each feature. The
six peometric features are ox Cy, MINUMUWM_X, Mmini-
mum_y, maximum_x, and maximum_y, where (ox, cy)
i the coordinate of the center of the BWER. Here
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FiG. 4. A typical radar image from KLBB radar.

(minimum_x, minimum_y) and (maximum_x, maxi-
mum_y) are the coordinates of the top-left and the bot
tom-right corners of the smallest rectangle contaming
the BWER, respectively. The coordinates are speafied
on a grid that & tangential to the earth’s surface at the
radar location. The grid 1s at the resolution of the radar
range gates [1 km for the Next Generation Weather
Radar (NEXRAD)]. The radar elevation scans are pro-
jected to that tangential grid.

The remaiming 17 BWER charactersics are number
_of_pixels, maximum_rfl, minimum_rfl, average_rfl,
maximum_bound, mmimum_bound, average_bound,
number_of_bounds, maximum_cap, minimum_cap,
average_cap, height_of_the BWER, best_height,
low_VIL, prev_conl, cov_vol, and sweep.

Here, number_of_pixels s the number of pixels in
the segment of the radar image. The features maxi-
mum_rfl, mimmum_rfl, and average_rfl represent the
maximum, the minmmum, and the average reflectivity
values in the segment (measured in dBZ).

The maximum_bound, mimmum_bound, and aver-
age_bound measure some bounding values of the re-
fectivities that surround the weak-ccho region in the
radar elevation scan. The maximum_bound 15 defined

as the highest reflectivity value in the immediate sur-
rounding neighbor of the candidate 2D weak-ccho re-
gion. Similarly, the minimum_bound (average_bound)
5 defined as the lowest (average) reflectivity value
computed from the immediate neighbors of the candi-
date 2D weak-echo remon. These three features are
measured in dBZ. The number_of_bounds 15 the num-
ber of such boundary pixels that surround the weak-
ccho region in a radar elevation scan.

The cap at a pixel of the weak-echo regon © the
highest reflectivity value in any of the elevation scans
above the weak-ccho region. The maximum_cap of a
candidate segment 15 the maximum reflectivity value of
the caps of cach ol its constituent pixels. Similarly, the
minimum_cap 1% the mimimum reflectivity of the caps of
cach of its constituent pixels. The average cap s the
average value of the caps, averaged over all pixels that
together form the weak-echo region. These features are
also measured in dBZ.

There are three features that capture some 3D
propertics: height_of_the_ BWER, best_height, and
low VIL (wvertically imtegrated hguid). A BWER is
a 3D structure that is formed by linking together
sepments in the 2D radar elevation scans. The
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height_of_the_ BWER i the distance between the low-
est candidate and the highest one, that s, the vertical
length of the BWER. The best_height i the height of
the highest candidate. The heights are computed using
a 4/3 carth formula, assuming the standard atmospheric
propagation, and are the height above the radar level.
The VIL value at a location i the sum of all observed
radar reflectivities (converted to hguid water content)
in a vertical column above this location. The VIL at a
pixel m, thus, an integration over all elevation scans.
The low_VIL i the VIL computed from all elevation
scans up Lo the elevation scan that contains the BWER.

The last three features are prev_conf, cov_vol, and
sweep. The prev_confis a measure of conhidence of the
closest candidate m the previous volume scan. It s com-
puted by taking the current spatial location of the
BWER, searching the list of candidates from the pre-
vious volume scan, and finding that closest to the
BWER. If the distance of the closest match s within a
few kilometers, then its confidence 15 used as prev_conl.
The cov_vol and sweep features are the volume scan
and sweep in which BWER was found.

These features were used by Lakshmanan and Witt
(1996) and Lakshmanan (2000) also. To select a set of
useful features, we ranked these features based on stan-
dard deviation. Features with very low standard devia-
tions are discarded. In addition to this, we also used the
onling feature selection method of Pal and Chintal-
apudi (1997) to select/rank features. The top-ranked
features sugpested by this method were considered to
be useful by experts also. We expenimented with dif-
ferent sets of top-ranked features and found that the
top seven features as ranked by the online feature se-
lection method (Pal and Chintalapudi 1997) are ad-
equate, and the use of more than seven top-ranked
features does not improve the performance. Henee we
settled for seven features.

The set of selected features are the mimmuom_ril,
average_rifl, maximum_bound, average_bound, aver-
ape_cap, height_of_the BWER, and low_VIL.

Each feature is then linearly normalized between [0,
1]. In other words, each input x is normalized by the
formula (x — x50 V(X o — Xmin)s Where x o and x ;.
are the maximum and minimum values of x.

b. Generation of fuzzy rude base

We use exploratory data analysis techniques to de-
sign the imitial rule base (Delgado et al. 1997; Beadek et
al. 2005; Pal et al. 1997, 2002).

Let X" = X" uX uXy X" n X" =di#], i
j=1, 2, 3 be the training dataset, where X" is the
traiming dataset corresponding to Class,. The three
classes are
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Strong BWER, i=1

Class; = 4 Marginal BWER, =2, (1)
No BWER, i=3

MNow we apply the fuzey ¢ means (FCM) (Beadek et al
2005) clustering algorithm on each X7 = R”, where K =
1, 2.3, to cluster it into Oy clusters. In the present case
the number of features p = 7.

In the FCM algonithm a cluster 1s represented by a
centroid and the algorithm Oinds the centroids minimiz-
ing a sum of weighted squared dstances of the data
points from the centronds. The weights are related o
memberships of data points to different clusters.

For each X}, the FCM algorithm produces €, cen-
troids, pf',j=1,2,...,Cx, pf € RP, K=1, 2, 3.

The ith cluster of XIT, can be represented by a fuzey
rule of the form Rf: if x 15 close to pf then x belongs to
class K. In Hf and pf‘ the subscript indwcates the clus-
ter number (rule number) and the supersenipt corre-
sponds to the elass label. To dlustrate the rule structure,
for notational clarnty, for the bme being we ignore the
subseript and superseript. Suppose g = (L. oy oo
pli,,jT e R” is acluster center for the strong BWER class.
The associated rule is R if x1s close o p then the class
i strong BWER. The [uezy set “x 15 close to p” can be
represented by a membership function, where the
membership to the set s inversely related to the ds-
tance of x from w (Bezdek et al. 2005).

Here x = (x), X, X3, Xy, Xe, X4, 53] 7 5 a feature vector
computed from a segment of a radar scan image that
necds o be classified. The antecedent clause “x 1s close
to p” can be represented by a set of seven simpler
atomic clauses and the rule can be rewritien as follows:
if x, 15 close to p, and x; 18 close o p, and . . . and x; 18
closest to p, and x5 s close o p, then the class 1s strong
BWER. In this way we can pencrate the imtial set of
fuzzy rules for cach cluster in XIf for K = 1, 2, 3.

Assume that there are M = £} C rules in the rule
base. So there will be M membership functions for cach
feature. For the jth rule, we model the fuzey set “x; is
close to p” (lingustic value) by a Gaussian member-
ship Munction as defined in Eq. (2),

—ir— pgP
Bl = {’T where o, =1, (2)

MNote that other choiees, such as a triangular member-
ship function, can also be used. The initial spread of the
Gravussian unction (o) 15 computed as the standard de-
viation of the ith feature of the data ponts in the asso-
ciated eluster of the tramming data. Without loss of gen-
crality, let us denote the rules as R, j = 1, 2,... . M.
Also, let us denote the set of rules for the three classes
strong BWER, marginal BWER, and no BWER by R,



Ry and Ry, respectively. This is done just for nota-
tional clarity so that we can avoid use of another mdex
for indicating the classes.

Givenx € R”, to decide its class label we compute the
firing strength og(x) of the jth rule wsing some T norm
(Klir and Yuan 1995). Here we use minmmum as the T
norm. Thus,

(X} =

ITIJ_iI'.I. {EJ'J'[IJ'}}' ':3}

Let a; = max{e;(x)} over all j, then xis assigned to the
class of rule R, In other words, if rule R; € R x 15
assigned to the strong BWER class; similarly, if R; e
Ry ox s assigned to the marginal BWER class, and of R,
e R, x is assipned to the no BWER class; here | ]
denotes a sel

We next provide a schematic description of the algo-
rithm for generation of the mmtial rules: The mput is
X=XI"u X U XTI Forecach of £ = 1,2, and 3, five
steps are performed: In step 1, cluster the data X from
class k to pet C; cluster centers py, ps, . .., B, Instep
2. convert cach cluster center w into arule; if “x © close
to ;" then the class s k. In step 3, rewrite the rule in
step 2 as follows: IT x; i close Lo p; and . .. and x; 18
close o, then the class is & In step 4, model “close
to " by a Gaussian membership function; for ex-
ample, x, is close to p;, by exp{ —(x, — ;) o7 ], where
;= 0. In step 5, estimate the nitial value of a; by
computing the standard deviation of the jth feature of
the data points falling in the ith custer of XJ'. At the
end of step 5, return to step 1 and repeat for the re-
maining & values.
. Tuning of rule base

The tuning of the initial rule base s done by mini-
mizng the trammng error using a gradient descent tech-
mgue. In this regard we now derive the appropriate
learming mechanism.

Let
xe X, o, = max logh e, = max e} and
: JR e Ry JRye Rar
o, = max {o}
" jRe :zﬁ,-{ J}

In other words, o, a,
port provided by the rule base in favor of the three
strong BWER, marginal BWER, and no BWER classes
forx. Let 2,0, and O, together define the elass label

. and o, are the maximum sup-
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vector associated with x. IF the class assignments are
crisp, then O, O, O, |0, 1}; on the other hand, when
the traming data have fuzezy class labels, then O, O,
() e [0, 1] where [0, 1] indicates an interval from 0 to
LIfa, +a, + Q.= 1, then it represents a fuezy label
vector; otherwise, it 18 a possibilistic label vector
(Bezdek et al. 2005). The error produced by the rule
base on x &

E, ={a,— OF + (g — On) +{a,— O.F. (4

If there are nn data points in X', then the total error

Exn= ), [ta,—
=1

OF+(a

L - ('}Hf}: + I:ErH — ('}J!}l]:

(51

Eyr s a function of pg; and oy of different rules that
correspond to o, a,,, and o, for different data points.
To minimize £, we use gradient descent on the in-
stantancous error function £ in Eq. (4). Thus, for ev-
ery x € X" we compute the instantancous error by the
Eq. (4). Subsequently, we drop the subsenipt from E|
for the notational clarity.

We now update the membership parameters of the
centroid (p) and spread (o;) of the membership func-
tions associated with the three rules as shown in Egs.
(6) and (7). respectively:

dE

e + 1) = ple) — m e and i6)
dE

ailt + 1) = oty — o, 1)’ (7

where 1 = 015 the learning coeflicient. The dE/p, and
dbfaer; are derived in Egs. (10) and (11). This may be
viewed as refining the rules with respect to their con-
texts in the feature space.

Because min(x,, %, .. ., x,) is not differentiable, we
use # soft version of min in Eq. (8),

1 2] ilig)
SoftMin(x,, Xy, . . ., X,) = (;—sz?) . (B
i=1

It is casy to sece that SofiMin approaches min as g —
—x, Now, using Eqs. (2) and (8) in Eq. (5) we get Eqg.
(9.

(st ] (sl oy

(5L

"-m'IJ-wl a7y 1 lig) 2
= _}] -0, ). (9)
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TanLe 1. Three lypln:.dl rul:.-n h-:.[un.- an.d aflLr lururu.:

Class Tuning status
Slmng BWER Belore [1] 77, 0.12), [ﬂ ?H
Ader (0.70, 0.46), (0.78,
Marginal BWER Before (062, 0.13), (0.64,
Adter (024, 0.43), (033,
Mo BWER Belore (047, 0.12), (048,
Ader (051, 0.32), (0.53,
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Fules

0.14), (0.66, 0.13), (0.49,
0.32), (D48, 0.46), (0.12,
0.12), (060, 0.11), (0.20,
0.23), (063, 0.13), (0.29,
0.14), (031, 0.11), (015,
0.54), (035, 0.36), (0.3,

0.18), (0.40, 0.21), (065, 0.12)
0.73), (036, 0.74), (064, 0.29)
0,14}, (0.50, 0.18), (046, 0.15)
0.30), (0,55, 0.30), (038, 0.30)
0.16), (017, 0.13), (047, 0.12)
0.63), (031, 0.03), (050, 0.37)

0.10), (0.58,
039), (0.27,
0.10), (0.63,
037), (0.76,
0.41), (0.40,
037), (0.47,

Differentiating Eq. (9) with respect to p and o, for the strong BWER case, we get

OE <{ 2:[

L5~ iy
O
and
H.E, _LM_H* aq | 1 lig) 1
E =i Y| =
ﬁln : 2l

w [.T i 2z l‘l’j.-.'}_ .

3
L

Similarly, we can derive the learning rules for the mar-
gmal and no BWER cases. Note that for marginal and
no BWER cases the subseript 5 will be replaced by m
and n, respectively, in Eqgs. (10) and (11).

The tuning process is continued till the change in
error by an epoch becomes less than a predefined small
threshold. In this way we get the final centroids (p) and
spreads (o) of cach fuzey set associated with the rules.
This rule set 1s now ready for classifving new data. The
refined rule base 1s expected to result in a low error
rate.

3. Results and discussions

In our investigation we have extracted four rules for
cach of the three classes. Out of the 4 ¥ 3 = 12 rules,
Table 1 shows only three typical rules—one for cach
class, before and after tuning. In Table 1, the “tuple”
(. o) indicates the center () and spread (o) of the
Gaussian membership function.

A careful inspection of the rules before and afier
tuning in Table 1 reveals that tuning plays a significant
role. For example, the rule corresponding to strong
BWER (before tuning) i that if the minmum_rfl is
close to (.77 and average_rfl s close to 078 and . .. and
low_WIL is close to 0.65, then the class is strong BWER.

The analysis of the rule base can ako reveal very

aq | 1 lagl 1ligl aq | 1 ligi—1 N
1 T~ His IJ-.-a. S T
2l } ‘”"> ’ (‘) ”{2[ /] } xe%57)
; 7

(10}

nw}z

~

st

[-"-'J.;_Ha.‘}z aq | iligli—1 [_1_.“_
— P chov - L
T e j. T

(11)

interesting characteristics about the underlying process.
As an example, for the no BWER class the sixth fea-
ture, the height_ofl_the_ BWER. is very important be-
cause the o of the associated membership function 1s
very small (0.03). Thus, the specificity of the fuwy set,
“the height_of_the_ BWER is close to 0317 B very
high. This suggests that the vertical length (height of the
suspected BWER) plays a very significant role i de-
termining the no BWER case. Such useful semantic in-
formation is clearly an advantage of a fuzzy rule-based
system over other systems, such as neural nemworks.
For this rule, the centers of Gaussian membership
functions corresponding to only features 3, 4, and 5
changed significantly by the tuning; while the spread
associated with cach feature is changed significantly by
the tuning to have a better coverage by the rule.
MNow, we shall diseuss the performance of our pro-
posed model. The performance evaluation involves the
use of a 2 ¥ 2 contingency matrix €, defined in Eq. (12),

(- a)

In Eq. (12), d & the number of correctly detected (or
forceasted) events or strong BWER (often referred to
as fits), b is the number of false alarms (no BWER
detected as strong BWER), ¢ i the number of events
not detected (misses ), that i, strong BWER 15 detected

C= 12}



Tane 2. Confusion matrix with training data (before wning).

Strong Marginal Moy
Strong 818 429 Py
Marginal 151 460 124
Mo 1486 1755 1260

as no BWER, and a is the number of correctly classified
nonevents; a 15 often difficult to estimate in the case of
rare weather events like BWERs, The entical success
index (CS1)1s defined (Donaldson et al. 1975) using the
contingency malrix as

d

S ed

(13}
We shall compute a, b, ¢, and d for two cases—ia)
Before and (b) after rule tuning.

a. Before rule tuning

Table 2 shows the confusion matrix for the training
data before twning the rules. The hirst row shows that
out of total 1479 strong cases, 818 are classificd as
strong, 429 as marginal, and 232 as no BWER. We
emphasize again, 1479 strong cases do not represent
1479 strong BWERSs, but 1479 segments of a radar scan
that are strongly suspected as part of some BWER.
Similarly, the second row i for the marginal BWER
and the third row for no BWER cases.

Using Table 2 we find & = 1486, c = 232, and d = 818,

Therefore, the contmgency matrix (taking a = () cor-
responding to Table 2 15

. 0 1486
“\232 a8 )
and C51 = (8181486 + 232 + 818) = 032,
Similarly, Table 3 shows the confusion matrix with

the test data before tuning the rules.
In this case, the contingency matrix 1s computed as

(14}

1235

0
= (3&9 9‘:19) and €8I = (.38,

b, After rule tuning

Table 4 shows the confusion matrix with the traming
data after tuning the rules. In comparing Table 4 with
Table 2 we find a significant reduction in the number of
mislabeled cases.

Table 4 results in the contingency matrix

To4

0
C=(1T4 ‘:T?E) and C3I=1051.
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Tane 3 Confusion matrix with test data (before tuning).

Strong Marginal Mo
Strong 999 745 1]
Mar ginal 161 350 13
Mo 1235 215 1oz

Similarly, Table 5 displays the confusion matrix ob-
tained on the test data after tuming the rules and the
contingency matrix is

0 853
R 474 963

Lakshmanan (2000) used GAs to tune his bounded
wieak-ccho regions detection algonithm. He reported
results of five runs of the GA-based algorithm. In com-
parison with the average CSI of the five GA runs re-
ported in Lakshmanan (2000), our results demonstrate
a nearly 24% improvement in CSI on the training
dataset and a 17% improvement m C5I on the test
dataset.

) and CS1 =042

4. Conclusions

The detection of a BWER signature using radar
scans 15 often very difficult. The radar scans are first
preprocessed to ind the suspected regions. To penerate
the training data these suspected regions are manually
labeled by experts. Each such regon i represented by
a set of features. Using exploratory data analysis an
automatic scheme & developed for the extraction of
fuzzy rules for classification of the suspected regions. It
is a two-step process. In the first step we extracted an
mitial rule base using clustering. Then, in the second
phase, we refined rules with respect to theirr context. In
this regard, we denved the necessary update equations.

The proposed system is tested on a dataset not used
in the traming. Our system is found to produce an im-
proved detection accuracy over the results reported in
the hterature on the same dataset. Our system extracts
human-nterpretable lingustic rules. We have demon-
strated that such rules can reveal interesting informa-
tion about the underlying process. This is a distinet ad-
vantage of the proposed system.

Our next step would be to integrate this mformation

Tanre 4. Confusion matrix with training data (alter tuning).

Strong Marginal Mo
Strong 972 REL] 174
Mar ginal 137 471 127
Mo 764 a5l 086
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TanLe 5 Confusion matrix with test data (alter tuning).

Strong Marginal Moy
Strong 963 a7a 474
Marginal 121 292 9
Mo 853 14497 2151

both spatially and temporally to find the location of
cach BWER. A genuine BWER should exhibit a clus-
ter of suspected data points, and such elusters are ex-
pected to show up in suceessive radar scans. We plan to
use the firing strength information to detect such clus-
ters. We shall also investigate the use of cluster validity
indexes to deade on the number of rules for each class.
We expect that use of an appropriate feature sel along
with the right number of rules for each class will further
improve the performance.
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