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Abstract

This article deals with the development of an im-
proved clustering technicue that is based on the
identification of points having significant mem-
bership to multiple classes. Cluster assignments
of such points are difficult, and they often affect
the actual partitioning of the data. As a conse-
quence, it may be more effective if the points that
are associated with maximmm confusion regard-
ing their cluster assignments are first identified
and excluded from consideration while clustering.
Thereatter, these points may be assipned to one of
the identified clusters based on a nearest neighbor
critevion. Such an approach is described in the
present article.  The well-known fuzzy C-Means
(FCM} algorithm and a recently proposed genetic
scheme are utilized as the underlying clustering
technigue when the number of clusters is known a
priori. The performance of the proposed cluster-
ing algorithm has been compared with the average
linkage hierarchical clustering algorithm, in addi-
tion to the FOM and genetic clustering scheme, to
prove its effectiveness on a variety of data sets.

Keywords: Cluster validity indices, fuzzy clus-

tering, multi-class membership, Minkowski score,
genetic algorithm.

1 Introduction

Clustering [JD88)-[Har73] is a popular unsu-
pervised pattern classification technigque which
partitions the input space into K regions de-
pending on some similarity /dissimilarity metric.
Any clustering technigue is intended to evolve a
K x n partition matrix [/{X) of a data set X
(X = {x;,29,...,1,}) in N-dimensional space
RN, representing its partitioning into K clus-
ters (Ch,C,...,Ck). Let (21,29,...,2K) rep-
resent the K cluster centroids. The partition
matrix UU(X) can be represented as U = [uy ],
k=1,...,K,and j =1,...,n, where p; ; is the
membership of pattern x; to cluster Cy. In case
of fuzzy clustering [Bez81, Dun74], 0 < pup; < 1,
and Zf:l ;=1 for j = 1,... ,n. Greater value
of g2y ; implies that the degree of belongingness of
point x; to cluster Cp is more. Fuzzy C-Means
(FCM) [Bez8l, PB95] is a widely used technique
that uses the principles of fuzzy sets to evolve a
partition matrix J({X} while minimizing a fuzzy



functional given in Eqn. 1. The FCM algorithm
often gets stuck at suboptimal solutions based on
the initial confipuration of the system. In order to
overcome this, a genetic algorithm [Gol89] based
fuzzy clustering technique has been proposed in
\MBO3).

It has been observed that, in general, the perfor-
mance of clustering algorithms degrade with more
and more overlaps among clusters in a data set.
This is because in such situations there arve sev-
eral points in the data set which have significant
belmgingness to more than one cluster, leading
to alot of confusion regarding their cluster assign-
ments. As such, it may be beneficial if these points
are first identified and excluded from considera-
tion while clustering the data set. They could,
thereafter, be assigned to one of the clusters using
some nearest neighbor criterion. Such a cluster-
ing algorithm is proposed in this article, that wuti-
lizes the concept of points having significant multi-
class membership. Performance of the proposed
clustering method is compared with the average
linkage method [TG74], in addition to the con-
ventional FCM and the genetic algorithm based
method, for several artificial and real-life data sets
in terms of the Minkowski scores [BHGD3).

2 Clustering Techniques

In this section, some clustering algorithms used in
the article are described briefly.

2.1 Fuzzy C-means

Fuzzy C-Means (FCM) [Bezf1] is a widely used
technigue that uses the principles of fuzzy sets to
evolve a partition matrix [/(X) while minimizing
the measure
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where n is the number of data objects, K repre-
sents munber of clusters, i is the fuzzy member-
ship matrix (partition matrix) and m denotes the
fuzzy exponent. Here x; is the it data point and
= is the center of A" cluster, and D(zg,x;) de-
notes the distance of point x; from the center of
the kth cluster. In this article, the Euclidean norm
is taken as a measure of the distance between two
points.

FCM algorithm starts with random initial K
cluster centers, and then at every iteration it finds
the fuzzy membership of each data points to every
cluster using the following equation [Bez#1):

1
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for 1 <i< K; 1<k <n, where D(z,r;) and
D)z, xy ) are the distances between oy and z;, and
x and z; respectively. m is the weighting co-
efficient. (Note that while computing p;  using
Eqn. 2, if D{z;,x) is equal to zero for some j,
then g, . is set to zero foralli =1,... K, i # j,
while i & is set equal to one.) Based on the mem-
bership values, the cluster centers are recomputed

using the following equation [Bez81]:
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The algorithm terminates when there is no further
change in the cluster centers. Finally, each data
point is assipned to the cluster to which it has
maximum membership.

(2)

(3)

2.2 Genetic Algorithm Based Cluster-
ing

Here we briefly discuss the use of genetic algo-
rithms (GAs) for clustering, In GAs, the parame-
ters of the search space are encoded in the form of
strings (called chromosomes). A collection of such
strings is called a population. Initially a random
population is created, which represents different
points in the search space. An objective/ fitness
function is associated with each string that rep-
resents the degree of goodness of the solution en-
coded in the string. Based on the principle of sur-
vival of the fittest, a few of the strings are selected
and each is assigned a number of copies that go
into the mating pool. Biologically inspired oper-
ators like cmssover and mutation are applied on
these strings to yield a new population. The pro-
cess of selection, crossover and mutation continues
for a fixed number of generations or till a termi-
nation condition is satisfied.

In GA-based fuzzy clustering, the chromosomes
are made up of real mumbers which represent
the coordinates of the centers of the partitions
[MB00]. If chromosome i encodes the centers of
K clusters in N dimensional space then its length



{is N + K. For initializing a chromosome, the K
centers are randomly selected points from the data
set while ensuring that they are distinet.

The fitness of a chromosome indicates the de-
gree of poodness of the solution it represents. In
this article we use the Xie-Beni (XB) cluster va-
lidity index [XB91] for this purpose. The XB in-
dex is defined as a function of the ratio of the
total variation o to the minimum separation sep
of the clusters. Here o and sep can be written
as (U, Z2;X) = Zf;l > bt i D2, k), and
sep(Z) = min;z;{||z — z;|[*}, where ||.|| is the
Euclidean norm, and D(z;, x), as mentioned ear-
lier, is the distance between the pattern x,. and the
cluster center z;. The XB index is then written as
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Note that when the partitioning is compact, value
of & should be low while sep should be high,
thereby yielding lower values of the Xie-Beni (XB)
index. The objective is therefore to minimize the
XB index for achieving proper clustering.

Given a chromosome, the centers encoded in it
are first extracted. Let the chromosome encode K
centers, and let these be denoted as 21, 29, ..., 25 .
The membership values g0, ¢ = 1,2,..., K and
k=1,2,...,n are computed as in Eqn. 2. The
corresponding XB index is computed as in Eqn. 4.
The fitness function for a chromosome is then de-
fined as T.'I‘B Note that maximization of the fitness
function will ensure minimization of the XB index.
Subsequently, the centers encoded in a chromo-
some are updated using Eqn. 3 [MBOD].

Conventional proportional selection imple-
mented by the ronlette wheel strategy is applied
on the population of strings. The standard sin-
gle point crossover is applied stochastically with
probability p.. The cluster centers are consideread
to be indivisible, i.e., the crossover points can only
lie in between two clusters centers.

Each gene position of a chromosome is subjected
to mutation with a fixed probability i, resulting
in the overall perturbation of the chromosome, A
number § in the range [0, 1] is generated with uni-
form distribution. If the value at a gene position
is v, after mutation it becomes (1 £2+4) +v, when
v 0, and +2 %4, when v = 0. The '+’ or ' sign
oceurs with equal probability. Note that because

of mutation more than one cluster center may be
perturbed in a chromosome.

The algorithm is termination after it has exe-
cuted a fixed mumber of generations. The elitist
model of GAs has been used, where the best string
seen so far is stored in a location within the pop-
ulation. The best string of the last peneration
provides the solution to the clustering problem.

2.3 Average Linkage Hierarchical Clus-
tering Technique

Apglomerative clustering technigques [TGT74] begin
with singleton clusters, and combine two least dis-
tant clusters at every iteration. Thus in each it-
eration two clusters are merged, and hence the
mimber of clusters reduces by one. This proceeds
iteratively in a hierarchy, providing a possible par-
titioning of the data at every level. When the
target number of clusters (K} is achieved, the al-
gorithms terminate. Single, average and complete
linkage agglomerative algorithms differ only in the
linkage metric used. For the single linkape alpo-
rithm, the distance between two clusters ) and
C; is computed as the smallest distance between
all possible pairs of data points p and g, where
pe C and ¢ € ;. For average and complete
linkage algorithms, the linkage metric is taken as
the average and largest distances respectively.

3 The Proposed Technique

In this section, the proposed clustering algorithm
is described in detail. First, the technigque for iden-
tifying the multi-class points has been discussed.

3.1 Identification of Multi-class Points

FCM, as well as genetically guided fuzzy cluster-
ing technigues, assigns membership values to each
pattern that indicates the degree of belonging-
ness to different clusters. This results in a fuzzy
membership matrix U(X). The fuzzy partition-
ing matrix may be used to find out the multi-
class points i.e., the points which are situated
at the overlapping regions of two or more clus-
ters, and hence they cannot be assigned to any
cluster with a reasonable amount of certainty.
Suppose some clustering algorithm partitions the
data set X = {ri,x9,...,2,} into K clusters



{C1, Cy,...,Cg}, and produces the partition ma-
trix {/(X) where U = [ 5], £ = 1,..., K, and
4 =1,....n Letus assume that a particular point
x; has the highest membership value for cluster
g, and next highest membership value for cluster
r.ole, Moi = My = ppi where k = 1,... K,
and & # g,k # r. Suppose the difference in
the membership values pg; and g is §;, ie.,
ftg i —ftp; = d;. It is evident that smaller the value
of §;, greater is the confusion regarding the class
assignment of the point x;. Thus a threshold 7 is
selected, such that for every j, j=1,2,...,n, if
d; < 7, then x; is said to be a multi-class point.
Let

B="1w:l s oo 3=12,.in} ()

3.2 The Clustering Algorithm

The proposed algorithm has two different stages.
In the first stage, the underlying data set is par-
titioned using either FCM or genetically guided
fuzzy clustering algorithms. From the resulting
partition matrix the multi-class points are identi-
fied using the technique discussed in Section 3.1
In the subsequent stage, the proposed technigue
excludes these points from the data set and re-
clusters the remaining points into & clusters. Fi-
nally, in the resulting cluster solution, each ex-
cluded point is assigned to one of the clusters us-
ing nearest neighbor role.

4 Experimental Results

The experimental results of clustering using the
proposed approach are provided for two artificial
data sets (Dafa 1 and Data 2), and two real-life
data sets (fris and Cancer). These are first de-
seribed below, followed by the performance mea-
sure used for comparison. Finally, the results are
provided.

4.1 Data Sets

Data 1: This is a overlapping two dimensional
data set where the number of clusters is five. It
has 250 points. The value of K is chosen to be 5.
The data set is shown in Fig. 1(a).

Data 2: This is an overlapping two dimensional
triangular distribution of data points having nine
classes where all the classes are assumed to have
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Figure 1: Data Sets: (a) Dafa I (b} Data 2

equal a priori probabilities (= ;}} It has 900 data
points. This data set is shown in Fig. 1(b).

Iris: This data consists of 150 patterns divided
into three classes of Iris flowers namely, Setosa,
Virginia and Versicolor. The data is in four di-
mensional space (sepal length, sepal width, petal
length and petal width).

Cancer: It has 683 patterns in nine features
{clump thickness, cell size uniformity, cell shape
uniformity, marginal adhesion, single epithelial
cell size, bare nuclei, bland chromatin, normal -
cleoli and mitoses), and two classes malignant and
benign. The two classes are known to be linearly
inseparable.

The Iris and Cancer data sets are available in
[http://www.ics.uci.edu/ ~mlearn /MLRepository.html|.

Note that as two fuzzy clustering algorithms are
used in two levels of the proposed algorithm, there
may be four combinations possible in these two
steps. These are referred to as FCM-FOM, FCOM-
GA GA-FCM and GA-GA.



4.2 Performance Metric

Here, the performances of the clustering algo-
rithms are evaluated in terms of the Minkowski
seore |BHGO3]. A clustering solution for a set of
1t elements can be represented by an n x n matrix
C', where (; ; =1 if point i and j are in the same
cluster according to the solution, and Ci; = 0
otherwise. The Minkowski score (MS) of a clus-
tering result ' with reference to T, the matrix
corresponding to the true clustering, is defined as

| T-C|

MS(T,C) =] e (6)

where | T [[= /T, 5, Tiy.

The Minkowski score is the normalized distance
between the two matrices. Lower Minkowski score
implies better clustering solution, and a perfect
solution will have a score zero.

Results

Table 1 shows the comparative Minkowski scores
obtained by the different algorithms for the four
data sets. The values of 7 chosen for the differ-
ent data sets is shown in Table 2. Although the
performance of the alporithms were relatively ro-
bust to the exact choice of =, intuitively it is evi-
dent that as the number of clusters in a data set
increases, T should be made smaller. This is a
consequence of the condition that the sum of the
membership values of a data point to the differ-
ent clusters equals 1. Empirical analysis also con-
firmed this fact. Fig. 2 shows, for the purpose
of illustration, the points identified by the pro-
posed method as having multi-class memberships
for Data 2. As is evident from the figure, these
points are sitnated at the overlapping regions of
more than one cluster.

As can be seen from Table 1, irrespective of
the clustering method used (viz., FCM or GA)
in the proposed algorithm, the performance gets
improved after the application of the second level
of clustering. For example, in case of Dafa 1, the
Minkowski score after the application of GA in
the first level is 0.4398 while this gets improved to
0.4243 at the end. Similarly, when FCM is applied
in the first level, the score is (0.4404 which gets im-
proved to (.4269 (with FCM in the second level)
and (.3851 (with GA in the second level). The
final Minkowski scores are also better than those

4.3

Diata | 1st st Ind | Final | K | Avg
Set stage | stage | stage
algo. | M8 algo. | MS Link.
Data | GA | 04398 | FOM | 0.4243
1
GA | 0.4243
FCM| 0.4404| FCM | 0.4269] &5 0.4360
GA | 0.3851
Data | GA | 0.5348 | FOM | 0.5290
2
GA | 0.5304
FOM| 0.5314 | FCM | 0.5290| 9 | 0.6516
GA | 0.5304
Iris GA | 0.55R3 | FOM | 0.5307
GA | 05307
FOM| 05987 | FOM | 0.56660 3 | 05666
GA | 05307
Cancerr GA | 0.3936 | FCM | 0.3666
A | (L3566
FOM| 0.3926 | FOM | 0.3666] 2 | 0.4445
A | 03556

Table 1: Comparative results for the different data
sets

Data | K T

Set

Data | 5 0.225
!

Data |1 9 0.2
g

Iris 3 0.25 |
Cancer| 2 0.3

Table 2: Choice of 7 for the different data sets

obtained using the average linkage method. The
results demonstrate the utility of adopting the ap-
proach presented in this paper, irrespective of the
clustering method used.

5 Discussions and Conclusions

A fuzzy clustering method that is based on the
identification of points which are associated with
the maximum confusion regarding their cluster as-
signments has been proposed in this article. Ex-
perimental results indicate that this approach,
with a suitable choice of a single parameter, is
likely to yield better results irrespective of the ac-
tnal clustering technigque adopted.
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Figure 2: Data 2 with the points identified as be-
longing to multiple classes marked as ™7

There are several directions in which this work
needs to be extended in the future. First of all,
a detailed comparison with other competing tech-
nigues needs to be carried out. Secondly, a sen-
sitivity analysis of the choice of ¥ should be per-
formed. Finally, a theoretical analysis needs to be
carried out to provide a functional form for r.
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