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The role of migratory birds in an eco-system cannot be ignored. [t becomes more
important if they carry a disease. Chatterjee and Chattopadhyay proposed and
analysed a three component one season eco-epidemiological model consisting of
susceptible migratory birds, infective migratory birds and their predator popula-
tion (see Chatterjee. 5. and Chattopadhyay, I., Role of migratory bird popula-
tions in a simple eco-epidemiological model. Mathemarical and Computer
Maodelling of Dynamical systems, in press). They assumed that the recovered
infective birds become susceptible again. But, it is observed that in diseases like
salmonella and WNV, the recovered birds develop a permanent immunity.
Keeping this in mind we modify the model of Chatterjee and Chattopadhyay
by adding a recovered class. The main objective of this work is to observe the
role of recovery and immunity in such a system. Numerical simulations for a
hypothetical set of parameter values are presented to illustrate the analytical
findings. It is observed that to obtain a disease free system proper vaccination
and proper predation are necessary. The second factor was mentioned in the
paper of Chatterjee and Chattopadhyay.

1. Introduction

Ecology and epidemiology are major fields of study in their own right. But there are
some common features between these two systems. The study of ecological systems
with the influence of epidemiological parameters is now termed eco-epidemiology.
Hadeler and Freedman [1] were probably the first to describe a predator—prey
model where prey is infected by a parasite, and the prey in turn infect the predator
with the parasite. The literature on eco-epidemiological systems is now rich [2-5]. But,
as far as we know, the effect of the migration of the prey population has not been
considered, especially if the migratory prey population has the ability to carry
a disease. Such a situation has its own importance. Migration may introduce a new
disease to a new place, or can even reintroduce a disease which had disappeared from
that place. For example, the 1962 epidemic of EEE in Jamaica resulted from transport
of the virus by birds from the continental United States [6]. In another example, the
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West Nile Virus (WNV) was introduced in the Middle East by migrating white storks
[7]. It is observed that a predator can become infected by predation of a prey infected
by WNV [8, 9]. An epidemiological model for West Nile Virus has been already
proposed by Wonham et al [10]. But they have neglected the effect of predation
(if any) on those migratory birds who are responsible for the spread of WNV. The
same problem arises in the case of salmonella bacteria. It is observed that some wild
migrating hirds were responsible for the spread of these bacteria [11]. There are many
other examples, like the highly pathogenic Avian influenza virus that is suspected to
have been reintroduced in Japan by some wild migrating birds from South Korea [12].
This is an important problem; unfortunately no real effort has been made so far by
researchers to observe the changes made by these migratory populations in the system.

Chatterjee and Chattopadhyay [13] have proposed and analysed a one season
model where the prey population migrates from one place to another and carries
a disease with itself. They divided the migratory prey population into two groups,
namely the susceptible prey and the infective prey. Since, most of the diseases that
spread by the migratory birds, like salmonella [14] and WNV [10], are season depen-
dent, they were mainly interested to see the behaviour of the dynamical system for
the period when the migratory birds were present in the considered system. Their
analytical and numerical results suggested that the introduction of a disease through
a migratory population made the system unstable around the interior equilibrium
point. They also observed that proper predation might prevent the extinction of the
species, supporting some experimental results [15, 16]). Moreover, they proposed to
use the predators as a controlling agent for controlling the spread of infection among
the prey population. But in the real world it is very difficult to eradicate the disease
from the system by predation. The removal experiments will fail if the migratory
population is very large, for example, there are over 60 species of birds carrying
WNV and it is not possible to eliminate WNV from all these population through
predation. This drawhack motivates us to modify the model proposed by Chatterjee
and Chatopadhyay [13].

The models considered so far in the context of eco-epidemiological problems are
mainly either 51 (susceptible-infective) type [3] where the infective never recovers from
the disease or SIS (susceptible-infective-susceptible) type [13] where the infection does
not lead to immunity, so that the infectives become susceptible again after recovery.
But it is seen that the migratory birds that have recovered from diseases like salmonella
and WNV can develop permanent immunity at least for that particular season, for
example North American birds that survive infection develop immunity [17]. When
infectives develop a permanent immunity after recovery, they are placed in a separate
class and such systems are called SIR systems. In such a system the immune or
recovered class is also of great importance and cannot be ignored. So, in this paper
we modify the model proposed by Chatterjee and Chattopadhyay [13] by dividing the
migratory prey population into three class, namely the susceptible, the infective and
the recovered (or immune) classes.

We first try to observe the effect of predation on the migratory birds, as done by
Chatterjee and Chattopadhyay [13] in their paper. We find that by controlling the
predation of the migratory birds one can make the system disease free. Since the
inclusion of the recovery class in our model system is one of the main differences
from most of the earlier works, our aim is to observe the role of recovery in such a
systerm.
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We have organized the paper as follows. In section 2, we outline the basic mathe-
matical model followed by the proof of the boundedness of the solution of our
system. We present the conditions for the existence of equilibria in section 3. The
structural stability of the system is discussed in section 4. We perform a numerical
analysis in section 5. Section 5 is divided into two subsections, 5.1 and 5.2. We
ohbserve the role of predation in 5.1, and in 5.2 we study the role of recovery. In
subsection 5.2, we modify our model system by introducing a vaccination term and
study the modified system numerically. The paper ends with a discussion in section 6.

2. The basic mathematical model

We have two population:

1. The migratory prey population, which is denoted by N. The prey population
N present in our considered system is further divided into three classes: the
susceptible population s, the infective population i, which is generated by the
susceptible population through horizontal transmission and the recovered
population r, the portion of the infective population that recover from
the disease and develop immunity against the disease. Therefore, at time ¢
the total migratory prey population is N = s(8) + i)+ rir).

2. The predator population is denoted by p.

Before formulating the model equation we make the following assumptions on the
predator and the migratory prey populations:

{Al) Here the prey population (in the absence of the disease and the predator)
is assumed to be increased by a constant rate 4 either by birth or migration,
as assumed by Chatterjee and Chattopadhyay [13]. Thus,

di = A —dN
df

where  is the natural death rate of the migratory prey population.

{A2) The growth rate of the predator population is governed by the migratory prey
population along with an alternative source, as assumed by Chatterjee and
Chattopadhyay [13]. Depending on that alternative resource, the predator popula-
tion is assumed to grow in a logistic fashion, with carrying capacity = 0 and
an intrinsic growth rate constant ¢ > ). Hence in the absence of the migratory
prey the growth equation of the predator is given by

dp .
T =ple —1p)

(A3) The predation of the infected prey population is included in the predator’s
growth equation with a negative sign, as assumed by Chatterjee and
Chattopadhyay [13].

{A4) Here we have considered the foree of infection follows the standard incidence
rate fi/Ns, where 8 is the average number of adequate contacts of an individual
per unit time rather than a simple mass action nsi as assumed by Chatterjee and
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Chattopadhyay [13], where »is a mass action coefficient, which is sometimes used for
the horizontal incidence. The parameter n has no direct epidemiological interpret-
ation, but comparing it with the standard formulation shows that § = gN, so that
this form implicitly assumes that the contact rate § increases linearly with the popu-
lation size [18]. But for human disease the contact rate seems to be only very weakly
dependent on the population size [18]. Also, there are animal populations like mice in
a mouse-room or animals in a herb [19], where the disease transmission primarily
occurs locally from nearby animals. This is because in the case of a large population,
finite and slow movements of individuals prevents it from making contact with a
large number of individuals in unit time like migrating birds. Thus, such a mechan-
ism is better described by fsif N than nsi. (For details, see [2, 20, 21].)
{AS5) For mathematical simplicity we assume that the functional response term
(prey eaten per predator per unit of time) follows the simple law of mass action.
From the above assumptions, we can now write down the following system of
differential equations:

oy fvi

E_ A —F—{d'i‘-klﬂ‘]"

di  fAsi i .

E_F—kwt—{r'i'f'i‘f”!

dr

L R 1
i (e 4 Ky o (1
dj =A—ki(s+rp—kapi— el —dN

dlt

% = ple —fp+kis+r — ki)

with 5(0) = 0, {0) = 0, () = 0, N = 0, pi0) = 0.
The above non-negative parameters are defined as

A =the rate of recruitment into the susceptible class for prey population
(including newborns and migrating prey population),
o = the per capita natural death rate of the prey populations,
B = the effective per capita contact rate of the infective with other member
of the prey population,
¢ = per capita death rate of the infective prey population due to the disease,
4 = the per capita natural recovery rate of the infective prey population with
permanent immunity,
ki = the searching efficiency constants or the predation rate of the susceptible
{or the recovered) prey populations,
ks = the searching efficiency constants or the predation rate of the
infective prey populations,
k(< k) = the conversion factor associated with the predation of the susceptible
{or recovered) prey population.
ka(= k1) = the conversion factor associated with the predation of the infective prey
population.
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Here we assume that & = k+. This is quite natural, since the infective prey may live
in locations that are more accessible to the predator; for example, fish or aquatic
snails may live close to the water surface or snails may live on top of vegetation
rather than under protective plant cover [22].

Since Nit) = s(8) + (1) + r(r), so the system (1) becomes:

oy fsi

m = A —T —{ﬂr+;t|p}‘|

:—ﬁ = &—k;{pi—{‘r +e+d)i

dt N

" 2
ar -} e ;

5= — {4+ Ky ph

dp

= ple — fp+ K (s + 1) — kai)

Boundedness of the solution of the sysiem (2)
Lemma 2.1:  All the solution of (2) which initiate in g . are uniformly bounded in the

region
o g St - W ! o 5 O for ail T
G={{sirpeh, @ W= :I+ﬁ'_fm any @ = 0 for all t = 1

Proof: See appendix A.

3. Equilibrium points and their existence conditions

The equilibria E,({A/d),0,0,0) and £(5,0,0, 7) where ¥ = 4/ /(d + &k p) and

_ (ie—dN) + (ke — dfY + dk, (AR, + de)
= W f

of the system (2) always exist.

The equilibrium E5(5, i 7, 0) exists if By = 1, where

s Aly +d) o A(Ry — 1) B ARy — 1)

diff —&)’ g—g diff— #)
Ry=p/fY and ¥ =y+d+e.
To study the existence of interior equilibrium of the system (2), we denote the interior
equilibrium point by E*(s*, ", ", p*). Using N = 5+ i +r and the last four equations
of the system (1) (by setting the time derivatives on the right-hand sides to zero),



Downloaded by [Indian Statistical Institute] at (4:03 10 August 2011

we get
e Aly 4+ d+ k1 p*)
(d+kip)NB—e—(ka —k)p*)’
i A{ﬁ_‘rl_k:f"]
(o + kap* B —& — (ks — ki )p*)’
4 Avip— v — kap*)

T d+ ki p )y + kapt) B — & — Uk —k)p*)
and p* is a positive real root of the following equation
bop + bip? + bap® + bap + by =0, (3)
where

by = kikafthka — k).

By = flka — k) kad — k(B — 70 — Bk — kika(e(ka — ki) — fe)

by = (elka — k) — feX ki (B — ') — kad )+ Ky Bk e — df) + K ka( AR} + K5) — £e)
—dfiky — ki )B =) — ki fBly + d)

by = (A(K, +k2') — ee)(kad — ki (B — 1)) +d(B —7)
(elka — k) — f&) + Bk (AR + de) + (7 + d)ike — d).

by = Bly + dWAK| + de) — di g — VAR, + K5) —ze).

It can be easily shown that s*,i* and r* are positive if
Pt =1 Ry — D)jka (4)

It is interesting to note that there is a chance for the existence of multiple interior
equilibrium points. But, here we have only studied the dynamics of the system when
a unique interior equilibrium point exists. The different possibilities for the existence
of a unique interior positive equilibrium are as follows:

Case I: When the number of variations of signs in the sequence of coefficients
of equation (3), Le. {by. by, ba. by, by}, is exactly one, then by Descartes’ rule of
signs there exists exactly one positive real root of equation (3) and if that positive
root of equation (3) satisfies the inequality (4), then there exists a unique interior
equilibrium point E*(s*, *.r*, p*).

Case II: When the number of variations of signs in the sequence of coefficients of
equation (3), ie. {by. b, b1, by, by} 1s more than one, then by Descartes’ rule of signs
there may exist more than one positive real root of equation (3). Now, if there
exists more than one positive root of equation (3) and out of these positive roots,
if only one root satisfies the inequality (4), then also there exists a unique interior
equilibrium point E*(s*, &, r*. p*).
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Case (1) is quite clear. To understand the case (II) in a better way, we give the
following example by taking a hypothetical set of parameter values.

Example 3.1: Let us consider the following hypothetical set of parameter values:

A = 10 individuals ha™' day™', g = 2.7 day™', d = 00025 day™", k, = 0.7 ha
individuals™' day™', k» =4.3 ha individuals™' day™', y =1 day™', € = 0.002
day™', k| =30% of k., ki=30% of k., f=70 ha individuals™" day™"
e =25day" "

For the above parameter values we have by = 758.52, b = —415.656,
by =—171.300, by = —25.842, and b; = 5.6375. So, by Descartes’ rule of signs
there exists either no or two positive real roots of equation (3). Substituting the
value of B's, i =0,1,2,3,4 in the equation (3), we get four roots, among which
two roots are positive real roots viz., 0.114 and 0.849, and the other two roots are
complex conjugate viz., —0.2074 £ (.1831 i. Out of these two positive real roots only
0.114 satisfies the inequality (4). Substituting the values of the parameter and p* in
the expression of #*, *, r* we get a unique interior equilibrium point (s*, i*, r*, p*).
Thus, this a typical example for the existence of a unique interior point following
case (11).

4. Local stability analysis and persistence result

In this section we shall discuss the stability of different steady states of the model
system (2).

Theorem 4.1:  The equilibrium £,(A/d 0,0,0) is always unsiable.

Proof: See appendix B.

Theorem 4.2: [ Ry = | +k.p/y . where

_ (kie—df) +/(kie — df) + kA, + de)
2= Eﬂ_l_f e

then E5(5,0,0, p) is focally asymprotically swable (LAS).
Proof: See appendix B.

Theorem 4.3 The equilibrium point E;(3. 0L 7.0) is LAS if and only if the following
conditions hold

e — e + kf.ﬁl + k3A4)

O K>k d = ki)

(i) y(B+7v+d)Ry" —2fyRy —pd = 0

Proof: See appendix B.
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MNow in order to observe the structural stability of our model system around the
positive steady state, we shall prove the persistence of the system. If the following
three conditions hold then the system is persistent [23]:

(1) the system should be bounded,
(i) the boundary equilibria of that system should be repellers, and
(iii) there should not exist any periodic solution around the positive steady state

of that system.

We hawve already proved that system (2) is bounded. We will now show that the
boundary equilibria are repellers under certain conditions.

Theorem 4.4: [ the following conditions holds, then all the boundary equilibria of
the system (2) ave repeller.

) (kie = df) +/(kie — df + 4k AR, + de)
(1) Ry=1+kapty, where p=

2k f

dleff —ee+ k1A 4+ ki A)

@& Hox (A(kJd — k1)

or, 1B+ 7+ d)Ry — 287R, — Bd < 0 or both.
Proof: See appendix B.

Mext we shall find the conditions for non-existence of the periodic solutions
around the interior equilibrium point £*.

Here we shall apply the Li-Muldowney’s criteria (for details see appendix B) for
the non-existence of the periodic solutions of system. The logarithmic norm p .,
endowed by the norm | X|.. of the second additive compound matrix /¥, associated
with the jacobian matrix J, computed on E*, is negative if and only if the suprema of
the following satisfy

,_%_'E: B=27+kp' ) —d+hp )+ ks + it =0 (5)
_h—’l?:*—E{fﬂ'+k|p‘}+{‘r+f+k;p‘]+k.{.-‘+,-'}q{} (6)
%{ﬁ —1 —kap ) —d+ kip )+ + kapt +pt k| + R =) <0 (7
% 1B=20¢ +kap" )} —(d+kip*) +hir* + hai® < 0 (8)
%;{ﬁ—‘r'—kzp‘}—p‘ﬂ'— k) =0 (9)
(y—d)+pky =k kD - f1 <0 (10)

A direct application of the Li-Muldowney method shows that if the above condition
is satisfied, then there exisis no periodic solution around £* for the system (2).
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5. Numerical analysis

We know that the contact rate f§, the predation rates &, and k., play important
roles in the dynamics of a predator—prey system with infection in the prey [22, 24].
But in our model system recovery rate also plays an important role, since
the inclusion of the recovery class in our model is a vital modification of most
of the earlier models. So, we have first focused our study on observing the
role of the contact and predation rates on the dynamics of the system (see,
section 5.1). Then, in section 5.2, we have tried to find the role of recovery in
our model system.

5.1. Role of the contact and predation rates

We will focus our study around the unique positive steady state (s*.7.r% p%)
obtained from the set of parameter values discussed in Example 3.1 of section 3.

We here assume the initial values of the susceptible, infective, recovered prey
population and their predator population to be 30 individuals ha™', 5 individuals
ha™', 2 individuals ha—' and 10 individuals ha™' respectively. The initial value of all
the population is kept fixed through out the entire numerical section. For the above
set of parameter values, the eigenvalues associated with the variational matrix
computed around the positive steady state are —8.03, —0.38, —0.0114, —0.295,
This shows that the above unique interior equilibrium point is locally asymptotically
stable.

With this set of parameter values and the initial values, we get figure 1.

Figure 1 shows that for the considered hypothetical set of parameter values,
the unique positive steady state is locally asymptotically stable.

Now we will try to observe the role of the above mentioned three key parameters
B, ki, and ks one by one. We begin with the parameter ks, the predation rate of the
infective prey population. By increasing the value of ks from 4.3 to 4.4 and retaining
the values of the other parameters fixed, we get figure 2.

To understand the change in the solution of the system due to the change in the
predation rate, we present in figures 3 and 4 the four dimensional phase diagram
projected in the three dimensional SIP axes.

From the above numerical simulation it is clear that to keep the system stahle
around the interior equilibrium point we shall have to keep the predation rate of
the infected prey population k> under a certain threshold value, namely (k3).

MNext we observe the role of the other two key parameters k;, and 8. For this we
begin with the set of parameter values for which we obtained figure 2 and then tried
to bring back stability in the system around the positive equilibrium point by chang-
ing the value of k| and 8. We start with the parameter &, (the rate of predation of the
susceptible and the recovered prey population). By slightly increasing the value of &
from (.7 to (.8 and retaining the other parameters the same as in figure 4, we get
figure 3.

Mext we have tried to find the role of the parameter 8. Decreasing the value of 8
from 2.7 to 2.6 and retaining the other parameter values as fixed as in figure 2, we get
figure 6.
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Figure 1. The different population distribution showing coexistence of all four
populations.

Thus it is observed that either by keeping the value of the parameter k
(the predation rate of the susceptible and recovered prey) above a certain critical
value (£}), or by keeping the value of the parameter § (the contact rate) below a
certain critical value () we can bring back the stability in our system around the
positive equilibrium point from the situation shown in figure 2. Thus, these three key
parameter equally play an important rok in maintaining the stability of the system
around the interior equilibrium point. Moreover, to understand the role of
the predator in making the system disease free we have constructed table 1.
But, before this we would like to make remark (5.1.1).

Remark 5.1.1: It should be noted that our system (2) reduces to a simple SIR
maodel, for p = (). The system in the absence of the predator admits two equilibrium
points, viz. one is the axial Eg(A4/d, 0, 0) and another is interior equilibrium point
£y (s i’ r"), where,

L Ad+ ) o AB- 1) o AN =)
dif —e)’ T oip—-e)’ Tdy(f—e)’

¥

1l

The axial equilibrium exists for any set of parametric values, but the interior
equilibrium exists if and only if £, = 1. It can be seen here that the existence of
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Figure 3. The projection of the phase diagram in the SIP plane when k=43,
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Figure 4. The projection of the phase diagram in the SIP plane when k.=4.4.
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the interior equilibrium point ensures the instability of the axia. | librium point
for the system. It can also be seen that the system is locally asympiotically stable
around the interior point (s',i",r") if and only if

S U
1+f+1|',"l{1+f]2+4‘r'ﬂr

R“ =
2y

Table | shows the model system (2) both in the absence and presence of the
predator.

From table 1 we observe that in the absence of the predator population the system
remains disease free for £ = 1.0047, while in the presence of the predator popula-
tion the system remains disease free for B, = 1.923. So, predation plays an important
role in keeping the system disease free for a wider range of £ Next we have studied
the role of the recovery in the system.

5.2. Role of the recovery

It is interesting to observe that in the absence of the recovery (ie., ¥ =0), the
predator population goes to extinction for the same set of parameter values as
considered in the table | with 8 =27(&; = 2.6) , but one can see from table |
that for this value of By all the population coexists both in the presence as well as
in the absence of the predator population. We also observe that the population of the
infective prey increases from five individuals ha™" to 191.1179 individuals ha™', while
the population of the susceptible prey decreases from 30 individuals ha™' to 3.79
individuals ha™'. So, one can see that not only the predator population goes to
extinction, but also there is a hupe increase in the infective prey population. So,
the recovery rate plays an important role in avoiding the outbreak of the disease.
This is clearer from table 2.

We observe from table 2 that if the natural recovery rate v is kept above a certain
critical value (v* = 0.91) then all the populations coexist, below which the predator
population goes to extinction. Figures 7 and 8 present two phase diagrams, by
projecting the four dimensional phase diagram in the three dimensional SIR axes
to understand the role of the recovery rate in a better way.

In both these figures we observe that all the populations coexist (as stated in
table 2), but E£* becomes stable when ¢=096. This result shows that the
recovery enhances the persistence of the species, which is quite natural. But it
is not possible for us to control the natural recovery rate. However we can
increase the immunity among the migratory birds by giving them vaccines. To
see whether the application of the vaccination programmes will really help us to
control the disease or not, we modify our model system (2) by introducing a
vaccination term. Though the vaccine will be given to all classes of the migratory
birds, it will affect only the susceptible class, so the vaccine term is added in the
susceptible class only [25]. We assume that the susceptible population is vacci-
nated at a constant rate pday . We also assume that the vaccine used is 100%
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Table 1.
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Simulation experiments of model system (2) with the fixed
parameter values: 4 = 10, d = 00025, v = 1, e = 0002, /= 70,
e =25k =07, ki=425 ki =03xk|, ks =03 x k1.

Paramcters | Parameter |  Ranges in which Ry |Behaviour of the] Behaviour of the
kept fixed varied was varied due to the | populations in | populations in
variation in & the presence of | the absence of
the predator the predator
population population
Rp=1 Only i & r goes | Only i & r goes
to extinction o extinction
1< Ra = 1.0047 Only i & r goes | Only 1 & r goes
to cxtinction to extinction
A d &y, & g
KEk
1 f e Only i & r goes All the
LOO4E < Rp = 1.923 to extinction populations
COeXists
All the All the
1.924 = Rp £ 2.8119 populations populations
coexists COeXIsts
Table 2. Simulation experiments of model system (2)

with the same set of fixed parameter values as taken in
the table 1 with 3 = 2.7 except the parameter v.

Parameter Ranges in which the Behaviour of the
varied parameter ¥ was population of the
varied system
0=y =091 Only p goes extinction
H
082 <y=1 All the populations

Coexisls
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Recovered prey

Infective prey 0 25 30 35

Susceptible prey

Figure 7. The projection of the phase diagram in the SIR plane when v =0.96.

Recovered prey

Infective prey 42 46

Susceptible prey

Figure 8. The projection of the phase diagram in the SIR plane when v = 0.97.
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effective in reducing the infection. With this assumptions the model system (2)
takes the following form:

s fsi A,

i A _F_{d—i_ ks — s

& = B —fapi — (7 +e+ )i

ot N

e an
= i s — (d + ko pr

f , .

%: = ple —fp+ k{(s +r)— ki)

To understand the role of the vaccination, see table 3. We have taken the same set
of parameter values as considered in table 2 except 7. To study the effect of the
vaccination we have taken a value of v below 4 so that in the absence of the
vaccination programme the predator population will extinet from the system.
Hence, we choose ¥ = 0.3, see table 2.

We observe from table 3 that for a fixed value of the recovery rate (here for
¥ =0.3), if the rate of vaccination is kept above a certain lower critical value
() = 0.009), then we can prevent the predator population. Moreover, the vaccina-
tion programme can even make the system disease free provided that the rate of
vaccination is increased above a certain upper critical value (p5 = 0.19).

6. Discussion

The effect of diseases in an ecological system is an important issue from a math-
ematical and experimental point of view. This becomes more important and difficult
to control if the disease is spread by migratory bhirds. In this paper we have modified

Table 3. Simulation experiments of model system (11)

with the same set of parameter values as taken in the

table 1 except the parameter . Here the value of v was
kept fixed at 0.3,

Parameter | Ranges in which the Behaviour of the
Waried parameter L was | population of the system
varied
0= p=0.008 Only p goes o extinction
H 0009 =018 All the populations
COexists
0192 u< 08 Only i goes to extinction
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the model proposed by Chatterjee and Chattopadhyay [13] by adding a recovered
class.

Here we have tried to observe the dynamical behaviour of an ecosystem where the
disease is introduced by some migratory bird population. The main objective of this
paper was to find the role of the recovery with permanent immunity in controlling
the outhreak of such disease. We have first showed that all the solutions which
initiate in i, 4+ are uniformly bounded. The system admits three boundary equilibria
and one interior equilibrium under suitable parametric conditions. We have observed
that the equilibrium point £,(4/d,0,0,0) is an unstable saddle with respect to all
perturbations. The disease free equilibrium £5(5, 0.0, 5), which always exists, is stable
if Ry = 1+ k.p/y', where

(e —df) +y (ie — df) + 4k fLAK] + de)
i 2if '

The equilibrium point E4(5, i, 7, 0), which exists if R, > 1, and is stable if

dlefl —ee + kA + kid)

R
O T Alkld — k)

and Yf+v+d)IRG —28yRy — fd > 0, where Ry(= f/(y+d+¢)) is known as
the basic reproductive number. We have also shown two different ways for which
a unique interior equilibrium exists E%(s*, 7%, r*, p*). We have also found conditions
for the persistence of the system around the positive steady state. Since the
structure of the model presented here is a complex one so the nature of the dynamics
of the model system (2) around the positive equilibrium point is mainly studied
numerically.

We have divided our numerical section into two subsections. In the first section
i.e., section 5.1 we have tried to observe the role of predation. In the second section
i.e., section 5.2 we have tried to observe the role of recovery. We begun our numer-
ical analysis by taking a set of parameters for which a unique positive equilibrium
point exists. We found that to keep the system stable around the interior equilibrium
point under some fixed parameter values we shall have to either keep the contact rate
below a certain threshold value 8°, or the predation rate of the infective prey below a
certain critical value &5, or the predation rate of the susceptible (or the recover prey)
above a certain critical value k). From table 1, we observe that for both in the
absence as well as in the presence of the predator population the system remains
disease free for R, = 1, which also validates our analytical findings. But the inter-
esting result is observed for Ry = 1. In the absence of the predator population the
disease is absent from the system for R, = 1.0047, while in the presence of the
predator population the same is true for 8, = 1923, Thus, it is observed that in
the presence of the predator population the system remains disease free for a wider
range of R, Hence, it can be concluded that the predator population plays an
important role in controlling the disease, as claimed by Chatterjee and
Chattopadhyay [13]. But, the method of making the system disease free by using
the predator as a controlling agent has a disadvantage. The removal experiment will
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fail if the migratory population is very large in comparison to the predator popula-
tion. Thus, we have tried to suggest an alternative way to control the outbreak of the
disease. In doing so we found that recovery with permanent immunity plays that
alternative way.

It was observed from our numerical result (see, section 5.2) that in the absence of
the recovery (i.e., when 7 = (), the predator population goes to extinction for the
same set of fixed parameter values for which all the populations coexist in the pres-
ence of the recovery rate (i.e., v 0). It was also observed that in the absence of the
recovery the population of the infective prey increases from 5 individuals ha™' to
191.1179 individuals ha™', while the population of the susceptible prey decreases
from 30 individuals ha™' to 3.79 individuals ha™'. So, in the absence of the recovery
rate, not only the predator population goes to extinction but also there is a huge
increase in the infective prey population. Hence, the natural recovery plays an
important role in avoiding the outbreak of the disease. Moreover, from table 2 it
was observed that, to prevent the predator population from extinction and for the
coexistence of all the populations, we have to keep the recovery rate above a certain
threshold value (v°). Thus, the increase in recovery rate enhances the persistence of
the system. But it is not possible to control the natural recovery rate. So, what we can
do is increase the immunity of the migratory birds by giving vaccines. Keeping this in
mind we modified our model system (2). Then through our numerical simulation, see
table 3, we found that if the vaccination rate is kept above a certain upper critical
value (p5) then the vaccination programme can make the system disease free,
provided that the vaccine is 100% effective. To make the vaccination programme
effective, it must be kept at least above a certain lower critical value (u)), otherwise
the predator population will be extinet from the system.

Hence, we finally conclude that the use of a predator as a controlling agent is a
very difficult method to apply in real world situations especially if the prey popula-
tion is migratory in nature (though it seems to work in an experimental environment
[24]). But if we can give a vaccine (which is 100% effective) to the migratory birds
with a rate above a critical value, then the use of a predator as a controlling agent
will be meaningful and applicable to the real world situations. Before ending our
article, we would like to mention that the proposed model system (11) needs mod-
ification and further in depth analysis. We are leaving this study for our future work.
Moreover, the above article rests on the assumption that the environmental param-
eters involved with the model system are all constants irrespective to time and
environmental fluctuations. But, in reality all such parameters exhibit random vari-
ations to a greater or lesser extent [26]. Thus, the model taken in the article may
sometime give incorrect results if the densities of the populations involved are low
and the fluctuations play a dominant role. In our next study we shall take into
account the environmental effects on the system.
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Appendix A
Proof (Lemma 2.1): We define a function
W=s+it+r+p (A1)
The time-derivative of (A.1) along the solutions of (2) is

W : ' '
I:T =A—ds+i+r)—ei—kils+p—kip 4+ ple —fp)+ k(s 4+ rp — kypi

= A—dls+i+n+ple—jp), (since, k| = k).

MNow if we take 5 = o such that 5 = d, then

W
{:Ti:A—n{.ﬁ'+i+!'+P}+P{‘-"—fP+’ﬂ
. (et
=4 —nW+ af
dW , (e+n)’
d:+nw5fl+ 4 -

It is clear that the right-hand side of the above expression is bounded. So, we can find
{ = 0 such that

Applying the theory of differential inequalies [27)], we obtain
0 < Wis,irp) < ’il{l — e 4 WAS0), 00, #(0), p(0))e™™.

For t — oo, we have 0 = W < {/5n. Hence, all the solution (s(r), i(f), r(0), p(£)) of (2)
that initiate at (s(0), {00, #{0), p{{}}}m}if,_+ are confined in the region

G={(s,irr. RS W=L 10
)

0, +*

for any 8 = 0} for all ¢ = T, where T depends on the initial values (s(0), {0},
r{0), plO)).

Therefore, the set & is an invariant set which contains the Q-limit set of all the
paths of the system (2) that initiate in the positive octant.
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Appendix B

We shall first state a lemma relating to the characteristic polynomial of a matrix [28)]
which we have used to prove the theorems of section (4).

Lemma 4.1:  Ler M he an n s n matrix which & symmetrically partitioned into upper
or lower triangular Mock matrices labelled

M M
M=
0 M,

or

Then the characteristic polynomial of the matrix M v equal o the product of the
characterivtic polynomials of My and M.

Using the above lemma we shall prove the theorems given in section 4. To begin
our proof we have to first find the variational matrix of the system (2). The varia-
tional matrix J of the system (2) is:

[ BiAi+r) Bz +r) B
- —d=kp o —— ] =5
E £ 1 E E
Bi+r) Bz +r) st
J= N e kop—y—e—d 3 —kai
0 ¥ —d=fap =kir
L il —pkt, i e=2p+iki(s+r) =I5 |

MNow we shall prove the theorems one by one.

Proof (Theorem 4.1): After computing the variational matrix J, associated with
EfAd 0,000, we find the following egenvalues: —d, —d A—(y+e+d),
(ed + k| A)/d. Since (ed + k[ A)/d = 0, so E, is always unstable.

Proof (Theorem 4.2): The variational matrix associated with E5(5,0,0, p) is given
below

’-—[d+k|§] —f 0 —ku."“
0 B—{r+et+d)—kp 0 0

Ja= ‘ ‘
0 ¥ —(d+kp) O

L kyp —kyp k\p o/ J
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After applying congruence ope .tions on the above matrix, it reduces to the
following matrix

—(d + Ky ) - 0 0
0 B—(yv+e+d)—lap 0 0
J= ﬂk Y ’ —(ed + k) o 0
_ A _ fik A . —kkiAp .
kp+-—"0 K k il
'P+d+hﬁ -P+d+k@ e d+k\p L

Thus, the eigenvalues of the variational matrix associated with (3 0,0,p) are
given by —(d+ k\p), —(d+kp), B—(7+e+d)—kap, —((k\k{Ap)/{d + & p+ Fp))
{using Theorem 4.1).

It can be easily seen that if B, = 1+ k,jg/y, then E5(5,0,0,5) is LAS.

Proof (Theorem 4.3 The variational matrix associated with E;(3,i 7. 0) is given
below

dieh_, gGeh s
N i N:
e Bl s ) ﬁ-._{.-.'n+ " o @ o
Ng Jﬂ'l'lg ’ﬂl"lg
L 0 ¥ —d —kyr “J
0 0 0 e+k{FE+A—kii

After applying congruence operations on the above matrix, it reduces to the
following matrix

’-_ pii+n _ , _pii+H _pG+H _, A ki -‘
N2 A A2 N2 . 4
Ji= —d —(7 4+ ¢+ 2d) —7 —(A‘|§+—k3e'“}— r_d L
0 0 —d —k\F )
0 0 0 e+k|(G+7)—kii

Hence, the eigenvalues of the variational matrix associated with E5(3, i,7,0) are given
by ¢+ k(5 + ) — kii, —d and the roots of the following equation

4

4 4

© + {‘r’ + 3442 :r ”]x .. ‘Mi:r Dy dy— (—m‘”{ff A, @ =0 (B

If e + k{(f + /) — k3 <0 and the roots of the equation (6) have negative real parts,
ie., if

LR 90 10, 900
N N2 N
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then E5(f. 1,7, 0) is LAS. Substituting the values of 5, { and 7 in these expressions and
after some algebraic calculation we get the required conditions as stated in the
theorem.

Proof (Theorem 4.4):  We have already proved in Theorem 4.1 that £,(4,/d,0,0,0) is
always a repeller. Next, we observe from Theorem 4.2 that if Ry > | + kap/y, then
E5(5,0,0,5) becomes a repeller. Finally, from the eigenvalues of the variational
matrix associated with E5(3, i, 7,0) we observe that if either

d(eff —ee + kjA + kyA)
(Alkyd — k7))

R“ =

or W(f+7y +d Ry — 2fv Ry — fd = 0. or both are satisfied then Ei(s, i,7.0) also
becomes a repeller. Hence Theorem 4.4.

Li-Muldowney criteria [29): Consider the general autonomous ordinary differential
equation

4X _ qxn) (B.2)
i

where F is a ¢! function in some open subset of R” with values in R". Denote by J!
the second additive compound matrix associated with the Jacobian matrix J (see [23
for details), and recall that if X € R" then the corresponding logarithmic norm of /#
(that we denote by u..(/7)) endowed by the vector norm | X |..=sup; | X, | is

i

i

iF,

ix;

; aF,  dF,
;-:_.,L-{J{']} = sup : + + Z(
:

dr,  dx,

):151'{.5‘5:1

Fr, 5

where pu..(/) < 0 implies the diagonal dominance by row matrix J¥. Then, the
following holds.

Lemma 4.2: 4 simple closed rectifiable curve that is invariant with respect to the
B .yt 2
system (2) cannot exist if p:x{..‘i']} = (.
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