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Abstract. A basic scheme for solving permutation problems in the framework of probabilistic model-building genetic algorithms
(PMBGAs) that uses edge histogram based sampling techniques was reported in [23]. Two sampling algorithms — sampling
without template, and the sampling with template were presented. In this paper, we combine local search heuristics with those
sampling algorithms to solve the traveling salesman problem (TSP). We tested two types of heuristics; one is a simple heuristic
called 2-OPT, and the other is a sophisticated Lin-Kernighan heuristic. The results show that edge histogram based sampling
with these heuristics improve the performance significantly, and can solve large problems having thousands of cities fairly well.
The algorithm is thus seen to be scalable.
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1. Introduction

GAs should work well for problems that can be de-
composed into sub-problems of bounded difficulty [6]
and for problems where similar solutions are of similar
quality. However, fixed, problem-independent varia-
tion operators are often incapable of effective exploita-
tion of the selected population of high-quality solu-
tions and the search for the optimum often becomes in-
tractable [6,18,22]. One of the most promising research
directions that focus on eliminating this drawback of
fixed, problem-independent variation operators, is to
look at the generation of new candidate solutions as
a learning problem, and use a probabilistic model of
selected solutions to generate the new ones [12,19].
The probabilistic model is expected to reflect the prob-
lem structure and, as a result, this approach might pro-
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vide more effective exploitation of promising solutions
than recombination and mutation operators in tradi-
tional GAs. The algorithms based on learning and sam-
pling a probabilistic model of promising solutions to
generate new candidate solutions are called probabilis-
tic model-building genetic algorithms (PMBGAs) [19],
estimation of distribution algorithms (EDAs) [15], or
iterated density estimation algorithms (IDEAs) [1].
Most of the work based on this approach focuses
on optimization problems where candidate solutions
are represented by fixed-length vectors of discrete or
continuous variables. However, for many combinato-
rial problems, permutations provide a much more nat-
ural representation for candidate solutions. Despite
the great success of PMBGAs in the domain of fixed-
length discrete and continuous vectors, few studies are
found for permutation and scheduling problems [2,3,
20]. More importantly, these studies take an indi-
rect approach of mapping the permutation problems to
fixed-length vectors of discrete or continuous variables,
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which in some cases necessitates the use of repair op-
erators to correct invalid solutions.

Tsutsui [23] introduced a promising approach to use
PMBGAs for permutation problems using edge his-
togram based sampling, and showed competitive re-
sults on several benchmark instances of the traveling
salesman problem (TSP). The approach is named edge
histogram based sampling algorithms (EHBSAs). Al-
though, the EHBSA was initially tested for solving the
TSP, the approach can solve any problem that can be
formulated within the domain of fixed-length permuta-
tions. As an example, the flow shop scheduling prob-
lem was solved by Tsutsui & Miki [25,26].

In this paper, EHBSA has been hybridized with some
popular well-known local search heuristics to take ad-
vantage of local search. We tested two types of heuris-
tics; one is a simple heuristic for solving TSP, called
2-OPT; and the other is a sophisticated one, known as
Lin-Kernighan heuristic [8,13]. The results show that
EHBSA added with these heuristics can solve TSPs
even with thousand of cities fairly well. Experimental
evidences show that this hybrid technique decreases the
computational requirements for finding a globally op-
timal tour in TSP, providing a method capable of solv-
ing significantly larger problems of thousands of cities.
The method is very robust in the sense of detecting
global optima for a wide variety of population sizes.

On the other hand, a combination of the local heuris-
tics with existing recombination based techniques (like
OX, PMX, EER) also show advantage, but not so reli-
able and robust. This is due to the fact that they can de-
tect the global optimum mostly for a bigger population
size.

The rest of this article is organized as follows. Sec-
tion 2 gives a brief review of EHBSA along with ex-
perimental results. In Section 3 we describe the pro-
posed algorithms (i.e., EHBSA combined with local
search) along with experimental results on a few bench-
mark problems. Finally, Section 4 summarizes and
concludes the report.

2. Edge histogram based sampling algorithms: a
brief overview

This section briefs the edge histogram based sam-
pling algorithms (EHBSAs), within the PMBGA
framework, and its use for (i) modeling promising so-
lutions, and (ii) generating new solutions by simulating

" the learned model.

$5=(0, 1,2, 3, 4) P23
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34210 1031 0 41 3.1 0.1
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s%=(4,0,3,1,2) 3021 31 1.1 0 41
s%=(2,1,3,4,0) 431 01 3141 0
(a) Population P(?) (b) EHM of P(¥)

Fig. 1. An example of symmetric edge histogram matrix for N = 5,
L =5, Bration = 0.04.

A set of edges that generates a path in a graph (in-
cluding all nodes) can be used as an alternative repre-
sentation of a permutation of the nodes in the graph.
The first element of the path will determine the first
element of the permutation, while the remaining ele-
ments of the permutation can be obtained by tracing the
remainder of the path until the last element of the path
is reached. The basic idea of EHBSA is to collect and
exploit information about the presence of edges (fre-
quency of edges) in the entire population of selected
high-quality solutions.

2.1. Edge histogram matrix

Let the permutation represented by the kth individual
in a population P(t) of size N, at generation t, be
denoted by st = (n£(0), 7E(1), ..., nL(L-1)), where
(7t(0), (1), ..., mE(L-1)) define a permutation of
0,1, ...,L-1),and L is the length of the permutation.
The edge histogram matrix EHM* (e} ;) (i,§ = 0, 1,
..., L-1) of the population is symmetrical and consists
of L? elements. The (i, j)th element of the matrix is

obtained by
N . .
ot =) 20 (Bis(sk) + d5i(sh) +e if i#j 0
%3 k=1 I
0 ifi=3

where d;;(s},) is a delta function defined as

1if3h [h € {0,1,---L — 1}
Ak (h) =i Anh((R+1) @
mod L) = j] ’

0 otherwise

bi(st) =

and (> 0) biases the sampling toward random permu-
tations (which can also be visualized as a form of mu-
tation). To have similar selection pressure for random
permutations (for all problems and parameter settings),
€ should be proportional to the expected value of eﬁ’j.
Since the average value of e’; jfori#jin EHM tis
2LN/L?-L) = 2N/(L-1), we use
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Set the position counter p < 0.

Update the position counter p < p+1.
If p<LLl, go to Step 3 else stop.

N W

Obtain first node c[p] randomly from {0, 1,2,0 .LO1}

Construct a roulette wheel vector rw[] from EHM as rw[j] « €'y, (=0, 1, .., LO1)
Set 0 to previously sampled nodes present in rw[] (rw[c[i]] « 0 for i =0, .., p).
Sample next node c[p+1] with probability rw[x]/ X% rw{j] using roulette wheel rw[].

Fig. 2. EHBSA/WO.

cut[0]

cut[1] cutf2]

template 77]

new string cf]

Fig. 3. An example of EHBSA/WT/3.

2N

€= mBratio €)
where Bratio(> 0) or the bias ratio is a constant re-
lated to the pressure toward random permutations. A
smaller value of B, reflects the real distribution of
edges in the parent population, whereas a larger value
of Biratio Will allow infrequent addition of new edges.
An example of EHM? is shown in Fig. 1.

Although the edge histogram matrix defined above
is symmetric (i.e., e; ; = €;,;) and it is, thus, applicable
only to problems where the orientation of edges does
not matter (e.g., symmetric TSP), an asymmetric edge
histogram matrix can be defined for problems where
the orientation of edges does matter (e.g., asymmetric
TSP and flow shop scheduling) [25,26].

2.2. Sampling algorithms

We use two algorithms for sampling the edge his-
togram matrix EHM?: (i) the edge histogram based
sampling algorithm without template (EHBSA/WO),
and (ii) the edge histogram based sampling algorithm
with template (EHBSA/WT).

2.2.1. EHBSA/WO

Let us denote the elements of the permutation, to be
sampled, by c[i] for ¢ €{0, 1, ..., L-1}. EHBSA/WO
starts by randomly selecting the initial element of it
(denoted by c[0]). The sampling continues recursively

using a variant of the roulette-wheel selection algo-
rithm [5]. Let us assume that the last element gener-
ated is c[¢] (thus we have generated ¢ + 1 elements so
far). The new element c[i + 1] is set to j (we restrict
potential values of j so that j # c[k] for all £ €{0, 1,
...,1}; otherwise, the new edge would create a cycle)
with a probability proportional to the element etc[i] g of
the given edge histogram matrix EHM*. The sam-
pling continues until the entire permutation has been
generated. Figure 2 shows the schematic description of
the edge histogram based sampling algorithm without
template (EHBSA/WO).

2.2.2. EHBSA/WT

EH M?* gives a marginal edge histogram and has no
graphical structure. EHBSA/WT is intended to make
up for this disadvantage by using a template in sampling
a new individual. In generating each new individual, a
template individual is chosen from P(t) (normally, ran-
domly). Using n (n > 1) random cut points the tem-
plate is divided into n segments. Then, we choose one
segment randomly and sample nodes for that segment.
Nodes in other segments remain unchanged.

We denote this sampling method as EHBSA/WT/n.
Since the average length of one segment is L/m,
EHBSA/WT/n generates new strings that are different
in L/m nodes, on an average, from their templates. Fig-
ure 3 shows an example of EHBSA/WT/3. In this ex-
ample, nodes of the new individual after cut[2] and be-
fore cut[1] are the same as those of the template. New
nodes are sampled for only segmentl (from cut[1] up
to, but not including, cut[2]) based on the E H M ¢ using
a similar algorithm to that of EHBSA/WO. Figure 4
shows the schematic representation of the EHBSA/WT.

Randomness in generating cut points and choosing
one of the segments introduces variation in segment po-
sitions and lengths of elements that are going to be gen-
erated. Let f(z) be the probability density function of
the length of a segment to be sampled in EHBSA/WT/n.
Then, f(z) can be obtained as follows [24]:
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Choose a template 7] from P(¥) .

Nk wh =

D)

wheel rw[].

Obtain sorted cut points array cut[0], cut[1], O, ¢ ut[z01]Jrandomly.

Choose a cut point cut{/] by generating a random number / € [0, nO1]

Copy nodes in 7] to c[] after cut[(/+1) mod #] and before cut{/].

Set the position counter p « (cut[/]O14) mod L.

Construct a roulette wheel vector rw[] from EHM as rw[j] « €'y, (=0, 1, .., LO1)
Set 0 to previously sampled node in in rw[] (Fw[c[i]] « O for i = cut[(/+1) mod »], O,

8. Sample next node c[(p+1) mod L] with probability rfx}/ T’

9. Update the position counter p < (p+1) mod L.
10. If (p+1) mod L # cut[(/+1) mod n], go to Step 6 else stop.

/] using roulette

Fig. 4. EHBSA/WT.
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Fig. 5. Probability density function f(z).

sy =2 (-5 @

Figure 5 shows the probability density function f(z).
Forn =2, f(x)isuniformly distributed in [0, L]. Thus,
the length of a segment to be sampled in EHBSA/WT/2
is uniformly distributed in [0, L]. When the length
of the segment is small, the EHBSA/WT/2 samples
a small number of nodes; thus performing a kind of
local search and improves the quality of the individ-
ual. On the other hand, when the length is large, the
EHBSA/WT/2 samples a large number of nodes, per-
forming a kind of global search. This can either im-
prove the template individual or produce a new indi-
vidual. Thus, we can expect EHBSA/WT/2 to work
having a balancing of global and local improvements.
For n. > 2, short segments are more likely to occur.

2.3. Models of evolution

All evolutionary models are based on the steady-state
scheme. Models used are as follows.

Model for EHBSA/WT: Let the population size be
N, and let it, at time ¢, be denoted by P(t). Note that
individuals in the initial population P(0) are generated
randomly. The population P(t + 1) is produced as
follows (see Fig. 6):

1. Edge histogram matrix EH M* (see Section 2.1)
is computed from P(t).

2. A template individual T[] is selected from P(t)
randomly.

3. EHBSA/WT (see Section 2.2.2) is executed using
EHM? and T[] to generate a new individual c[].

4. The new individual ¢[] is evaluated. If c[] is
better than T[], then T'[] is replaced by c[], else
do nothing.

5. P(t+1) is generated performing steps 1-4, N
times.

Model for EHBSA/WO: The evolutionary model for
EHBSA/WO is basically the same as the model for
EHBSA/WT, with the exception that EHBSA/WO uses
a pseudo template PTT].

Model for two-parent recombination operators: To
compare the performance of the proposed methods with
that of the traditional two-parent recombination oper-
ators, we used the same steady-state framework. Two
parents are selected from P(t) randomly and recombi-
nation operator is applied on them to produce an off-
spring. If the offspring is better than the worst parent,
we incorporate it into the population. This scheme was
previously used in the GENITOR algorithm [27].
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Table 1
Results of Berlin52

Pop size 60 120 240
Operator [#OPT| MNE STD | Error [#OPT] MNE STD | Error [#OPT] MNE STD | Error
WO | 0/20 - - 0.0533 [ 2/20| 88071.0 | 8436.0 |0.0315 | 4/20| 287587.0 | 23920.9 |0.0221
5 WT/2|14/20| 87270.3 [ 40038.5 [0.0008 |15/20 170383.7 | 86103.6 {0.0008 |18/20f 268762.6 | 45087.0 |0.0003
% WT/3|16/200 79686.1 | 19976.6 |0.0020 [18/20f 148990.4 | 29788.0 {0.0003 |20/20] 275306.7 | 37282.2 0
M| WT/4|20/200 102421.0 | 39764.6 0 {20/201 179610.1 | 24327.0 0 [20/20f 325404.7 | 40214.8 0
WT/5|20/201 153894.1 | 39368.5 0 (20720 240952.7 | 44367.0 0 [17/20 389686.5 | 52160.4 |10.0020
Pop size 240 480 960 |
Operator [#OPT| MNE STD | Error [#OPT| MNE STD | Error #OPT] MNE STD | Error
(6),¢ 0 - - 0.0889 | 2/20| 138016.0 | 23839.0 [0.0553 | 2/20{ 204510.5 | 11278.5 [0.0558
PMX 0 - - 0.5164 | 0/20 - - 0.3698 | 0/20 - - 0.2983
EER 0 - - 0.0420 | 8/20| 66100.0 [ 8527.1 {0.0034 |18/20| 119112.5 | 6897.5 |0.0013

replace and 50
obtain P(r+1) j select template string 7T]
btain EHM" from P(¢
N
EHM
new string cf] ) o EHM‘% 0
select better one
template string 7T] J{

Fig. 6. Evolutionary model for EHBSA/WT.

2.4. Results and analysis

Here we show results of 20 simulations for each
TSP instance and each parameter setting. Each
run was terminated either when the optimal tour
was found, or when the population converged, or
when the number of evaluations reached Ep,,x (sup-
plied by the user). We used the Berlin52 and pr76
TSP instances available at http://www.iwr.uni-hei-
delberg.de/groups/comopt/software/TSPLIB95/. Val-
ues of Eqax were 500000 and 1000000 for Berlin52
and pr76, respectively. Population size 60, 120, 240
were used for EHBSA; for other algorithms, population
size 240, 480 and 960 were used. The bias ratio B ,tio
of Eq. (3) is set to 0.005 for all experiments.

We evaluated the performance of different algo-
rithms by measuring the following quantities: #OPT
(the number of runs in which the algorithm succeeded

in finding the optimal tour), MNE (the mean number
of evaluations to find the global optimum in those runs
where it did find the optimum, and Error ((the average
length of the best solution over the 20 runs — optimal
tour length)/optimal tour length).

Results on Berlin52 are shown in Table 1. EHBSA/
WO could not find the optimal tour with N = 60 and
could find the optimal in 2 and 4 runs with N = 120 and
240, respectively. On the other hand, EHBSA/WT/n
found the optimum tour more frequently and its Error
values were much smaller than those of EHBSA/WO.
Specially, EHBSA/WT/4, 5 with N = 60 found the
optimal tour in all 20 runs and showed small values of
MNEs. From other operators, Extended ER (EER) [21]
showed the best performance. The EER with N =
480 and 960 found the optimal tour 8 and 18 times,
respectively, although the values are poorer than those
of EHBSA/WT. OX [17] showed worse performance
than EER. PMX [5] performed the worst.



16 S. Tsutsui et al. / Edge histogram based sampling with local search for solving permutation problems
Table 2
Results of pr76

Pop size 60 120 240
Operator [#OPT| MNE STD | Error [#OPT] MNE STD | Error [#OPT] MNE STD | Error
WO | 0/20 - - 0.0560 | 0/20 - - 0.0288 | 0/20 - - 0.0764
<« | WT/2|13/20] 339947.6 | 60683.5 [ 0.0021 |19/20| 615354.5| 88813.6 | 0.0001 | 19/20]| 1083794.9 | 154414.8 | 0.0004

7

% WT/3|14/20] 395428.8 | 166260.6 | 0.0009 |19/20| 712166.7 | 195965.6 | 0.0001 | 20/20| 1117316.7 | 131584.2 0
= | WT/4|14/20 503356.7 | 154634.0 | 0.0017 | 18/20| 866578.9 | 197105.3 | 0.0008 | 18/20( 1595085.9 | 215993.2 | 0.0001
WT/5|18/20| 707941.4 | 200621.3 | 0.0006 | 19/20| 1375098.1 | 237743.3 | 0.0001 | 6/20 | 1812298.3 | 201695.2 | 0.0016

Pop size 240 480 960
Operator [#OPT| MNE STD Error [#OPT} MNE STD | Error [#OPT] MNE STD | Error
ox 0/20 - - 0.1575 | 0/20 0.1112 | 0/20 - - 0.0766
PMX 0/20 - - 1.2795 | 0/20 - 0.9500 | 0/20 - - 0.6934
EER 0/20 - - 0.0725 | 1/20 109242.0 0.0 | 0.0231 | 2/20 | 261935.0 6349.0 [ 0.0076

replace and )50
obtain A(t+1) W select template string 77]
btain EHM" from P(¢
N
EHM

new string c[]

select better one

template string 7T]

le—

Fig. 7. Combining EHBSA with local search.

Comparing the performance of EHBSA/WT with
that of other operators, EHBSA/WT was better than
EER and it was significantly better than OX and PMX.
One big difference between EHBSA/WT and EER is
that EHBSA/WT requires a smaller population.

Results on pr76 are shown in Table 2. EHBSA/WO
could not find the optimum tour in pr76, which con-
firms bad scalability of this variant of EHBSA. On the
other hand, EHBSA/WT/n found the optimal tour in al-
most all cases. With N = 60, EHBSA/WT/2, 3, 4, and
5 found the optimal tour 13, 14, 14, and 18 times, re-
spectively. With N = 120, EHBSA/WT/2, 3,4, and §
found the optimal tour 19, 19, 18, and 19 times, respec-
tively. With N = 240, EHBSA/WT had similar values
of #OPT, showing larger value of MNE. Thus, we can
see that the performance of EHBSA/WT is much better
than EHBSA/WO in this experiment. Among the other
operators, only EER was able to find the optimal tour
in one run with N = 480 and in two runs for N = 960.
OX and PMX could not find the optimal tour at all.

3. Improving performance of EHBSA with local
search

Recombination-based optimizers sometimes use lo-
cal search (LS) for improving solutions locally as the
search progresses. In this section, we examine such a
hybrid approach, where EHBSA is combined with lo-
cal search heuristics for improving solutions. We tested
two types of heuristics; one is a simple heuristic for
solving TSP called 2-OPT, and the other is a sophisti-
cated Lin-Kernighan [8,13] heuristic. A local search is
applied on newly generated strings at every generation
as shown in Fig. 7.

3.1. Combining EHBSA with 2-OPT
In this section we describe a combination of EHBSA

with standard 2-OPT heuristic. Let us first describe the
2-OPT heuristic.
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Table 3
EHBSA with 2-OPT on Berlin52 and pr76

TSP instance EHBSA/WT/2 EHBSA/WT/242-OPT

berlin52 MNE 87270.3 90
#OPT 14/20 20/20
pr76 MNE 339947.6 375.1
#OPT 13/20 20/20

Fig. 8. An example of one step of 2-OPT local search.

3.1.1. 2-OPT Heuristic

2-OPT proceeds by checking pairs of nonadjacent
edges in a given tour, and computing the improvement
in the tour length after rearranging these pairs of edges
by exchanging the terminal nodes of the two edges in
each pair as shown in Fig. 8. If no pair of edges can be
rearranged to improve the current tour, the algorithm is
terminated. Otherwise, the pair of edges that improves
the performance maximum (minimum tour length) is
rearranged, and the algorithm is executed again.

Since there are L edges for a tour of length L, check-
ing all pairs of edges will need O(L?) steps. Determin-
ing an upper bound for the number of passes showing
improvement is very difficult. A conservative bound
would assume that all pairs of edges can be rearranged;
but in practice no more than L improvements should be
expected, yielding a bound O(L3). In EHBSA we use
2-OPT to check if any improvement can be made in the
newly generated solution, thereby increasing the com-
putational cost of generating a new solution to O(L3)
from O(L?).

3.1.2. Results

Table 3 shows the results of the combination of
EHBSA/WT/2 with 2-OPT heuristic for berlin52 and
pr76 problems (Section 2). The population size was
chosen as 60. From this table, we can see that the
EHBSA/WT with 2-OPT heuristic solves the problems
much faster than without heuristic. In the following
experiments, we evaluate the effect of the combina-
tion of EHBSA with 2-OPT heuristic using larger prob-
lems (TSP instances with a larger number of cities).
For these experiments, the maximum number of eval-
uations is set to 100,000 for all tested TSP instances.
The remaining settings are the same as those for the
experiments described in Section 2.

Theresults for a 226-city problem pr226 are shownin
Table 4. In this case, EHBSA/WO shows better perfor-
mance than EHBSA/WT. For example, for a population
of N = 15, #OPT of EHBSA/WO and EHBSA/WT
ranges in 16-17, no explicit difference exists between
them. However, MNE of EHBSA/WO is 277.7, which
is about one third to half of those of EHBSA/WT (for
different population sizes). For N = 60, #OPT of
EHBSA/WO and EHBSA/WT are both 20. However,
the MNE of EHBSA/WO is 990.3, which is again about
one third to half of those of EHBSA/WT. Thus, we can
say that for this problem EHBSA/WO is better than
EHBSA/WT.

Since EHBSA/WO does not use a template, it can
produce more unique new tours than EHBSA/WT. As
a result 2-OPT efficiently improves the tour. Thus, we
can see that the combination of EHBSA/WO and 2-
OPT shows good performance for this problem. Note
that the number of evaluations for solving the 226-city
problem with a hybrid EHBSA+2-OPT is much lower
than that for solving the 52-city problem with pure
EHBSA. Thus, as expected, use of local search im-
proves the performance and strengthens the robustness
of EHBSA.

On the other hand, other recombination operators
perform rather poorly. OX succeeded in 14 out of the
20runs with N = 240 with MNE = 3658.5. With N =
960, it succeeded in 20 runs, but MNE was much higher.
EER and PMX showed similar performance to OX.
This confirms that both EHBSA/WO and EHBSA/WT
are better than the standard algorithms when combined
with a local search heuristic.

Table 5 shows the results on a larger problem, the
318-city problem 1in318. EHBSA/WO again showed
a lesser value of MNE than EHBSA/WT. However, its
success rate is lower than EHBSA/WT. For this prob-
lem, EHBSA/WT/3, population size N = 30 showed
#OPT = 20 and MNE = 11928.4. Although #OPT in-
creased with n of EHBSA/WT/n, values of MNE also
increased. The number of evaluations increased com-
pared to the 226-city problem, but it is still smaller than
that for the 52-city problem without the local search.
This reconfirms the advantages of using local search
in combination with EHBSA (this time EHBSA/WT
is better than EHBSA/WO). The performance of OX
and PMX decreased compared to the 226-city TSP, but
for some settings these operators yielded comparable
performance to EHBSA. However, it seems that this
TSP instance is relatively easy for OX and PMX. EER
performed the worst.

Table 6 shows that increasing the number of cities
from 318 to 439 necessitated a slight increase in the
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Table 4
Results of pr226

Pop size 15 30 60
Operator |#OPT] MNE STD | Error [#OPT] MNE STD | Error [#OPT] MNE STD | Error
WO [16/20] 271.7 64.8 10.0004 [17/20 534.6 164.1 10.0000 |20/20 990.3 1443 0
g WT/2]16/20 519.2 94.0 10.0000 |20/20, 964.8 165.7 0{20/20] 1639.9 413.1 0
g WT/3|15/20| 758.2 226.6 {0.0003 |20/20{ 1295.7 3554 0(20/20] 1860.8 281.9 0
M| 'WT/4|15120 779.9 164.7 |0.0000 |20/20] 1369.0 310.7 0(20/20] 2171.1 436.9 0
WT/5]17/20 986.9 233.3 [0.0000 [20/20] 1626.9 297.4 0 (20720 2702.1 632.5 0

Pop size 240 480 960
Operator [#OPT] MNE STD | Error {#OPT] MNE STD | Error |#OPT] MNE STD | Error
0X 14/20] 3658.5 686.0 [0.0001 |19/20| 6072.1 | 1113.8 {0.0000 [20/20] 11363.9 | 1438.3 0
PMX [17/20| 3363.9 551.8 [0.0000 |19/20] 5996.7 | 1401.7 [0.0000 [20/20] 11076.0 | 1149.5 0
EER [12/20] 3644.8 743.8 10.0000 |19/20] 6450.7 | 1446.5 [0.0000 {19/20] 10905.3 | 3718.0 [0.0000

Table 5
Results for 1in318

Pop size 15 30 60
Operator [#OPT| MNE STD | Error #OPT| MNE STD | Error #OPT] MNE STD | Error
WO | 2/20| 2305.5 108.5 10.0019 [12/20 5580.3 976.4 [0.0005 |18/20{ 11664.1 | 1613.2 {0.0002
% WT/2|10/20f 7830.7 | 9183.7 |0.0003 |18/200 7850.9 | 2097.9 |0.0001 |20/20f 15220.1 | 2706.8 0
% WT/3]16/200 8993.6 | 6306.7 |0.0003 [20/20 11928.4 | 6790.4 0 [20/20f 19997.8 | 6466.6 0
Ml WT/4[20/200  15970.7 | 10235.3 0 [20/20] 20865.1 | 9506.9 0 [20/200 30609.1 | 12317.4 0
WT/5(20/20] 22430.1 | 19460.7 0 [20/20f 25825.0 | 13329.0 0 [20/201 35579.2 | 16460.6 0

Pop size 240 480 960
Operator [#OPT| MNE STD | Error #OPT| MNE STD | Error #OPT] MNE STD | Error
OX 5/20( 8660.6 | 1815.8 (0.0009 |15/201 16291.3 | 3390.2 [0.0003 [20/20{ 26704.1 | 3297.2 0
PMX | 6/20| 7413.5| 1675.6 |0.0008 |13/20| 14219.2 | 2521.2 |0.0003 |20/20f 29290.9 | 3683.7 0
EER 3/20] 10815.3 372.0 j0.0006 |12/2(04 21156.8 | 1375.3 |0.0002 [17/20f 42207.2 | 5354.5 |0.0001

population size used by EHBSA. For many settings,
the number of evaluations for the 439-city problem
decreased compared to the smaller problem of 318-
cities presented above, which indicates good scalability
of EHBSA. However, other recombination operators
show a significant decrease in performance compared
to the 318-city problem (Table 5). EER is not capa-
ble of achieving reliable convergence to the optimum
even with a population size N = 960, whereas conver-
gence of PMX and OX became reliable only with N =
960, showing very inferior performance compared to
EHBSA/WT with almost all settings.

To summarize the results for hybrid algorithms, we
can observe that EHBSA provides robust performance
(over all population sizes) even for large TSP instances.
The other recombination based methods (combined
with 2-OPT heuristic) for TSP provided performance
that is much inferior with respect to reliability and com-
putational efficiency. #OPT found by EHBSA is al-

ways more than those of other operators (even with
a larger population size). Correspondingly, MNE is
much less for EHBSA than those of other operators.
Comparing EHBSA/WO and EHBSA/WT we can say
that EHBSA/WO works better than EHBSA/WT for
smaller problems, whereas EHBSA/WT mostly shows
superior performance for larger problems.

3.2. Combining EHBSA with lin-kernighan heuristic

In this section we describe a combination of EHBSA
with Lin-Kernighan heuristic. Let us first describe the
heuristic.

3.2.1. Lin-kernighan heuristic

Lin-Kernighan (LK) [8,13] local search is based on
2-OPT moves. The current solution is viewed as an
anchored Hamiltonian path P rather than as a Hamilto-
nian circuit. The anchor of the path is a fixed end-point
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Table 6
Results for pr439

Pop size 15 30 60
Operator [#OPT] MNE STD | Error [#OPT] MNE STD | Error [#OPT] MNE STD | Error
WO | 0/20 |NaN NaN 0.0008 | 0/20 |NaN NaN 0.0006 | 7/20 9234.7 | 1827.4 |0.0002
g WT/2| 6/20| 2681.8 917.6 |0.0003 [13/20| 5659.3 | 2214.6 |0.0001 |18/20{ 10284.9 | 2107.9 ]0.0000
% WT/3] 6/20| 11649.8 | 13536.9 (0.0002 [15/20f 9084.7 | 3920.3 |0.0001 [19/20f 14321.3 | 3727.9 0
= IwT/4[14/200  8812.1 [ 5820.7 |0.0001 [19/200 13021.1 | 6705.4 [0.0000 |20/20{ 17126.9 | 3509.9 0
WT/5[11/200 19993.1 | 18286.6 |0.0001 {19/20f 24371.4 | 17549.8 {0.0000 |20/20] 25006.0 | 5944.2 0

Pop size 240 480 960
Operator [#OPT| MNE STD | Error #OPT| MNE STD | Error [#OPT] MNE STD | Error
OX 1/20| 49358.0 0.0 [0.0007 | 4/20| 15203.5 999.0 |0.0004 [10/200 29125.3 | 3199.9 {0.0001
PMX 2/20 8532.0 425.0 [0.0008 | 5/20| 17100.0 | 2470.6 |0.0002 [10/20f 31571.7 | 4176.3 |0.0002
EER 1/20| 10815.3 0.0 {0.0003 | 4/20| 25714.8 | 1980.0 |0.0001 | 8/20| 65775.5 | 20199.8 {0.0001
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Fig. 9. An example of one step of LK local search.

city t, as illustrated in the first part of Fig. 9. Let to;
denote the other endpoint of the path P; that exists at the
beginning of step i of the LK search. The tour corre-
sponding to path P; can then be obtained by adding the
edge {t2;, t1}. Ateach step we only consider 2-OPT
moves that flip some suffix of the path, i.e. one of the
tour edges being broken is {t1, t3;}. Furthermore, the
new neighbor to;11 of t3; must be such that the length
of the one-tree (spanning tree plus one edge) obtained
by adding the edge {t2;, t2i+1} to Pi (middle part of
Fig. 9) is less than the length of the best tour seen so far.
This restriction is a generalization of the criterion in
2-OPT that d(¢2, t3 ) be less than d(¢1, t2). The general
one-tree restriction can be implemented using neigh-
bor lists similarly as for 2-OPT. As in the neighbor-
list implementations of 2-OPT, using neighbor-lists of
length kimposes an additional constraint that only the
k nearest cities to t9; can be considered as candidates
for t9;41, even if additional cities would satisfy the
one-tree restriction.

There are many variant implementations for LK
search (e.g., [10,16]). An important, and widely

adopted, part of Lin and Kernighan’s overall tour-
finding scheme is the repeated use of the basic LK al-
gorithm. The scheme is referred to as Iterated Lin-
Kernighan [11]. Here we used an iterated imple-
mentation of Concord TSP solver, where we used
“walk kick” on it. For more details, please see
http://www.tsp.gatech.edu/concorde.html.

3.2.2. Results

Results for a 3795-city problem fl3795 using
EHBSA sampling combined with LK local search is
given in Table 7, and those for a 5934-city problem
r15934 in Table 8. For these experiments, the maximum
number of evaluations is set to 1,000 and 3,000 for
13795 and r15934, respectively. The remaining settings
are the same as those for the experiments described in
Section 2.

It is evident from the results given in Tables 7 and
8, that incorporation of LK search heuristics with ei-
ther the recombination based standard algorithms or
EHBSA/WT improves (in terms of both MNE and
#OPT) the performance. They can solve bigger prob-
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Table 7
Results for 13795

Pop size 5 10 15
Operator |[#OPT| MNE STD | Error (#OPT] MNE STD | Error [#OPT] MNE STD | Error
WT/2|20/20) 55.6 24.1 0 |20/20 81.1 353 0 |20/20f 78.5 40.7 0
g WT/3120/20f 70.4 69.5 0 [20/20f 76.7 359 0 |20/20 60.4 32.7 0
E WT/4{20/20f 94.3 64.9 0 1207204 67.0 36.0 0 [20/20 65.4 347 0
WT/5{20/20 81.6 79.4 0 |20/20f 79.1 52.1 0 |20/20f 86.0 40.6 0

Pop size 10 15 30
Operator |#OPT| MNE STD | Error [#OPT] MNE STD | Error [#OPT| MNE STD | Error
00X 17/20 434 14.4 10.0003 [19/20) 49.8 23.9 |0.0001 |20/20 77.9 31.4 0
PMX 18/20 50.7 22.5 [0.0008 |19/20; 60.1 30.2 |0.0001 {20/20; 84.8 27.8 0
EER  [20/20 149.1 70.5 [0.0000 |20/20f 167.7 77.6 0 (20/2 235.7 117.9 0

Table 8
Results for r15934

Pop size 5 10 15
Operator [#OPT| MNE STD | Error [#OPT] MNE STD | Error [#OPT] MNE STD | Error
WT/2(20/20 292.3 75.4 0 |20/20) 520.9 | 146.294 0 |20/20f 57591 220.192 0
é WT/3{20/20f 288.2 191.1 0 [20/204 352.5| 130.982 0 120/20f 540.9 [ 165.039 0
E WT/4]20/20) 270.1 130.0 0 |20/20 372.8| 126.72 0 120/20f 496.8 | 135.91 0
WT/520/20f 278.6 180.9 0 [20/20f 403.3 | 193.322 0 |20/2 523.7| 194.093 0

Pop size 15 30 60
Operator [#OPT] MNE STD | Error [#OPT] MNE STD | Error [#OPT| MNE STD | Error
0X 11720 167.5 | 43.0779{0.0003 |19/20; 285.2| 75.0882]|0.0001 {20/20 412.6 | 93.6421 0
PMX  [15/20f 159.5 | 34.0996/0.0000 |17/20; 276.9 | 62.3335/0.0000 |20/20; 516.4 | 99.2514 0
EER [17/20 220.6 | 47.4676|0.0000 [20/20) 408.7 | 84.4797 0 120/20; 800.8 | 74.8484 0

lems even with 5934 cities quite well. This establishes
the utility of LK search in combination with evolution-
ary algorithms.

It is seen from the Tables that for all population sizes
(even for a small population size of 5) EHBSA/WT
combined with a LK heuristic succeeded in finding out
the optimum solution for all runs. However, other op-
erators (OX, PMX, EER) combined with LK heuristics
could not find the optimum in all runs for smaller pop-
ulation sizes. Let us take the case of population size
15 and 115934 problem. The EHBSA/WT could detect
the optimum 100% times; whereas the OX detected the
optimum 11 times, PMX, 15 and EER, 17 times out
of 20. They could succeed in all runs only when the
population size was as big as 60. Other measures like
MNE, STD are comparable for all techniques. Similar
are the results even for the 3795 cities problem.

To summarize the results for hybrid algorithms, we
can observe that EHBSA provides robust performance
(over all population sizes) even for large TSP instances.
The other recombination based methods (combined

with LK heuristic) for TSP provided performance that
is inferior with respect to reliability and computational
efficiency. #OPT found by EHBSA is always 100%;
whereas the other operators needed larger population
size for achieving this result. Thus, we can say that hy-
brid EHBSA works well for smaller population sizes,
and thus are robust and incur less computational cost.

An experiment was also conducted to check if a par-
ticular template (e.g., the present best individual) would
work better than a random template, but the results did
not show much improvement.

4. Summary and conclusions

A concept of edge histogram based sampling
(EHBSA) for solving permutation problems was intro-
duced by Tsutsui [23]. Its applicability to solve TSP
and flow shop-scheduling problems was also demon-
strated [25,26].

In this paper EHBSA has been hybridized with some
popular well-known local search heuristics (namely the
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2-OPT and the Lin-Kernighan heuristics) to take ad-
vantage of local search. Experimental evidences show
that this hybrid technique decreases the computational
requirements for finding a globally optimal tour in TSP,
providing a method capable of solving significantly
larger problems of thousands of cities. The method is
very robust in the sense of detecting global optima for
a wide variety of population sizes. The effectiveness of
EHBSA, over other recombination based techniques,
is more clear when we use a weaker heuristic (like 2-
OPT), whereas the effectiveness of EHBSA is less if
we use a sophisticated heuristic like the Lin-Kernighan
heuristic. However, we can always observe some ad-
vantage of EHBSA over the classical recombination
based techniques.

Note that EHBSAs do not use any specific domain
knowledge of TSP such as the presence of all cities in
the permutation or the distance metric for estimating
the distances between the cities. That is why EHBSA
can be used to solve other permutation problem like the
flow shop-scheduling problem [25,26]. In the future,
more in-depth empirical analysis is required to confirm
that EHBSA combined with domain specific heuristic
performs better in other permutation problems also.
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