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Abstract

A particular form of non-linear o -model, having a global gauge invariance, is studied. The detailed discussion on current al gebra structures re-
veals the non-Abelian nature of the invariance, with field dependent structire finetions. Reduction of the field theory to a point particle framework
vields a non-linear harmonic oscillator, which is a special case of similar models studied before in [LE Carinena et al., Nonlinearity 17 (2004
1941, math-ph/A0406002; J.F. Carinena et al., in: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 2004,
p. 39, math- ph/0505028; LF, Carinena et al., Rep. Math. Phys. 54 (2004) 285, hep-th/0501106]. The connection with non-commutative geometry

is also established.

1. Introduction

In the present Letler we aim to reveal some interesting prop-
erties enjoyed by the current algebra of a particular form of
non-linear a-model. Similar type of models became attractive
in the late sixties [1] in the description of mesons, as a non-
linear realization of chiral groups, (e.g. SU(2) = SU(2)). Later
it appeared that if these models are reduced 1o their correspond-
ing point particle counterpart, (keeping only tme denvatives
in the field theory Lagrangian from the operational point of
view ), they gave nse o non-linear harmonic oscillator models
with very interesting behavior [2]. These oscillators were fur-
ther studied in all their generality by Carinena et al. [3].

The a-model that we consider here 15, m fact, the massless
limit of the models analysed in [1]. But because of this fea-
ture, there are additional global gauge invanances associated
with it, leading w interesting current algebra structures. The
current algebra in this self-interacting model turns out to be
non-Abelian, with the structure functions being field dependent.
Generie forms of non-Abelian current algebra have been stud-
ied in [4] where it was assumed that the o-model exhibits a
global imvarnance under some inemal Symmelry group, repre-
sented by a (commected) Lie group & with the corresponding Lie

algebra g that obeys [T9, T?] = f**T¢ in some arbitrary basis
(T4, with .f:-n- being the structure constants. We emphasize that
in the present work, we have been able w recover all the re-
sults of [4] with the field dependent structure function F':."b{:u;l}l
replacing the structure constant _f;"'h. Furthermore, our model
reduces 1o a special case of the non-linear oscillator models
studied in [3], which is expected. We will make some brief ob-
servations about it towards the end of the Letter.

Works of a similar nature have also appeared in [3,6] where
particle [5] and field theoretic [6] models have been studied,
which are similar to ours. In [5] the particle model 15 studied
from the perspective of a quantum super-integrable model and
[6] consider the duality aspect of different o-models. As we
will mention, these models have some non-trivial connection
with the non-commutative geometry framework.

2. The o-model

We stant by considering the Lagrmngian,
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This is a particular form of o -model, in the sense that,
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Recalling eadier works [1], our model actually relates to the
choice of Gasiorowicz-Geffen coordinates (i.e. A:{fp:}l =c
with ¢ being a constant in the representation of the meson field
§ as in Delbourgo et al. in [1]),
S=ao+4irt .@A{fpl}.

The variational equation of motion is
943, " +2eLep™ = 0. (3)

For a single field, i.e. a = 1, exploiting a mode expansion for

$(x) = ¢“¢** in the equation of motion (3), we obtain
i_
-l-r-_—cna-" = ﬂ fq'}

indicating that the “particles” are massless, k- =10

Let us now discuss the symmetries of the model. Besides
the obvious spacetime symmetries, the model enjoys a global
zauge invarance, with the symmery transformation,

a¢ﬁ _‘I," - m?fﬁ (5)
with ¢ being an infinitesimal rigid parameter. The comrespond-
ing conserved Noether curent is given by,
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=/ 1—cd2G""0,0". (6)

However, generalizing this global gauge invarance to a local
invariance is tricky. For a local gauge wransformation (3), where
€% x) is not constant, the Lagrangian transforms nicely,

&L= J;::']”f“{x}. (71
However, the current transfonms in a covariant way,
.fﬂ_r'{rl?l”:]ﬂf‘,fl ¢ :] ¢:’|’}f ,.-—{";'ﬂ ;EI_¢ J-ﬂ} b
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We have |dLnIJILmj the structure function o be,
C
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by o gl b peie
Fo = Vi (p28™ — p"5%%),
(9
with F?% = _ plac,
Hence we can consider an interacting Lagrangian £ of the

form,
£ = £+J;jﬂ”“. (107

In order to achieve local “gange™ symmetry. A7 will have 1o
transfonm as,
c

1= cgh?
— —{H_r_:fﬂ + Fﬁh.fb A:,;}
= —(Dye)’. (11)

ﬁfl:.i _ —Eflﬂf” i f:rheffde'fb‘?:.fﬂe;

It will be interesting 1o see if construction of a locally gauge
invariant kinetic term for A7 is possible. which might require a
generalization of the real fields ¢ complex fields.

3. Current algebra for the o-model

The canonical definition for the energy—momentum lensor
15,

&L
gy =fﬁ|u¢ﬂ—lf‘u£. (12}
d{du @)
In the present case, this leads o
: . “p) ("
T P P L e 1¢H‘::’ D _ e, (13)
—cd?

which is conserved, symmetric and traceless for (1 4 1) dimen-
S10MS.

We now reverl 0 a Hamiltonian framework, which is suit-
able for studying the cument algebra. The conjugate momen-
Lurm,

H‘f:%, é"':_n'["'—{'{l?l..l'f}li'“,
a _ g {¢'¢'} i
=t o7 gz ¢ (14)

yields the Hamiltonian and total momentum densities,

Htl] EH
= 1 - Al ’_r {‘i'f]ﬂ?'}'{'?'f]ﬂi'}
= E|:.-T a4 i i — el . —n;.‘l- ]

(15)
Y =P =ggige, (16)

which are the generators of time and spatial translations, re-
spectively.

The gauge current is also expressed in terms of phase space
variables,

J-ﬂ 1 3 :’n’
n _1,'.' —ofew

Jf =41 —c-¢1(d.¢‘“ g ¢‘“) (17)

— et

We exploit the equal-time canonical Poisson brackets:

{‘;.ﬂ{_r}‘ _.-[h{.'p}} — ﬁ"’bﬁ{.r _ _1"::'1

[#°(x). ¢ (1)} = [=* (x). 22 (1)} =0. (18)
The internal current algebra is “non-Abelian™ in nature:

(4 @ 5 0] = c(9x" — °x)o(x —»)

C
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= F 58 (x — y), (19)

L8 I2 0} = (1 — e ()8 + e (x)9" ()38 (x — ¥)
+ 2c(¢“ " — (i) 8*7)i(x — ¥)

= JP ()i d(x — y) + FPI8(x — ). (20)

The current algebra closes by considering 79° as a composite

operator [4],
J’szfl—mz}hﬁh+c¢ﬂ¢h, (21)
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with the algebra,
{8 (x). TPy}
-
= I'(‘."ll _(-¢1){Ffb"rj“'r g F':'""r.f'h“r}ﬁ{_r o 1} {22}

Rest of the commutators are trivial since they do not involve the
mimenta,

[(H (. 57} =& ). (0} =0. (23)
Next we come Lo the diffeomorphism algebra,

{H ), H | = (Pilx) + P (0)d:8(x — ),
{H(x). Pi(y)} = (Hix) +Hiy))dd(x — ).
{Piix), Piiy)} =0. (24)

Finally we consider the mixed commutators:
[Hx), I} = I dd(x — y),
{Hix). I8}
= J{(0did(x — y) —2e(dod [ — % I3 )86 (x — ¥). (25)

In (25) we have used the relation,

¢ = |9 (x), H} = 7% —c(gp .m)¢". (26)

All the brackets with 7 are conventional in nature since 75
has a canonical structure and so they are not shown explicitly.
Henee the general current algebra structures discossed in [4] are
exactly reproduced in our model with a field dependent non-
Abelian structure function.

4. Non-linear harmonic oscillator and relation with
non-commutative space

To recover the oscillator model, we formally replace the
ficlds ¢“(x) in (1) by X;(t) variables and interpret the later
as particle coordinates. This gives us the Lagrangian,

P i

X +-—, (27
21 —cX? )

1
L= 3
where X; are spatial coordinates, ¥X=XiXi.X. X = X‘-j(;,
and the model is in arbitrary space dimension. For convenience,
we have taken the mass 0 be unity and ¢ is a parameter. As
mentioned before, this model is a special case of systems dis-
cussed in [3] (@ = 0 1in the notation of [3]). In fact this model
can be studied as a vanable mass problem [7] as well with in-
lerpreting the total Lagrangian (27) as the Kinetie term. The
equation of motion,

- |:1.T c{x_i'}l]
Xi=—2c| X"+ -—— |X;

3 21 —rcXx? = —(2cL)X;. (28)

can be reproduced in the Hamilionian framework with,

aL . (X.X%)
P‘E—.ZX]'F '

i, £ (29
aX; I —p X2 )

H=XF—L= %[PZ — (X . PY). (30)

Exploiting the canonical Poisson brackets,

{Xi. Pj} = djj. {Xi, X} ={F, P} =0 (31)

and the definition A = [A, H) for any dynamical variable A,
we oblain

Xi=—[2cHX;. (32)
MNotice that in the present case L = H which justifies the parti-
cle o be considered as “free”.

To focus on the striking feature of the non-linear oscillator,

we restnel o one-dimensional motion and consider bounded
and perodic solution of the form,

1,
X, = T sin{v'2cEt), (33)

where the subscript X, is putin to remind us of its exotic nature.
This solution corresponds 1o the energy E.

! 2 2 ! 2.2
E:E[P —c{X.P}]:EAw, w=v2E. (34)

For comparison, we write down the behavior of 8 normal
harmonic oscillator,

T I
H=2P?+ 2cX?, (35)

that has solution,
[

¥ o 22 sin(+/cf). (36)
Y ¢

Notice that for X, the amplitude is fived, depending upon ¢
whereas the freguency is energy dependent, oscillations becom-
ing more rapid with larger energy. This is qualitatively different
from the behavior of a nommal oscillator and does not reduce 1o
iLin any limil.

In order to see the connection with non-commutative geome-
try, we now discuss the conserved quantities. Obviously angular
momentum Lij 15 conserved:

Li=XiPj—X;B,  Lj=0. (37)
But there are other conserved quantities p; as well:

pia ol —cX2B, ‘pi=0D. (38)

Now we can forge a connection with a particular form of
non-commutative space. Notice that py ae non-commulting,
{pi. pj =clxip; — x;pi). (39
and wgether with the identification,

X;

X = — (440
il 15 easy to derive,
{xi.x;} =0, {xi. pjl =& +ecxix;. (413

Thus, (39) and (41) generate a particular form of non-commuta-
tive phase space in (., p;) that 15 quite well known in high
energy physics [8.9]. This is actually a complimentary form of
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the Snyder algebra [9] (see Ghosh in [B]). For o = 0 we mecover
the normal free particle.
The Hamiltonian (30) in (x;, p;)-spacetime tums out 1o be,

1 Fy P
H=[(1+ex®)p® —elx. p)’]. (42)
with the subsequent equations of motion in Snyder spacetime,

ii={x Hy=(14+ex)p,  pi=ipi. H =0. (43)

This might be interpreted as a “free” particle in the sense that
there is no external force bulit is moving in a constant curvature
Snyder space. One might interpret the non-canonical term in %5
i (43) as an anomalous velocity term or equivalently consider
a variable mass paricle.

5. Conclusion

We have studied a particular non-linear o-model, that cor-
responds to the massless limit of dervative coupling models
studied earlier [1], in meson phenomenology. Apart from the
Poincare invarance, the model enjoys a non-Abelian global
zauge invanance, with field dependent structure functions.

The field theory studied here is worthwhile for the following
reason. In [3] it was pointed out that the non-linear oscillator
model is integrable [10], in the sense thal it contains conserved
quantities in involution, that are same in number as the num-
ber of degrees of freedom. It will be interesting to see whether
similar conclusions can be drawn for the field theory studied
here. From the analysis done so far in this paper, it is not clear
whether this analogy can be extended to the level of integrabil-
ity for the field theory.

In the point particle reduction, our model reduces 1o a par-
tcular form non-linear oscillator, studied earlier in [3]. The

connection of the present oscillator model with a specific form
of non-commutative space have also been revealed.

Acknowledgement
We thank the Referee for the constructive comments.

References

[1] K. Delbourga, A. Salam, I Stmthdee, Phys. Bev. 187 (1969 1999;
K. Nishijima, T. Watanabe, Prog. Theor. Phys. 47 (1972) 996,
[2] BM. Mathews, M. Lokshmanan, Cruart. Appl. Math, 32 (1974) 215;
M. Lakshmanan, 5. Rajasekar, Monlinear Dynamics, Integrability, Chaos
and Patterns, Springer-Verlag, Berlin, 2003,
[3] 1F. Carinena, MF. Ranada, M. Santander, M. Senthilvelan, Nonlinear-
ity 17 {20041 1941, math-phi0406002;
LF. Carinena, MF. Ranada, M. Santander, in: Proceedings of [0th Inter-
national Conference in Modern Group Analysis, Larnaca, Cyprus, 3004,
P 349 math-ph0505028;
IF. Carineny, M.E. Ranada, M. Santander, Rep. Math. Phys. 54 (300k)
285, hep-thA1501 106,
M. Forger, 1. Laartz, U. Schaper, Commun. Math. Phys. 146 {1992) 397,
hep-th9201(125;
M. Forger, I. Laartz, U. Schaper, Commun. Math. Phys. 159 {19941 3149,
hep-thA2 101340,
[5] T.L. Curtright, C. Zachos, Phys. Rev. [ 49 { 1994) 5408, hep-th940 1006,
[6] T.L. Curtright, C. Zachos, New 1. Phys. 4 (2002) 83, hep-thA1204063.
[7] IM. Levy-Leblond, Phys. Rev. A 52 (1995) 1485.
[8] §. Ghash, P, Pal, Phys. Lett. B 618 (2005) 243, hep-thfi15021492;
5. Ghosh, Phys. Lent. B 623 {2005) 251, hep-thA1506084
5. Ghaosh, Phys. Lett. B 638 {2006) 350, hep-thA151 1302,
[9] The first instance of a non-commutative spacetime was proposed by
H. Snyder, Phys. Rev. 71 {1947) 38,
[10] A. Das, Integrable Models, World Scientific, Singapore, 1989,

[4



	study of the non abelian-64.jpg
	study of the non abelian-65.jpg
	study of the non abelian-66.jpg
	study of the non abelian-67.jpg

