Local invariants for a class of mixed states
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Abstract

We investigate the equivalence of quantum states under local unitary transformations. A complete set of invariants under local
unitary transformations is presented for a class of mixed states. It is shown that two states in this class are locally equivalent if

and only if all these invariants have equal values for them.

Cuantum entangled states are playing very im-
portant roles in quantum information processing and
quantum computation [ 1. The properties of entangle-
ment for multiparite quantum syslems remain invari-
ant under local unitary transformations on the subsys-
tems. Hence the entanglement can be chamcteneed
by all the invariants under local unitary transforma-
tions. A complete set of invadants gives rise (o the
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classification of the quanum states under local uni-
tary transformations. Two guantum states are locally
equivalent if and only if all these invarants have equal
vitlues for these states. In [2,3], a generally nonoper-
ational method has been presented to compule all the
invarants of local unitary wansformatons. In [4], the
invarants for general two-gubit systems are studied
and a complete set of 18 polynomial invadants is pre-
sented. In [5] the invariants for three qubils states are
also discussed. In [6] a complete set of invariants for
generic density matrices with full rank has been pre-
sented.

In the present Letter we investigate the invadants
for arbitrary (finite-) dimensional bipartite quantum
systems. We present a complete set of invardants for
a class of guantum mixed states and show that two
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of these density matrices are locally equivalent if and
only if all these invariants have equal values for these
densily matrices.

1. Invarianis for a class of states with arbitrary
rank

Let us consider a general mixed swate o in a bi-
parite n x n system H @ H (n = 2), with a given
orthonormal basis { |1}, ..., [n}} of H. p has the eigen-
decomposition

N
p=2_ mlHé&l,

I=l)

where the rank of pis rip) =N+ 1 (N = 1), yy are
eigenvalues with the eigenvectors |5} = Z‘-j .Eb{]i;fj}
(and |5 & | denotes, as usual, the projector onto £},
551.5{] e . Let Ay denote the matrix with entries 53].‘{] . We
call a matrix “multiplicity free™ if each of is singular
values has multiplicity one. Let F denote the class of
states o for which Agis multiplicity free. We shall find
a complete set of local invariants for the class F, such
that any pair of states belong 1o F are equivalent under
local unitary transformations if and only if they have
the same values of these invariants.

Let (trpyoony Wedo (Ma..., ) be orthonormal
bases such that Ay = 37 Al is the singular
value decomposition of Ap, where L) = --- = &,
denote the singular values amranged in the decreas-
ing order. Let b := (Yi|As) for f =1,2,..., N,
and for positive miegers &, r = 1, and multi-indices

E= 1Ty e gy (withiy s all distinct), f=(f. ...,
Jee1) twith jg"s all distinet), where i, j, €{1..... n}
¥Yp.q, L =0,..., ), m=imy, ..., mp) Uy my €
{diziis Niywith i) = J1. fg+1 = jr+1. and such that
(L= (j,m), we define
) | pte)
PP, § ] S s
170, j. I m) = RS (1)
i Jrdrt

whenever the denominator in the above formula is
nonzero. Let P be the set of (i, j, [, m) such that
19(i, j, I, m) is well defined.

The following theorem is an immediate conse-
quence of Lemma 6, Lemma 7 and Remark 5.

Theorem 1. Two guantum states in F with the same
rank and eigenvalues pyp, (=10, ..., N, are equivalent
wnder focal wnitary transformations if and only if they
have the same values of the following invariants:

(1) matrices ( Br)i; = [{ri, A,

i, j=1,..., nl=1,..., N

(2) vector C = ({1, Apm}...., (Y. Aoia ),

(3) vectors Dy = ({1, A;mph. ..., {1y A s
F=kyavns N,

(4) 17 with the domain 7. (2)

Proofl. It is clear that the quantities above are local
invarant. Let us prove that these invariants are com-
plete for the class F. Suppose that p and p" are two
states in the class F such that they have the same val-
ues of these invanants. Let p = Z;i:] pplErig ] and
o= Ziin_ul:r&;}{&;f be the eigen-decomposition of
the two states, and let Ay = {ﬂ:;j-]}l, A; = {HL[-”} benxn
complex matrices associated with the decomposition
of & and & respectively, that is, & = 3, a} lij}.
i :
and &/ = Z”- a;; Fr_:r}. By assumption, Ag and A7 are
multiplicity-free, with the singular-value decomposi-
Lon

Ag=Y hlgadiml,  Ag=Y_ x|l
i i
with the smgular values armanged in the decreasing
order. Since Ay = (Y, Agmi} and A; = (], Agpih, it
follows that A; = & for all i. Set (By)ij = (v, Amjh,
(Bp)ij = (Y, f‘l;l]:l-}}l fori =0,1,..., N.Itis easy o
see from the equalities of 1°(i, j.0.m) and I¥(i, j,
{, m) that the condition (111} of Lemma 6 holds. The
conditions (1) and (11} of Lemma 6 also follows from
the equalities of the invadants labeled by (3) and (1) in
(2), respectively. Thus, by Lemma 7 of Appendix A,
we conclude that there exist unitary matoees U7 and V
such that U A, V* = A for = 0,1, ... N.Clearly, we
; nes g

I_'_u_'l_'l.-'l:, .E‘. — ZU ﬂ:'}_] fff} — ZJ'_.I'Z-QI“J.‘:“” l'_.l'.rl:ff} =
D O i |i)) @ (3 0l i) = (U@ V)&, where
U= iﬂi_,l'}', v = {1-'1'_,1'}': V = {ﬂu‘}l. Thus, g =
({UavipgiUaV)*. O

As an example we calculate all the invariants for the
Wemer state [7], pw = (1 — placa/d + plP_HE_|,
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where 0= p < 1, fjeq05 the 4 = 4 adentity matnx and
w_}= ﬁ{tﬂ'l} —|10}).

Here, N = 3, oy = jia = pi3 = 32, g = 221
We have,

= |(}}, =11}, 01 10
£y = |0} £ =11} ﬁ{i b 110})

fio (101} — 110)).
3_\)"{_ |

g L i S
- 1 _ W2
AI_(—L B) A"_(——L (})'
W2 2

The orthonormal bases {yn, ¥ra} and {g, 52} can
be chosen w be the canonical basis {0}, |1} Thus,
( Brdij = Wb, Ayl = [{As)g5] in this case. The in-
varianis are:

00 g ° %
() Bl:(:]l}’ﬂlz( L :]) B;—( = D ):

(2) C=1(1,0); . .

(3 Dy=0,1=1,2 3;

(4 X7 = {{{iy. i2), (v, J2). (). (m ) h,my € {2,
3 ip, Jg € 1.2} 41 # d2, 1 # jo. (2. 1) #
(1. 2. m)}, which can be explicitly wnlten as:
{((1,2),(1,2), (2), (3)); ((1,2), (1,2), (3), (2));
({1, 20,02, 1. (20, (2005 ({1, 2), (2, 1), (2), (3));
({1, 20,02, 1. (3002005001, 20, (2, 1), (3D, (3D);
(2, 10,01, 20, (2). (2005002, 1), (1,2), (2), (3));
((2, 1), (1, 2), (30, (2)): ({2, 1), (1,2), (3). (3D);
(2, 1002, 10 (2003005002, 10, (2, 1), (30, (200}
The values of I¥ on the above elements (in the
same orderyare 1, 1,1, —1,1, =1, 1,1, =1, —1,
-1, —1.

Remark 2. The class of stales F for which our re-
sult works is indeed a large one. In fact, F M Fy is
dense (in nomm) in g, where i denotes the set of
n x n bipatite states of rank £ + 1, & = 0. Consider
any stale p € Fp, with the eigen-decomposition p =
Yo—orulEsl, with & = Z,-J-EL-FF}}, and suppose
that Ag == (£)f;—; is not necessarily multiplicity-
free. We Llalm tha[ for any £ = 0, we can choose an
n x n multiplicity-free matrix Ay = (a;;) such that

laij — .re [ ne ¥i, j. Indeed, if Ay = Z Al Mo
15 the hmguld.r vitlue decomposition of Ay, where 3;'s
may not be all distinet, we can choose A;'s which
are distinct among themselves, with [4; — 37| < # for
all i. Ay can be taken w be the matrix 3 A [ o |
Now, Aj is multiplicity-free, and if we choose o’ =
polégHEl + SF | pilErEl, where &= 2 a;lijh
it is easy to see that p’ € Fr NV Fand |p —p'|| < 2n'e.

2. The invariants for another class of rank two
states

We now consider another class of states which are
rank two states on T = O such that the matrices Ag.
Ay are of the following form:

Apg=pP 4+l —pil— P,
Ai=gQ+ (1 —g)(1— Q). (3)

where () = p.g = 1 and P, () are projection operators.
We denote this class of states by G.

Theorem 3. The following is a complete set of local
invariants for the states in class G-

), ). Al
(2P -D2e-1)'],  T{(eP-1E)"]
B, n, (4)

where E+ denotes the projection onto the eigenspace
af (2P — 1020 — 1) corvesponding to the eigenvalue
+1.

Prool. Clearly, the above guantities are local invari-
ants. We show that they are complete. Let p° be an-
other state in G, with p', g, P and @ instead of
p.og. P oand @, respectively. Since p has two eigen-
values and Tr{g) = 1, the cigenvalues are determined
by Tr{p?). Similardy, Tr(AJ) and Tr( A7) completely
determine p and g. Thus, p = p' and g = g, Fur-
thermore, by Lemma 8, the equality of the traces
TH(2P — D2Q — 1"}, TP — DE2)). k =
| n;, with their primed counterparts implies that
we can find unitary matrix U such that I PU* = P/,
UQU* = . This proves that p and o' are locally
equivalent. [0
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This theorem applies w a class of d-computable
states [8], with a slight modification as follows. Con-
sider a fixed local unitary operator W = T @ T2, and
let Gy denote the set of states o such that WaW* £ G,
Cleady, any two states p and g in Gy are locally
equivalent if and only if WoW* and Wp'W* in G are
locally equivalent too, which can be determined by
computing the invariants (4).

For example, we consider a pure state on T4 x
4 |y = ZL-=| ajjlif}, aij € C, Z}‘_J-=| ﬂ,-_,-ﬂzl. = 1.
Suppose that the matrix A = {a;;) has the form

0 0 a m

0 0 B 4
b L8] b| ﬂ ] fS}

Bod 00

ap, by.dy € C, satisfying ay.d) = 0, a1d) = |b1].
In this case, W) 15 a d-computable state and its
entanglement of formation is a monotonically in-
creasing function of the generalized concumrence d =
Hapd) — |b]7). The entanglement of formation for
any mixed states with decompositions on d-comput-
able states can be caleulated analytically. Let (') =
ZL-=| .ra].'j |if} be another pure state with A" = {HL-}I of
the form (5) and {yr'|1fr} = 0. Then

p=plyiwl 4+ (1 — )l ) ()
is an entangled rank two density matix. Set T =

:i ﬁ}l and W =T @ §;. As the matrices A, A are of
the form T8, where B is a nonnegative matrix with at
most two different eigenvalues with degeneracy two,
o € Gy, and the invariants (4) determine the equiva-
lence of two mixed states of the form (6) under local
unitary transformations.

3. Remarks and conclusions

We have investigated the equivalence of gquantum
bipartite states under local unitary transformations.
For the states p for which Ap is mulliplicity free, as
well as for the states p which are of rank two on
% s O such that each of the matrices Ap and 4 i1sa
nonnegative matrix having at most two different eigen-
values, a complete set of invarants under local unitary
transformations is presented. Two of these states are
locally equivalent if and only if all these invadants
have equal values for them.

The mesults can be generalized o the multipartie
case. For instance, we can consider a triparite state
gape with subsystems, say, A, B and C as bipartite
slales pa|ge . PAR|C OF BAC| 8- If the conditions in our
theorems are satisfied for one of the bipartite decom-
posiions, say g4 gc. we can judge whether two such
ripartite states are equivalent or not under local uni-
tary transformations, in this bipartite decomposition.
If they are, we consider further pge = Tralpasc).
which is again a bipartite state and can be judged by
using our theorems, if the related conditions are satis-
fied. In this way the equivalence for a class of mul-
tpartite states can also be swdied according 1o our
theorems.

Appendix A

Lemma 4. Let By = (b}'), Ci = (c]') be n x n ma-
trices with complex entries, | =1,..., N, where n
and N are positive integers. Then there exist com-
plex numbers wi i =1,..., n, with lu;l = 1, ¥i and
c':.j.] = #"I-b:.j.] Joralli, j=1,..., nl=1,..., N if and

only if the following conditions hold:

M b =cll i,
() |by)'| =lef]'| ¥i. jil,

(1) For afl choices af Iy, ..., feomy, ..., my 1,2,
s N} kr 2 1), 6, ERgls Jlocees fre1 €
{12500, nlwith iy = f1.0p+1 = jr+ls

) I I " i
.b‘l]jib‘[z:i i b‘lliz H If"] .."jz] o C.[."r..'i]u
S L ) e 15 B LD RN CLTY
Iy iy Tpl4n ™ N J2 dedegd”

Proof. The proof of the necessity of the conditions (1),
{11y, (110} is tivial. We prove the sufficiency of these
conditions. Assume that (1), (11), (110 are satisfied. We
define a relation ~ on the set {1, 2, .., n} as follows.
Letusseti ~ i forall i, and fori, j different, let us say

i— j if there exist iy, ..., ek z1)withiy =1,
. . R Iy) g (f2d (.1
ppy=jFandly, ..., Iy such that b0 b5 0L, b

L ia? gy iy q
are all nonzero (hy (1) this s equivalent W saying
that simlar quantities with & replaced by ¢ ame all
nonzero). We set i ~ j (for different i, j)if i — jand
J—i.ltiseasy to verify that ~ is an equivalence rela-
bon. Let {1,2, ....n}=E U---UEy (p = 1) be the
decomposition nto equivalence classes. Choose and
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fix any rrr; rl'{}l'l'l_ Eyiewe Ep, n:qu_:x_'tivcl?'. Set
wp=1forie{i,..., *}. For any other i, say i € E;
(l=r=plLbutizi, wudcllnc
i)
s iz ki1
P57ty i)
iyiz Igig
wheme i1 =1, 12,..., [T =J'-I*, I e Iy are cho-
I I . .
sen such that b‘[ :: ..... b‘[lﬁl] ,, Hre nonzero, whichexist
as i ~ J'I -y is well defined by (1), Indeed, if any
other such “path” if =i,i%,... il =it ... .1 is
used, we have by (11I)
M) W) (JI"]] i)
iz il g4 a2 iy 4
Eiieple. gl 5
e ]j]-, ‘(‘;|j

which shows that u; remains the same if the primed
sequence is used. Note also that by (11), we have Ju;| =
1 forall:.
With this definition of the n;'s we clam that
e = %bﬂ] (A.1)
El

foralll,i, j. Fori= j, (A1) follows from (I). In case
b}j] =0, the relation (A1) follows from (11). The only
nontrivial case o prove anses when b‘[j] (and hence
also clj]}l is nonzero for i # j. Thus, i, j can be as-
sumed to belong o the same equivalence class, say
E, lfj=if,wecantake k=1, with i} =i, iz = j
in the definition of i, and the relation (A1) follows.
Otherwise, i.e., if j £}, we choose sequences i) =1,
i =i ..., I for the definition of &y, and
fi= 4. ja... ., Frpr=Eomy., m, lor the defini-
tion of u;, so that

(i (R TN (m) () U
uj bu b §75 b. Lo i |
m m Y lmr] iy iy
It + o
fap ity iy Bhy By

by (I11). This completes the proof of the lkemma. [0

Remark 5. In the statement of the above lemma, it
15 casy o see that m the condition (L) it 1s enough
to consider distinet £, f2. ..., gy and distinet §y, ...,
Jra1. a8 b‘[.f] =c"[.‘{] foralli,f.

MNow we state and prove a result which is a shight vari-
ation of Lemma 4, which suils our purpose.

Remark 6. Let B; = (7). €= () be as in
Lemmad, with r 2= 2. Tth there exist anplu num-
bers uj, i =1,..., n, v, with Ju;] = 1, ¥, vl = 1,
such that c'fj] = ”’ b‘lj], ::r] = :; b}fr], J[;] = ”*"!:;] for
allf; f=71, sy i—ldndf:l ..... N if and only if
the following conditions hold:
O b =cP ¥i=1,...,n—11=1,...,N;
(M) 16| =l 1Vi j=1,c.nd=1,....N;
(LI} For all chowces of {;, ..., TS . my 41,2,
NP kr 2 10 0,000, B gbs flucees jr41 €
{1,2 ..... ntwith iy = J1,fg+1 = fr+1. and with
the restriction that (. ..., Py ) are all distinet
and so are (1, ..., Jrs1), one has
) ) fom) i)
irir " iria ik e Jedir
=c i 0 pem) g n)
iriz izis ki i drirgn”

Let N, n = 1 be positive integers, and Ay, A, ...,
Ap: A:]' Al ..... Af,q. be n xn positive matrices, n = 2.
Let (A, ..., Ay) be the singular values of Ay, and
(A, ..., Ay) be those of Aj. Assume furthermore
that (Ay, ..., Ayp) are all distinet, say, A = --- =
Ap» and similardy A > oo = AL Let (Y, ... ),
[ PR 1) be two orthonormal bases for CF such
that the singular value decompositon of Ay is given

by
Ao=) " ilviHomil-

Similardy, let ([, ..., v) and (). ..., 1) are the

orthonommal bases comesponding Lo the singular value

decomposition of Ay, Let matrices B, Cr.l=1,..., N

be defined by (By);; = b‘.{], (Crij = c-‘.*.], where bf.j.] -
I Y,

(Wi, Anjhs o = (9. Af;). We have:

Lemma 7. There exist two unitary matrices U,V such
that UAV* = Ay foralll =0,1,.. ., N if and only if
A= )-.:. Wi and the conditions (1), (11 and (111) in the
statement of Lemma 6 are satisfied for the choices of

I I i
b‘[ ! [ 'y as above.

Proof. Let Vi, V2, V|, V) be unitary matrices such
that Vi ApVy = Dy := diag(hy, ..., An) and VA
V,* = D= diag(a], ..., A, ). Clearly, Vi AV = By,
V’AIV’* —Ciforl=1,....N. }
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Proof of the “if"" part. Here, Dy = Dy, = D. say.
By Lemma 6, we can find w; i = 1,..., n, vy with
lil= 1, Jugl =1, and ¢ [” ”“ bl” Yi.i=1,..., n,
[ i - N, 'l.lhl[hl.l_|._r;z_|l fnr_,r_l ..... n—1
In other words, Oy = Wi BWE [ =1,.... N, where
Wi is the unitary given by W = diagiu, ..., Iy
and ‘-:.imild.rly, Wo = diagie, ..., Hy—1.Us). We take

U= V"WV, V = V"W Vs, and itis easy to verily
that UA;V* Ay for [=0,1,....N.

Proof of the *only if** part. Suppose now that there
are unitary matrices U,V such that UAV* = 4]

for { =01, . N. It follows from the assumption
UApV* = that Dy = D = D, say. We have
U AgV* = UVEDVaV* = V/* DV = AL, from which

it follows that W, D = DW,, where W, = VUV,
We = V’VV* Thus, WLDD*WI* = DW*W’:D* =
DD*. Since D is diagonal with all entries distinet

and nonnegative, DD* = D = dlag{)-.— ..... Jr]l. It
follows that W, must also be diagonal, ie., W) =
diagiu, ..., ) for some my,..., i, with |u;| = 1.
Similady, Ws is diagonal, say diagiv, ..., v, ). Fur-
thermore, we have W, D = DWs>, which implies that
Ajng = hju; for all i, and as A, ..., Ay are strictly
positive numbers (only A, can possibly be (), we con-
clode that w; = v fori=1,..., n — 1. Obviously,

C; = Wi By W7, from which the conditions (1), (11) and
(I of Lemma 6 follow. [0

Lemma 8. Let (P, Q) and (P, ") be two pairs of

projections in n-dimensional (n = 1) Hilbert space.
There exits a unitary matrix U such that PP = U PU*
and ' = UQU* if and only if the following condi-
tions are satisfied:

(1) Trl{((2P — 1)(2Q — 1))"]

=Te[{ (2P — 2" — 1", m=1,..., n;
(1) Te[((2P — )EL ™| =Tr[{({(2P" — 1)EL)"],
m=1,.: n, (A2)

where EL amd E_ denote the projection onto the
eigenspace of the eigenvalue 1 and —1 of the unitary
matriv (2P — 1020 — 1), respectivelv. EL. are defined
similarly, replacing P and O by P and Q.

Proofl. The result can be proved by applying the char-
acterization of a pair of projections obtained by Hal-

mos [9] (see also [10] and the references theren for re-
lated discussion). We, however, present a direct proof
in our finite-dimensional situation.

The “only if" part is trivial. S0 we suppose that
the conditions (I} and (1) hold. Let § =2FP — 1,
V=i2P— 120 — 1), and § =2P" -1, V' =
(2P — 1)(2¢Y — 1). § and §" are selfadjoint unitary
matrices, V' oand V' are unitary ones. We also have
SVS=V* §V'S = V™. Note that by (1), the eigen-
values of V oand V' are the same, and have the same
multiplicities. Let A be the set of these eigenvalues,
and A, (respectively A_) be the set of eigenvalues
with positive (respectively negative) imaginary parts.
Furthermore, if we denote by H;, (respectively H) ) the
eigenspace of V (respectively of V') corresponding 1o
the eigenvalue A (dim{fH; ) = dim{H‘{}l, as 1 already
noted), then it is easy to verify that SH; = H; -1, and
asimilar fact is true for 5 and H; . We want to define
aunitary U from C" = 5, M to C" = &, H] such
that Ul = p; U, where U; : H; — H, for all 4 and
USU* =58 For h € A, choose any unitary Ly from
H; onto Hy (this is possible as H; and H] have the
same dimension), and thenforh € A_ e, A~ e AL,
choose L, = S’EH_- T Uy -1 81y, . Finally, we need to
define Uy, for which we shall make use of (1), By
(1), §|g,, = SE. is unitarily equivalent o §'E’ | so
there exists a unitary U satisfying U S|y, UT | =
S'E’ . Similarly, I'_ can be defined. By construction,
it is clear that UFSU* = 8 and UV = V', which
is equivalent to having UPU* = P oand UQL™* =
¢. 0
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