Flow of a thin liquid film on an unsteady stretching sheet
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The stretching surface is assumed to be stretched impulsively from rest and the effect of inertia of
the liguid is considered. Equations describing the laminar flow on the stretching surface are solved

analytically by using the singular perturbation technigue and the method of characteristics is used o

obtain an analytic expression for film thickness. The results show that the final film thickness is
independent of the amount of liguid distributed initially and on the initial film thickness be it
uniform or nonuniform. It is also shown that the forceful stretching produces guicker thinning of the

film on the stretching surface.

I. INTRODUCTION

The flow of thin liguid film is important for the under-
standing and design of varous heat exchangers and chemical
processing equipment. Applications include wire and fiber
coating, polymer processing, ete. In a mell-spinning process,
the extrudate from the die s generally drawn and simulta-
neously stretched into a filament or sheet, which is then so-
lidified through rapid quenching or gradual cooling by direct
contact with water or chilled metal rolls. In fact, stretching
mmparts a unidirectional onentation 1o the extrudate, thereby
improving its mechanical properties and the quality of the
final product. A crude model of a class of flow problems with
obvious relevance to polymer extrusion is the flow, induced
by the stretching motion of a flat elastic sheet as depicted in
Fig. 1. Polymer melt from the chamber A is spilled over an
elastic sheet through a shit B. Thas spilled-over polymer starls
flowing when the elastic sheet is stretched along its plane. It
15 obvious, that a boundary layer 15 developed near the shit B,
but this boundary layer will soon grow and cover the entire
fluid blob at a short downsweam distance C. To study this
flow configuration, Crane' first modelled this flow configu-
ration as a steady two-dimensional boundary layer flow
caused by the stretching of a flat sheet which moves in is
own plane with velocity varying linearly with distance from
a fixed point and gave an exact similarity solution in closed
analytical form. It 15 understandable that the solution pro-
vided by Crane 15 vahid in between the region B 1o C. Due o
is practical applicatnons, the stretching sheet problem has
attracted several researchers for the last three decades and is
extensively studied to understand the same, along with either
the sole effects of mtation, heat and mass transfer, chemical
reaction, MHD, suctionfinjection, non-Newtonian fluid or
different possible combinations of these above effects” ™
MNeedless to say that inoall these studies, the boundary layer
equation is considered and the boundary conditions are pre-
scribed at the sheet and on the fluid outside the boundary
layer (atinfinity). Imposition of similarity transformation re-
duces the system o a set of ODEs, which are then solved
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either analytically or numerically. Wungm first studied the
unsteady boundary layer flow of a finie liquid film. In this
study, he restricted the motion to a specified family of time
dependence and reduced the boundary layer equations o a
nonlinear ODE involving a nondimensional unsteady param-
eter by using a special type of similarity transformation. Us-
ing this special type of similarly ransformation, Andersson
et al. ™ have studied the unsteady stretching flow in the case
of power-law fluid film. Later on Andersson e al®' and
Dandapal et al > extended Wang's unsteady thin film stretch-
ing problem to the case of heat ransfer and Chen™ explored
the heat wransfer in a power-law fluid. To the best of our
knowledge, we like o state here that the study of unsteady
flow due o stretching of a sheet has not yet received ad-
equate attention when the film and the boundary layer thick-
ness coincide despite the exensive research made on this
flow problem since the last three decades.

If the thickness of liguid film either coincides or lies
within the boundary layer thickness, then one needs 1w con-
sider full momentum equations to study such flow problem.
Based on this principle, we have considered the full Navier-
Stokes equations and the equation of continuity 1o study the
thin liguid film flow due o the siretching sheet under follow-
INg assumpliomns:

(1) The initial film thickness fi=hix.f) 15 known at the
onsel of stretching, e, al tme (=0,

(i)  Once the stretching stans, no fluid enters into the sys-
em. Only the existing fluid over the sheet flows along
the stretching direction and hence the film thickness
changes continuously along that direction.

iiii)  The elastic sheet is much larger than the film thick-
ness, s0 that no further liquid spills from the elastic
sheet.

iiv)  Adjacent to the liquid film at the free surface is a gas
or liquid vapor, and therefore the viscosily ratio,
p,f pty (where g and g, are the viscosity of the liquid
and gas phase, respectively) s much less than unity
and any motion of the gas is neglected.

The paper is organized as follows: Mathematical formulation
for the problem is presented in Sec. 1L Section 1 contains



FIG. 1. Schematic fow diagram.

the derivation of the evolution equation and its solution. Re-
sults and discussions are given in Sec. IV and finally, Sec. V
15 devoted to the conclusion.

Il. MATHEMATICAL FORMULATION

Let the x axis be chosen along the plane of the stretching
sheet and the z axis 1s taken o be normal w the plane. We
assume that the sudace at ;=0 starts stretching impulsively
from rest with stretching rate xfy,, fi, being constant with the
dimension of [limu]_l. Due o impulsive stretching, the vis-
cous force causes the fluid o move along its own plane. At
the initial stage, this motion is imparted from the plane o the
adjacent fluid laver and then gradually spreads out w the
entire depth of the film by viscosily. As lime increases, the
fluid continues w flow in the outward direction and the thick-
ness of the film gradually decreases resulling in an increase
of viscous resistance so as to balance the impulsive inerial
force. At this stage the Reynolds number Rel=ugh, /v) is of
(1) and balance of aforesaid forces defines a characteristic
time scale .= v.-"hflf'('-;, where fy and » denote the initial film
thickness of the liguid film and kinematic viscosity of the
fluid, respectively, u, denotes the charactenstic velocity de-
fined as L/, where L is the characteristic length scale along
the stretching direction. The nondimensional equations of
motion and the equation of continuity are oblained by using
the following nondimensional variables:
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in dimensional governing equations and finally by dropping
the hat over the variables, we oblan
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Here € is o dimensionless parameter defined as hy/L which is
assumed to be small and F= mé:"g.‘:“ 15 the Froude number.
Following ame the comesponding boundary and initial
conditions in dimensionless form:
* No-sfip condition on the plane z=(:
witx0l=ax, witx,0)=0, (5)
where a=fyr,. 5 the measure of the impulsive stretching
strength.
¢ Jump in the novmal stress across the interface is balanced
by the surface tension times curvature at z=hix 1):
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where Wes= rr.n"pf:n.né 15 the Weber number and p denotes
the density of the fluid.
* Shear stress vanishes along the interface z=hix 1)
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* The kinematic condition at z=hix.t):

i o
—!+u—! =w. (&)
ar ax

* The initial conditions at t=0:
w(0.x.z) =wllxz) =0,

9
R(0.x) = &ix).

. ASYMPTOTIC ANALYSIS

To solve the system of nonlinear parial differential
equations (2)—9), we expand the dependent variables in
power of € as

Flx,z.f) = E E"FJ-I:.H:,.:,r]I. (10

Substituting (10} into the system of equations (2)}-(9) and
equating different powers of € we can obtain sets of equation
involving variables w, w, and p. Solving for i, w, and p up 10
first order, we get
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=R Fh—z)— e Weh. ],
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where fi, denotes h/ dv. It is clear from Eq. (11) that these
solutions do not satisfy the initial condition (9). This is due
to the fact that, our chameledstc time t, is large. To obtain
the mitial developments we need o streteh the tme coordi-
nate w0 achieve the small time solution and then match both
solutions by the composite matching principle (Van Dyku'md}.
Substituting (11) into (8), we get

i a eRe o ; 3
—=—|—ath+ —{ax+Fh,—e Weh, |
aft o 3 ! o

(12)

To solve (12), we expand h as in Eg. (10) and collect the
coefficients of order up 1o e, and obtain at the lowest order
the following governing equation:

hy+ axhy, = —ahy, i13)
while at the order €, we have

hy+axh,=—ah

5
+Re|{a’x+ Fhy, — € We hlﬁh.‘u}f] .

(14)
1t follows from Eg. (13} that
d &
—hyix(1).1) = —ahylxit).e), (15)
clt
along the characteristic curve x(r) satisfying
dxlt
() =ax(t). (16}
Upon integration, these two equations give
hy=Cye™ along x=C&v. (17)

1t follows from (17) that along each characteristic curve (16)

xhy = CyC | =constant. (18)

Here, C, and C; are chamctenstic-curve dependent con-
stants. Since the above equations are valid at large times,
these constants Cyy and O can be related 1o the inital data by
matching these solutions with small time solutions which we
discuss in Sec. UL Similarly, following the same principle,
we can integrate (14) along the same chamclerstic curve
i16) o obtain f; as
p e, |
hy = Rﬂ[i‘-'_jm - —F-Liﬁtl_f""”
3 Ja
. 26 We CyC7

i

e-““‘] Ca+ Coe™, (19)
along the chamctenstic curve (16). In Eq. (19), C, is the
integration constant. In order to find the values of the con-
stants Cy, Oy, and Cy we need o match these solutions with
short-time solutions.

Short-time anafysis: Al the viscous diffusion stage, the
time scale is dictated by the fact that the local inertial term is
of the same order of magnitude as the viscous terms in the
goveming equations. The appropriate time scale is then
given by m=1t/¢€ and we keep other independent vanables as
these are, only the dependent vardables are denoted with over
bar. The comesponding nondimensional equations for mo-
mentum, continuity, boundary, and inital conditions reduce,
for the shorr time scale as

T TR T AF .0 R
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The associated boundary conditions reduce 1o

lrxi=ax, wirx0)=0, atz=0
-
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Ed
B0y zi=wilx =0
at r=0 [240)
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Following the above asymptotic procedure by expanding all
dependent vanables as

Flx.z.i) = E E"F'J-I:.t,;,r]l,
we get from (20) at the leading order as

fiy= 6lx)

sin(h, o 3o g
= .ra.-.'|:1 i —("—&f‘_lﬂ"m" 'hi| ;

for =10,

a0 n

(21)
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Wy =—

Po=10,

where A,=(2n—1}w/2 To complete the solution, we need to
calculate the first-order comrection to the film thickness for
short time. From the kinematic condition, Eq. (20), we obtain

the first-order correction to fiy(7,x) as

& fx (- 1}“‘
hy=—a ;5}7—2.&& 1532 — (e (hRe &) -1}
e =l
r;' % ]. z 1)
+— | 282 SRRy | 1, (22)
ax =1 Ma

where H,(ﬂ,.r}:ﬂ is used. The matching condition that is
derived from the requirement that the flow is continuous
from the start of the stretching to all succeeding time sug-
Zesls
lim A7) = lim h(7). (23)
T I—{)
Using (23) in (17} and following Van Dyke's composile
matching principle at the leading omder, we get

Cy=hyl0,8) = E). (24)

Therefore, to find fylr,x), one needs first o solve Eq. (17),
which reduces o

x(r) =&, (25)

Cy=x{0) = £ (say),

for x and then vses this in Eq. (17) o obtain
hy= 8lE)e™. (26)

It is w0 be noted here that xir) given above in Eg. (25) rep-
resents the characteristic line along which the film thickness
changes with time. The constant 5 in Eg. (19), can also be
estimated by using the matching relation (23) in (19) and
(22); this gives

2 Wu&’f“}. (27)

i

" 3 T
C,=Re Emfég&q+_j§;.‘?_ 8-

The composite uniform solution that possesses both the lime
scales s obtained as

T =00
o gl &
=

FIG. 2. Varation composite film thickness & with respect to x for different

vilues of 1 when Re=021187, F=024382 We=013921, e=0001, a=1,
p) 1k

and S=047(£+037 exp

he = (hy +ho— 8) — ar(£8);

i .
+eR.;[;a.+E—(%+§§5g52”_ (28)

IV. RESULTS AND DISCUSSIONS

By a simple observation of Eq. (21) for wy and wy will
reveal that this short tme soluton reduces o the leading
order solution for w and w given in (11) for 7—=. One may
also think, for a very small time, the fluid near the free sur-
face is at rest, so that the present solution obtained through
short-lime analysis should be the same as that of the 2D
unsteady boundary layer flow without free surface caused by
an mmpulsively stretched sheet. In this connection it is 1o be
remembered that the underlying assumption in Sec. 11, is
that the effect of viscosily is fell across the entire film thick-
ness. In other words, there is no region where the inviscid
layer is present over the film. As a result, one cannot com-
pare the present result to a 2D boundary layer solution
caused by an impulsively stretched sheet. Further large time
solution (11) for u depends on x linearly up 1o the first order
term but does not depend on z oat the keading order. Both
Froude and Weber number appear in Egs. (11) and (12) at the
€ order only indicating their effects are small on flow field as
well as on film thickness. The short time solution of the film
thickness h given in (21) and (22) show that the inertial
effect resists film thinning due 1o stretching as the terms
proportional to (e™"*® _1) are vary small at the beginning.
Figure 2 represents the variation of £ with x at several time
steps for nonuniform distribution §=047(£+0.3)° mp“‘JLI m,
keeping the parameters a=1.0, Re=021187, F=0.24382,
We=0.13921, and e=0.001 fixed. 1t is clear from the figure
that the film height becomes smooth al time more than
1=2.5. This indicates that the initial nonuniform film disin-
bution reduces to a smooth distribution at large time. Further
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FIG. 3. Comparison of compaosite film thickness & for uniform and nonuni-
form initial Alm  distribution, where 1 is fized when Re=021187,
F=0.24382, We=0.1321, e=00M, a=1. Dotted lines am for
S=0L17 1891 and dashed lines are for §=0.1535+0.1 sinl £).

it is clear from the graph that at time =2.5 the film thins

more in the region x<< 1. A careful serutiny of Egs. (19) and
(27) give

5 3 \ O FE?

hy=Re :432(—6_"’”4- —£8 _‘”) +—

: 3 2'::: 3 3a

I:f—:u _f—ﬁm}

2 We 4
+ 2e We ‘Sq'f_ I:;_'_Hm _f—:l!} :
i

(29)

This shows that the erm contmning We 15 only a negative
term which is responsible for tapering of film thickness in
the region for x=< 1. In this context we like 0 point out that
earlier we have seen in connection with spin-coating (Emslie
et al.™ and Dandapat ef af. *) that all initial irregularities are
smoothed out in the course of time and tapering also takes
place at the central region of the disk. We have examined
several different initial nonuniform distnbutions and see that
the final film thickness becomes smooth at large time. These
figures are dropped here to reduce the page length of the
manuscript. This above conjecture is further examined in
Fig. 3, which depicts £ versus x at different time ¢ for two
sels of initial distdbutions with the same amount of liguid in
both vie. §=0171891 and §,=0.1535+0.1 sin(£) are the
uniform and nonuniform distributions, respectively. These
two distributions are then plotted in Fig. 3 as dotted and
dashed lines, respectively, at different dme steps. It is evident
from the figure that both distributions converge at the same
thickness at large tme. Based on these observations we can
conclude that the final film thickness 1s msensitive 1o (a) the
amount of liguid distributed initially and (b) the initial film
thickness be it uniform or nonuniform. We like to point out
here that Eq. (28) is computed along the characteristic lines
given in (25). It is clear that the fluid at the point x=0 moves
along the charactenistic hines as tme ¢ increases. According
o our assumption (ii), we do not allow the fluid to enter into
the system, as a result the point x=0 is shifted to the poinis
x =0 as time increases. To avoid the complexity of shifting
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FIG. 4. Variation of composite film thickness i with respect to ¢ for differ-
ent values of a at fixed r=15 when Re=021187, F=024382 We

¥
=0.13921, e=0.001 and S=0478 expt .

our compulation starts from very near 1o zero bul not from
zero. Figure 4 represents the variation of £ with time r at
x= 1.5 for different values of @ and keeping other parameters
fixed. 1t is clear from the graph that the increased impulsive
stretching produces quicker thinning of the film at small time
but the film thickness converges 1o an asymplotic limiting
thickness at large time. Figure 5 depicts the variation of u
versus 7 at different time level for fixed x, a, Re, and € for
S=1+0.1sin(&). It is evident from the graph that as tme
increases, w increases gradually o attain its stretching value
at large time. Further the graph manifests that at a fixed small
time, w is maximum at the plane of stretching and it de-
creases as film height increases. Bul as tume increases, the
fluid velocity at the free surface also increases rapidly and
ulimately at a sufficient ime the entire film velocity will be
the same. It is also clear from the figure that the film height
also decreases as time increases. This trend we have noted
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FIG. 5. Variation of velocity & with respect to z at different values of r for
Re=0.21187, F=0.24382, We=0.12021, a=1.5 x=0.6 =0.001, and
d=140.1sin(&). Continuous lines are for r=0.1, dotted lines are for r=0.5.
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FIG. 6. Variation of velocity w with respect to ¢ for Re=021187, F
=L M4382 We=0.13921, e=0001, a=1.5 x=1.5 and S=2+03sinl&).
Contimuous lines are for z =024, dashed lines are for z=0.6A7, and dashed-
dotted lines are for z=hA"

earlier. Figure 6 describes the vadation of w with time at
different heights of the film for the same initial distribution
and it confirms the observations made earlier. Figure 7 de-
picts the varation of w with time at different heights of the
film when other parameters Re, a, x, and e are fixed and for
the same distribution. Figure 8 shows the varation of flow
rate g with time ¢ at different posidons along the siretching
direction. It is clear from the graph that at the initial stage,
the maximum amount of liguid flows out of a paricular x
along the stretching direction. Further it s evident that the
amount of liquid flow gradoally decreases with time and ul-
tmately converges W the same amount asymptotically at
large time.
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FIG. 7. Vuriation of velocity w with mespect to r for Re=021187, F
=0.24382, We=0.13921, e=0.005, a=1.5 r=15 and =269 cxp? .
Contimuous lines are for z=0.24", dashed lines are for z=0L64", and dashed-
dotted lines are for z=/f"

a 0.2 0.4 e ] 1

FIG. 8. WVanation of Aow rate g with respect to r for Re=(0.21187,

3 H )
F=0.24382, We=0.13921, e=0.005, a=1.5, and §=52F8 exp? . Contimu-
ous lines are for x= 1, dashed lines are for x=1.5.

V. CONCLUSION

We have studied two-dimensional flow of thin liquid
film over an impulsively siretching sheet. When the bound-
ary layer thickness coincides with that of the film, boundary-
layer equatons are no longer valid approximations o study
this type of flow problem. Full momentum equations are nec-
essary 10 solve this flow sitwation. We have solved the full
momentum equations analytically by using the singular per-
turbation technique and the method of chamcterstics o ob-
tain an analytic expression for film thickness. In the solution
process, we have assumed that the film thickness h=h(x,1) is
known at the onset of swretching. It is shown that this initial
nonuniform film thickness distrbution becomes uniform as
time increases. It is also found that the inigal film distibuo-
tion has no effect on the final film thickness at large ime.
Further, it is found that the initial stretching impulse also has
no effect on the final film thickness.
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