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Role of migratory bird population in a simple
eco-epidemiological model
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Migratory birds play a vital role in the spread of diseases such as West Mile Virus, Salmonella,
ete. In this paper we propose and analyse (both analytically and numerically) a single-season
mathematical model o observe the dyvnamical changes that ke place due Lo the mroducbon
of a disease by migratory birds, We observe that the Torce of infection and the predation rate
play important reles in main aining stability arcund the positive steady state, We also observe
that proper predation may even result in the extnction of the infective migratory prey
pepulation from the system.

Kevwaords: Ecoepidemiological system: Migratory bird popu lation; Multi-positve steady state;
Predation

1. Introduction

Hadeler and Freedman [1] were probably the first to describe a predator —prey model
where the prey is infected by a parasite, and in turn infects the predator with the
parasite. Afier the pioneering work of Hadeler and Freedman [1] quite a large number
of papers were published on the predator— prey system with infection in the prey [2 - 4],
but, to the best of our knowledge, none of these papers studied the effect of migration
of the prey population, especially if the migratory prey population has the ability to
carry a disease. Migration may introduce a new disease to a new location, or can even
re-introduce a disease that was totally eliminated from that location. For example, the
1962 epidemic of EEE in Jamaica resulted from transport of the virus by birds from the
continental United States [5]. In another example, West MNile Virus (WNV) was
introduced to the Middle East by migrating white storks [6]. Although not verified in
the field, it has been observed that a predator can be infected after predating a prey
infected by this virus [hitp:/ jenvironmentalrisk cornell edu/WNV)]. An epidemiological
model for West Nile Virus has been proposed by Wonham et al. [7], but they neglected
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the effect of predation (if any) on those migratory birds that are responsible for the
spread of WNV. The same problem arises in the case of Salnonella bacteria. [t was
observed that some wild migrating birds are responsible for the spread of these bacteria
[8]. In another example, the highly pathogenic avian influenza virus is suspected of
being re-introduced into Japan by wild migrating birds from South Korea [9). This is
an important problem, but, unfortunately, no real effort has been made by researchers
thus far to study the changes made by these migratory populations in an ecosysiem.

In this paper we shall propose and analyse a oneseason model where the prey
population migrates from one location to another carrying a disease. We have divided
the migratory prey population into two groups, namely the susceptible prey and the
infective prey. The predator population, apart from other sources, consumes both prey
populations. Diseases spread by migratory birds, such as salmonella [10] and WNV [7],
are season dependent. We are interested in observing the behaviour of a dynamical
system for a certain period when migratory birds are present in the system. This within-
season model is an important first step in understanding the role played by migratory
birds in spreading a disease, and the effect of predation on migratory birds. Our
analytical and numerical results sugpest that the introduction of a disease via a
migratory population makes the system unstable. We have also observed that proper
predation may prevent extinction of the species.

The paper is organized as follows. In section 2 we present the basic mathematical
model and the boundedness of the solution of the system. In section 3 we analyse all
possible subsysiems of our model system. The analysis of the whole system is shown in
section 4. We perform a numerical analysis in section 5 to support our analytical
findings. Finally, we discuss our findings in section 6.

2. Mathematical model and the boundedness of the solutions

Let us consider a prey population that enters an ecosystem where its predator
population is already present. We assume that some of the members of this migratory
prey population are carrying a disease. Once they enter the system, they start to spread
the disease to other members of the population. Therefore, the total migratory prey
population N present in our considered system can be divided into two classes, the
suscepiible prey population v and the infective prey population & Therefore, at any
time ¢ the total migratory prey population is M) =s(¢)+ i(). The population density
of the predator which is already present in the system is denoted by p. Before
formulating the model equation we make the following assumptions concerning the
predator population and the migratory prey population present in the systen.

o (Al) The model considered here is for one season and, therefore, instead of
taking logistic growth in the prey population we have considered a growth term
known as constant immigration with exponential deaths [11] for the migratory
prey population. Let 4 be the constant rate of recruitment of the prey population
(including newborns and migration) [12,13] and o is the natural death rate of
the prey population. Then the growth rate of the migratory prey population is
ziven by

d]‘l‘r

— = A —dN.
dr .

In this case the population approaches A/d as ¢ goes to infinity.



Downloaded by [Indian Statistical Institute] at 03:52 10 August 2011

Role of migratory bivd popualation in a simple eco-spidemiolgical model 10t

o (A2) The infective prey population is generated by the infection of susceptible prey.
It is assumed that the infective prey population is not n a state of reproduction.
However, as time passes, some of them recover from the disease and again become
susceptible. Therefore, the dynamics of the prey population may be written as

dy . .
e A— bsi — v + fi,
di o, o
e hyi — (e + i,

where b is the force of infection, fis the recovery rate, and ¢ is the death rate of
the infective prey population, which includes natural death and death due to the
disease. Obviously, ¢ = d.

o (A3) Here we shall study the dynamics of the system for the season when the
migratory prey is present. However, in the absence of migratory prey, we assume
that the predator population is present in the system. Therefore, in the absence of
migratory prey, Le. outside the considered season, there must exist some alternative
resource for the growth of the predator population. Depending on that alternative
resource the predator population is assumed to grow in a logstc fashion with
carrying capacity k& = 0 and intrinsic growth rate constant r = (. Hence, in the
ahsence of migratory prey. the growth equation of the predator is given by

ap . ?

dr JI*p(l a ,{-)'

Mow, in the presence of the migratory prey it is not possible for the predator
population to switch its predation totally from the alternative resource to the
newly available migratory prey population. Therefore, in our model formulation
we assume that the growth rate of the predator population is governed by both
the alternative source and the migratory prey population.

o (Ad) Here we also assume that the predator population becomes infected afier
predation of the infective prey. For example, cats that predate on song birds
infected with salmonella can pick up the illness and die [hip:/ 'www_gov.nf.ca/
agric/pubfact/salmonella.htm). Therefore, predation of the infected prey popu-
lation is included in the predator’s growth equation with a negative sign, as done
by Chattopadhyay et al. [14] in an eco-epidemiological context. However, it is
assumed that the infection does not spread among the predator population
because either the infected predators die immediately after becoming infected by
the disease and are thus removed from the system [15], or they are the dead-end
host of the disease like mammals in the case of WNV [7].

o (AS5) Further, for mathematical simplicity we assume that the functional response
{prey eaten per predator per unit of time) and the mode of disease transmission
follow the simple law of mass action.

From the above assumpitions, we can now write down the following differential
equations:

§;=A—hm'—k|.ﬁp—(ﬂﬂ' + fi,
U bsi —kapi — (e +)i (1)
i A i — e+ 1,

dp By e g
E—rp(l—x)+.l|ap—£3pr,
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where pi0) =0, 5(0) =0 and §{0)=0. Here, &, and &k, are the searching efficiency
constants or the predation rate on the susceptible and infective prey population,
respectively, and &) and &5 are the growth rates of the predator due to predation of the
susceptible and infective prey population. Obviously, ky > &) and ki > K. Also,
ey < ks, which is quite natural. For example, in the case of salmonella, sick birds often
appear uncomfortable, with heads drooped, wings out, feathers fluffed up. and
breathing heavily, and this type of behaviour keaves them more suscepiible to predation
by large birds or cats [http://www gov.afca/agric/pubfact salmonella. him] [16].

For simplicity, we write model (1) in dimensionless form by using the variable
transformations P=p/k, =5 /=i and t=rt. With these quantities the system is
transformed into a dimensionless form:

4 B iSI—aSP—3S+pl,

dr

4 _ is1—prp— (p+ wl, (2
dr

L P{1— P)+a'SP— f'PI,

dr

where A=blr, B=Ajr, d=djr, y=elr, p=fir, a=kk\fr, f=kkajr, o/ =k\/r and
§ =K/

LeEmMMA 2.1 Al solutions of (2] that initiate in ﬂEH are wniformily bounded.

Proof  We define a function

W=S8+1+P (3
The time derivative of (3) along the solutions of (2) is given by

dw
E=E—-:SF—&S—;3P!—}'!+P{1 —P)+ 48P P

LB—(8S+N+ Pl —P) (since o < a).
Taking i = 0 we obtain
gB+(q—8)S+(y—yf+(y+1-P)P.

Mow i we choose p<min (4, 7). then

ilid +hyW < B+ Pr+1-P)
dr
':1'|‘f'|':|2
< AT LA
B+ .

It is clear that the right-hand side of the above expression is bounded. Therefore, we can
find a constant { = 0 such that

dW

— 4+ <L
D +al =
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Applying a theory of differential inequality [17]. we obtain
. { o .
0 < W(S,I,P)<—(1—e™™)+ W(S(0), 5[0), P{0))e™".
i)

For¢ — oo we have 0 < B < {/y. Hence, all solutions (S(), f(r), P(e)) of (2) that initiate at
($(0), 1{0), P(0))=R) . are confined in the region

0k, +

G= {{S.J’_Pja?li‘a_Jr: W= jll+ 0, for any 0 > 'EI}_
i

for all ¢ = T, where T depends on the initial values (S(0), £0), A0)). Thus, the set & 1s an
invariant set which contains the 22— limit set of all the paths of system (2) that initiate in the
positive octant. O

MNow we are interested in observing the dynamics of the following subsystems.

3. Dynamics of all possible subsystems of (2)
3.1 Analysis of system (2) in the absence of discase
In the absence of the disease, system (2) takes the form

ds

— =8—-a8P— 8,

dr 4)
dp !
 — P(l - P)+«SP.

dr

This system admits two equilibria, namely the axial equilibrium £, = (8/5.0) and the
interior equilibrium point £ = (8, P), where P=1+4'S and § is given by

e/S + (2 +8)5—B=0. (s)

By Descartes’ rule of signs, equation (5) has exactly one positive root. Therefore, the
interior equilibrivm exists for any parametric value.

THEOREM 3.1 System (4) is globally asymprotically stable.

Proof It can casily be venified that system (4) is bounded. Now, using the variational
matrix method we find that £ is a saddle point and £ is a locally stable equilibrium
point. Now, we will test for the existence or non-existence of a periodic solution
around the positive equilibrivm. To do this we shall use the Dulac criterion [18]. Let h
(8, Py=1/8P and D = (3(hf)/38) + (X hg)/ D P), where

i8S P)=B—aSP— 485,
(8, P)=P(1 - P)+4'SP.

Therefore, D, = —(B/PS") —(1/5) <10.
This result shows that there is no non-trivial positive periodic solution around the interior
cquilibrium of subsystem (4). Thus, subsystem (4) 15 globally asymptotically stable. O
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3.2 Analysis of system (2) in the absence of the predator

In the absence of the predator, system (2) takes the form

O3 B AST— 88 4l

dr (6)
i i - '
E= .r.S'f— {“ +y:|.f.

This system also admits two equilibria, namely the axial £ = (8/8,0) and the interior
equilibrium point

o= (1t AB—(y+p)d
i I T Ay '

Note that E exists if 4 > [{y+ p)d)/B.

THEOREM 3.2 The existence of the positive interior equilibrivm poine ET of subsysiem (6 )
ensures ity global asymptotic siability.

Proof Here also it can easily be verified that subsystem (6) s bounded. Moreover, the
existence of the interior equilibrium point £ ensures that the equilibrium point £} is a
saddle point and that the interior equilibrium point £V is a locally asymptotically stable
point.

Now, we will test for the existence or non-existence of a periodic solution around the
positive equilibrium. To do this we shall again use the Dulac eriterion [18].

Let (5. N=1/57and D ={NK")/05) + (0K ¢/, where

F(8.1) =B —I8F— 58 + p,
(851 = i8I —(y +u)l

Therefore, D, = —(B/IS™) — (u/S7) < 0.
This result shows that there is no non-trivial positive periodic solution around the interior
cquilibrinm point. This proves the theorem. O

4. Analysis of the whole system (2)

4.1 The equilibrivm points and the conditions for their existence

System (2) possesses the following biologically feasible equilibria. £, = (8/4, 0, 0),
E,= (5,0, P), where § =(F — 1)fa’ and P is given by the positive root of the

quadratic equation 2P’ +(8 —a)P — (6+ Bx)=0, and Ey = (S, 1. 0), where 5=
(p+u)/dand T=[BL — & (y+ u))/v4.

Remark 1 Equilibrin £y and £ exist for any parametric value, whereas F; exists if
A= [y +pp)/ B
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We now seek the regions of the parameter space for which model system (2) admits a
feasible interior equilibrinm (equilibria). Any feasible equilibrium must correspond to a
positive root 8% of the quadratic equation

glx) =0, (7)

where
glx) = w18 4+ w8 4w,

and wy, ws and wy are given by

(1) wy =44 — fia" —afin,
(i) wa=of(y+p) — HP+y+p) — S +p(df— A),
(i) wy= B + p(f+ 7+ p).

for which, additionally,

U LETL IO & 22

MNow, we describe the range of possibilities for which an interior positive equilibrium
{equilibria) exists.

2

Casela. If 2 < fiv, then by Descartes” rule of signs there exists exactly one positive root of
equation (7). Also, * = 0. Now, if this positive root s greater than (p +u)/A, then P* = 0.
Hence, if 4 < ff', and the positive root of equation (7) s greater than (p + u)/ A, then there
exists 4 unique interior equilibrium point ¥ 5%, IF P*).

Case Ila. If iz’ < 4 < fla’ +aff, then by Descartes” rule of signs, here also equation (7) has
exactly one positive root. Now for J* = 0, this positive root must be less than (§+ 7+ u)/
{4 — fla"), and for P* = 0 this positive root must be greater than (y+u)/A. Henee, if i’ < 4 <
P’ +aff, and the positive root of equation (7) lies in the interval ((p+ /i, (f+p+u)
{4 — fa2")). then in this case also there exists a unique interior equilibrivm point E¥S*, [* P¥).

Case [Ila. If wy =0 and w, < 0, then by Descartes’ rule of signs, equation (7) has two
positive roots. For I* = 0 and P* = () these positive roots must lie in the interval ((y + p) /4,
(fi+7+ )4 — i), Now, if one positive root lies in the interval ((y + p)/A, (f+7+u)/
{4 — fiz}). then there exists one interior equilibrium point, and if both positive roots liein the
interval ({7 +u)/A, (f +73+ /(4 — fiz")), then there exists two interior equilibrium points.
However, if no root lies within that interval, then no interior stationary solution exists.

4.2 Local stability analysis (LAS)
The variational matrix J of system (2) is given by
—Af—aP -3 —AS+p —a8

f = il IS —fP —(p+p) —pt
o P —p'P 1 —2P+a'S — f1
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THEOREM 4.1 The axial equilibriver £ is a saddle point with the § axis as a stable manifold
and the [P plane as an wnsiable manifeld i 4 = [(p+ p)8)/ B or the P oaxis as an unstable
manifold and the ST plane av a stable manifold if 4 < [(7+ u)d]/B.

THEOREM 4.2 Jf

g ZABE 5 Q) — 2oy + i} __
d+a—0Q

where () = V/{{J - :at]l2 + da(d + Bx") = 0 holds, then Es iv a LAS.

Proof The variational matrix of system (2) at £ s given by

—aP —a —i8 —a8
Ji = 0 AN — P —(y4p) 0
o o - P -

The characteristic equation is given by

-€+P’)I+E—‘:-+M’SP'}={]. (8)

{x—uf—ﬂF—h+ym{f+(5 S

Therefore, the system around £, i locally asymptotically stable if A8 < fF +(p +u), e if

F <y + e + 404 — fiz"). Substituting the value of P and after some simple algebraic
caleulations we obtain the required conditions for the LAS of E,.

THEOREM 4.3 ff 4 = [[p +ula'y + 08N {JFE — 1) holds, then E; is locally asymproatically
stabfe [ LAS).

Proof The variational matrix of system (2) at £ is given by

-8 —i84p -8
Tt o 0 —pr .
] 0 1+a85—fT

The characteristic equation is given by
x—(1+a'8— A+ (AT +8)x + 8T —pill =0,
1+o'§—f 2 (] 23 —pil} =0 9
Since AS > u, E;is LASif 14 oS — 1< 0, i.e. if

(y + p)a'y + f'8)
FB—y )

For the local stability analysis of the positive equilibrium point we follow the technigue
used by Chattopadhyay and Pal [19]. O
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THEOREM 4.4 [f there is exactly one interior stationary sefution E*(5%, I*, P*), §* =10,
F=0, P*=0, then it is a sink provided wy =0 and w, < 0. If there are two interior
stationary solutions, then one is a saddle and the other is a sink.

Proaf The vanational matrix of system (2) at £¥ s given by

B+ul*

—= —i&4+p —as
J= AP 0 —fpr
1.l'-.‘ji. _ﬂ-rF-: _Pt
Here,
B I
trace J* = —( -E‘u +P‘) <,
re
detJ* = —?{1115‘2 —w3),
D) = trace J" x M{J") —detF,
therefore

. (B4 pl)ir (B+ ul*)? P (B+ul)P?
DY) = — [T (A8 o - =

+(B+plad P +0d'S P+ (A8 — p) P

+i{(aa— 1)AS" +7 +,u}F‘.f‘],

where M{J*) is the sum of the second-order principal minors of J*.

Toexamine the local stability of the interior equilibrium {equilibria), suppose that there is
one positive equilibrium E¥(8*, [*, P¥) or two positive equilibrin £} (8], ], P]) and
E5(85, B, P3). Then (87,17, Pf) satisfy

gl = '|1'|2":|':2 + w8 w3y =10,
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and
po B S+ B+y+a)
; B '
P _ STt T T §

i ﬂ :
Let us define the function
Mx*) = wiS7? —ws.

4

The signs of A{x}) and det J* are opposite. It is useful to compare the two functions g
and fi. Suppose these two functions coincide at §= 8, Then,

g(8y) = h(Sy),
or, cquivalently,

-2y

5 =

i

Wa
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i '3{11'3: — dwywy)

H':Se.rj =

5
Wwas
Since we are only interested in the real roots of equation (7), we shall confine our attention

to the case w3 —dw wy > 0. Thus, the sign of g(S,) is opposite to the sign of wi. As
wy = 0, g(8,) = 0. We now consider each of the cases of theorem 4.4 in turn.

Case Ib. We observe that, if i < fix’, then there exists exactly one positive equilibrium E*(S*,
I*, Py 0t is easy to venfy that det * = 0, since wy < 0 and wy = 0. Hence £% 15 a saddle.

Case IIb. We observe that, if iz’ < 1< fio' +aff', then there is also a unique positive
equilibrium E*§*, I*, P*). Here also, J* =0, since w) <0 and w; = 0. Henoe E* s a
saddle.

Case IITb.  If vy = 0 and ws < 0, then it can easily be verified that

{iv) trace J* <
v) D) = trace J* x M) — det J* < ).

For the above conditions we observe that equation (7) has two positive roots. Denote
these roots by 5 and 5; with 0 < &, < §; (say), and corresponding [, = [; = 0, since
4= fla’. Assume that there exists at least one interior equilibrivm point, so that f; = 0.
Now, at §= 5, g(5,) < 0. Hence 0 < §, < §, < §, and, therefore,

re re

det J* (Sp, ., Pa) = == h(S2) < ——-(S2) = 0.

Hence, £5(53, f5, P3) is a sink. If we have two interior equilibria, then f; > f~ > 0 and

% & ras

" il e
det (5.0, ) = —Tf!{ifaﬂl = = o z(&)) =10

In this case, EJ(&]. 1), P 15 a saddle.

5. Wumerical analysis

The dynamics of system (1) around the positive steady state has been simulated
numerically for a wide range of parameter values. The force of infection b, and the
predation rate on the suscepiible prey population &, and the infective prey population
ks are the three key parameters that directly influence the dynamics of the system.
Thus, we have studied the dynamics of the system for a wide variation in b, k| and k..
We have also siudied the dynamics of the system in the absence of the recovery rate ['to
determine the role of recovery in the system.

5.1 Dynamics of system (1) when f+ 0

In our numerical experiments we have taken a hypothetical set of parametric
values: 4=7 individuals ha—'day™', r=033day™', k=40 individuals ha™',
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k', =0.6 x k| ha per individual day ', Kk} = 0.6 x k; ha per individual day ™', d=
0.009 day™', f=1.8day™ ", e=0.0097 day™', h=0.1 ha per individual day ", & =
0.003 ha per individual day ', and k»=0003 ha per individual day~'. For these
values wy = Oand ws < 0 and so equation {7) has two positive roots. Substituting these
parameter values in equation (7) and solving we obtain 8, =1841 and 5= 19.15.
Apgamn substituting these parameter values and 8, and 5; in the expression for ™
and P* we observe that system (2) possesses two  positive equilibria, namely
EN(St = 1841, 17 = 154.64, P} = 0.25) and E3(S; = 19.15, F = 41.96, P; = 087). The
eigenvalues associated with the variational matrix of system (2) at E} and £3
are (— 6696, — 0476, 0.133) and {—33.03, —0.03, —0.98), respectively. Therefore, the
positive equilibrium point £} is a saddle, whereas the positive equilibrium point £5 is a
sink, supporting our analytical results. Therefore, we will concentrate our analysis
around the positive steady state E5. One should note here that these population
values at E3 are in dimensionless form. The actual values of the populations at £ are
(19.15, 4196, 34.80). Substituting these parametric values in system (1) and taking the
initial population of the susceptible prey, the infective prey and the predator as
3.4 individuals ha=', 0.9 individuals ha~' and 12 individuals ha ™', respectively
(which remains fixed for the entire numerncal analysis), we obtain the results shown
in figure 1.

Mow keeping the other parameters fived we studied the dynamics of the system for a
wide variation in & (0001 <h=<4), & (0001 <k, <0.01) and &, (0003 <k, < 0.9),
keeping in mind that &, << k. We start with the parameter b Keeping the value of &
{(=0003) and &, (=0.01) fixed we varied the parameter b and observed that all the
population of the system coexists for a wide varation in b (0052<H<0111)

m T T
BO E 4
' p
5 i
=
2
o n 7]
u 1 1
O &0 100 180

Tirre

Fizure . Time evoluton of all populations for A=0.1.
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However, iff we take a value of b below 0L.052 (b,,;,), then we observe that the infective
prey 1s ehiminated from the system (see figure 2{a)). If b becomes greater than 0.111
(P, then it leads to the extinction of the predator population from the system (see
figure 2(H)).

Therefore, it is clear that by keeping the force of infection below by, one can make
the system disease-free. This result also indicates that, to save the predator population,
we have to keep the force of infection below by,

In addition to the epidemiological parameter (5), the predation rates on the suscep-
tible and infective prey, i.e. k) and ks respectively, also play vital roles in the dynamics of
the system. Therefore, we then varied the parameters &, and &, keeping the value of
b (0.1) fixed. We first varied the value of k| keeping &2 (0.01) fixed, and then varied
ks keeping &, (0.003) fixed. We observed that all three populations coexist for a wide
variation in &y (00024 (K yin) < 5 < 020039 (8 ee)) and s (0003 (Raypmin) k2 <
0.012 {ksymax)). Beside these ranges of &) and k&, either the predator population or
the infective prey population is eliminated from the system. For example, if we ke a
value of k) below k. then the predator population is eliminated from the system (see
figure 3). Thus these threshold phenomena of predation may provide some input for
environmenial ecologisis to develop a suitable policy for controlling the dynamics of
such systems.

To understand the above analysis better, we refer the reader to table 1.

The time evolution of all populations of system (1) for the fixed set of parameter
values of table 1 with h=0.1, £, =0.003 and £.=0.01 is depicted in figure 4.

5.2 Dynamics of system (1) when f=0

The time evolution of different populations of system (1) with f=0 is depicted in
figure 5 with the same set of parameter values and initial populations as in figure 4.

It is interesting to note that, in this case, for the same parameter values, the predator
population becomes extinet in the absence of recovery (see figure 3), whereas in the

i T LE S TR A 1000 T T T — T —
il 3 J gar i
H
! o}
m. -
| |
1
e | o EMf
g | &
i-ﬂ - %5]].
i &
o
1 1 i guf
w |
b J /
1 LI ) b
i ‘ 1 il |
T A
0 & 10 18 2 X0 30 H 40 & a0 0 10 20 30 40 50 B0 700 B0 50 1000
Tiee Tinm
() (b)

Figure 2. {a) Time eveluton o all populations For b = 000531 (A) Time evolution of all populations foc b= 0112,
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Table . Simulation experiments for model system (1) with fixed parameter values: 4 =7, r =033, £ =410,
k=006 x &k, &' =06 x kz, d=0009, f= L8 e=0.0097.

Parameters  Value of Parameter  Ranges in which Drvnamic
fixed fized parameter virried parameter & varied behavieur
ki, k2 Ey=00003, k=001 h 0001 < b <0051 Infectve prey population
becomes extinel
0052<h <0111 All populations coexist
Ql2<h=<4 Predator population becomes
exlinel
h, k- h=101, &-=0.01 ky 0001 < &y <0.0023 Predator population becomes
exlinel
00024 <y < 0005 All populations coexist
0006 < ky <001 Inlective prey population
hecomes extinet
b,k h=01, &y =0.003 k= 0003 < k=<0.012 All populations coexist
0013 ko <0.193 Predator population becomes
exlinct
0194 < k=09 Infectve prey population

becomes extinct

presence of recovery, all populations persist (see figure 4). Moreover, from figure 5, we
can also observe that there is a remarkable variation in the susceptible and infective
prey population levels. The susceptible population declines from an initial population
of 3.4 individuals ha~" to 0.0978 individuals ha~'; on the other hand, the infective
population increases from an initial population of 0.94 individuals ha™' to 715.591
individuals ha™'. This remarkable increment in the infective prey population leads to
the extinction of the predator population. To observe the role of the force of infection
in such a situation, we keep all the other parameters fixed and only vary the parameter
h. MNote that the predator population becomes extinct if b < 0.015, whereas the
infective population dies out if b < 0.012. Thus, in the interval 0.012 < h<0.014, all
three populations coexist. However, when f# (), we observe from table 1 that the
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system is stable around the interior equilibrium point in the interval 0032 < A< 0.111
and the system becomes disease-free if the value of 5 <0.052. This result shows that
recovery enhances the persistence of the species, which is quite natural.

6. Discussion

In this paper we have attempied to observe the dynamical behaviour of an ecosysiem
where disease is introduced by a migratory population. We have shown that, in the
ahsence of disease in the migratory population, the system is globally stable (see
theorem 4.4). However, the introduction of a disease by the migratory population
makes the system unstable around the interior equilibrium point. This result is similar
to the result of Beltrami and Carroll [20].

We have shown that the system is stable around the interior equilibriom point
provided wy; =0 and ws < 0 (see theorem 4.4). Moreover, we have proved (both
analytically and numerically) that if there are two interior equilibria, one is a sink and
the other is a saddle. We have also shown that, by controlling the parameter 4 (ie.
controlling the force of infection b), the system will be disease-free under realistic
biological conditions (see theorem 4.2). Our observations from theorem 4.3 indicate
that we shall have to monitor the parameter A (which is directly associated with the rate
of infection ) very carefully, otherwise there is a high possibility of the extinction of
the predator population. This finding s more transparent from our numerical
experiments. Our numerical result shows that the system is disease-free for b =< by
Thus we may conclude that the force of infection plays an important role in system
dynamics.

We also observe from our numerical analysis that, in the absence of a recovery rate,
i.e. when =10, it is very difficult to make the system disease-free. Also, it is very difficult
to keep the system stable around the interior equilibrium point. Therefore, recovery
plays an important role in avoiding the outbreak of the disease.

The predation rate is another parameter that plays a vital role in the dynamics of the
systerm. We observe that, in the absence of the predator population, both the
susceptible and the infective prey population coexists and the system is globally stable
(see theorem 3.2). However, in the presence of a predator, system (2) is stable around
the equilibrium point (5, 0, ) for a sutable range of b From our numerical
experiments it is clear that the system will be disease-free if we keep the predation
parameter &y = Kjpnao and £ > k. Thus, we may conclude that proper predation
may help to make the system disease-free. This claim is also in agreement with the
observations of Sih et af. [21]. They reviewed predator-removal experiments in which
the predator population was removed from the system and observed the effect on the
prey population infected by a transmissible disease. They found 54 of 135 systems in
which the prey population subsequently declined. The same result was obtained by
Hudson et al. [22] in another experiment, where they examined the interaction between
red grouse, the parasite nematode Trichostrongyluy temuis and their predators.

However, in the real world it is very difficult to eliminate an infection totally from a
system by predation. Removal experiments will fail if the migratory population is very
large, for example if there are over 60 species of birds carrying WNV.

Finally, we would like to mention that there are several ways to extend our
mathematical model. In our model formulation we have not considered the case where
the disease can spread from one predator to another. We have also assumed that the
predator is infected by predation only, but there are other ways by which the predator
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population may become infected. In spite of these hmitations, we believe that our

approach and findings will inspire modelers and experimental ecologists to carry out
further siudies.
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