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Ahstract

We study the existence of isotropic C'-immersions in a pseudo-Riemannian manifold (E A} following the Convex Integration
techniques of Gromov.

Kevwords: Peeudo-Riemannian manifold; Eotropic immersion

1. Introduction

The aim of this paper is to study isometric C'-immersions for indefinite metrics. Our study departs from the
discussion by Gromov on this subject in [2, 2.4.9 (A), (B)], where the Nash—Kuiper theorem is stated in the form of
fi-principle and a generalisation of it o indefinite forms is outlined. In particular, Gromov derves the h-principle for
isotropic immersions of a manifold V into a pseudo-Riemannian manifold (W, k) for the case when the signature of
hsirer_)forrez2dimV +1 and r_ = dim ¥V + 1. Recall that a C'-map FoV — (W h) is called isorrapic if
F*h) = 0. Here we shall be concerned with the case not covered by Gromov's discussion, namely, the case where
ro=dimV or r_ = dim V. Notice that when ro =r_ =dim V, the siwaton is very rigid for the existence of the
isotropic immersions. We shall prove in this atticle, that if W fibres over V' in a certain way then it is possible to
obtain fii-principle for isotropic immersions when ro =dim V or r_ =dim V.

Let us recall the Nash-Kuiper theorem [3,4].

Theorem 1.1 Let (V, g) and (W_h) be two Riemannian manifolds such that dim V = dim W. If there existy a strictly
short C™-immersion fiy:V — W then fiy can be homotoped to an isometric Cl-immersion FolV, gy —= (W, h).

Consider the product manifold E =V x W with the pseudo-Riemannian metric i = g & h (that is, g & —h). Notice
that the signature (ro,r_) of h satisfies the relations ro. = dim V and r_ = dim V. The above result can be stated in
the following equivalent form.
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Pre-main Theorem. Let V and ( E, h) be as in the above. If there exists a C™=-section fy:V — V x W = E such
that fi'(h) is positive definite, and pz o fo is an immersion, then fiy can be homotoped to a C L isotropic section
f:V = (E, h).

Our purpose here is to extend this statement o the sections of a bundle £ — V, where the total space E is endowed
with a pseudo-Riemannian metric i of signature (ro, r_), for ro = dim V and r_ = dim V + 1. To do this, we shall
start with a section fp:V — E which induces a Riemannian metric g = f7h on V, and investigate under what
conditions it s possible 1o homotope f Lo an isotropic immersion.

The organisation of the paper is as follows. In Section 2 we formulate the problem and state the main result of
this paper as Theorem 2.4. In Section 3, we review the convex integration theory of Gromov [2], since the proof of
Theorem 2.4 relies extensively on this theory. In Section 4, we prove the main resull.

2. Initial set up of the problem and the statement of the Main Theorem
Let us now Focus our attention on the Pre-main Theorem above. There we have:

i1y The product bundle p: E=V x W — V', where the fibre dimension is stdctly greater than dim V', and a pseudo-
Riemannian metric h on E of signature (ro,r_), for ro =dim V and r_ = dim W = dim V.
{2) The restriction of the pseudo-Riemannian metric h to the fibres of the fibration p is negative definite.
i3) The initial map fiy: V — E is asection satisfying the following propertics:
(i) fir(h) =0, thatis f3(h) is positive definite.
(i) pr oldfy), is an injective linear map for each v € V, where p;:V x W — W is the pmojection onto the
second factor.

Definition 2.1. Let (£, h) be a pseudo-Riemannian manifold, which means that h is a non-degenerate form on E.
A surjective map p:(E_h) — V is said 1o be a negative submersion if p is a submersion and il -1y 18 negative
definite for all v € V. Note that since p is a submersion, the fibres E, = p~'{v), v € V, are submanifolds of E.

Definition 2.2, A map f: V — (E, h) is called positive if f*(h) = 0(ie., if f*(h) is positive definite).

Observation. Given a pseudo-Riemannian manifold { £, i) with a negative submersion p: (E_h) — V, one can define
two distributions i and £ on E as follows: Foreache € E,

e = T:.{p_l{_x'}]l and £, = T}{F_l{-r}'}ll~

where x = pie), and T,.{p_l{.r}l}li denotes the orthogonal complement of ﬂ-{p_l{r}} relatve to fi. Since A 15 non-
degenerate and f1|,,, is negative definite, the subspace £ is complimentary to 1, in T, E. Hence the tangent bundle TE
splits into the direct sum of £ and n; TE = £ ¢ 5. Consequently, we have two orthogonal projections pp :TE — £
and pp :TE — n.

Further, if the pseudo-Riemannian metrc A is such that v (h) = dim V, then dimy, = r_(h). Therefore, the re-
striction of i w the bundle £ is positive definite.

Definition 2.3. Let (£, h) be a pseudo-Riemannian manifold and p:(E, h) — V be a negative submersion. Let i
be the subbundle of TE defined by 5, = T.(p~'(x)), where x = ple), e € E. A section f:V — E is said to be
ca-injective if pr odf : TV — TE isabundle monomorphism over f, where pz denotes the orthogonal projection of
TE onto x.

Observe that an h-isotropic section of p: E — V' is necessarily co-injective. We are now ready o state the main
result in this paper.

Theorem 24. Let p: E — V be a fibre bundle and let h be a pseudo-Riemannian metric on E with signature (ro,r_)
satisfeing ry =dim V and r_ = dim V. Suppose that p is a negative submersion and let fo: V — (E_ h) be a positive
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co-injective section. Then there is a CY. smaff homatopy of co-injective sections f;, 0 < t = 1, connecting fiy to an
h-isotmpic section fi.

It may be noted that Theorem 1.1 is a consequence of the above result.
3. Review of convex integration technigues

In this section, we recall from [2] and [5] the basic terminology of the convex integration theory, and state the
fi-stability theorem for ‘open relations” which is quoted below as Theorem 3.2, This result plays a central role in the
theory of convex integration. Finally we discuss the case of non-open relations keeping in mind our specific problem.

Let p: X — V be a smooth fibre bundle of fibre dimension g over a manifold V of dimension m. Let X' denote
the r-jet space of C*-sections of p and let p": X' — V be the natural projection map which is also a fibration,

A topological space B with a continuous map o: R — X" is said to be a relation over X', In particular, if B is
a subset of X' and p is the inclusion map then R is referred as the rih order partial differential relation for sections
of X.

The relation R is said 1o be apen il p is a micrafibration. Recall from [2, 1.42(B)| that a continuous map f:A — B
is a microfibration (where A and B are topological spaces) if it satisfies the ‘micro’-homotopy lifting propeny, which
means that every covering homotopy problem for f relative to a pair (P = {0}, P x 1) admits a lift over P = [0, £],
for some & = 0, where P is a compact polyhedron.

A section of R is a continuous map o : V — R such that p"' o p o o is the identity map of V. A section o is
called hofonomic il poo = _,rj. fora C"section f:V — X. IR is a subset of X', then this section £ is said 1o be
a solution of .

The relation R is said to satisfy the h-principle if any section o of R can be homotoped to a holonomic section
of R. The hummupy is a continuous map H :V x [ — R, such that H{0) is o and H{ 1) is hulunumu_

A relation R — X' is said to be an extension of R if there exist an embedding £ R — R and a retraction
7 :R— R such that poE=pandp, ocpom=p,_jop

Let © be a codimension | hyperplane field on V. Let f and g be genns at x € X of " smooth sections of X . We
say that f and g are L-equivalent if

_,r;_I{.r}l - _,r';_l{_r} and D{jj_l}{-r}ir =D{I;_|]|{-r}'§r1

Lare ¢! maps V — XU=U Forr =1 this simply means that fix) = g(x) and Df, = Dg, on

where _,r'j,'._l and j.=
;. The L-equivalence is an equivalence relation on the r-jet space X', The equivalence class of _,r'j.'.{_r} is denoted by
_,rf' {x)and is called the L-jet of f. If 7 is integrable then we can choose local coordinate systems (U7 xp, .., Xp ) S0
that {ixy, ..., x): x, =const} are integral submanifolds of T. Moreover, we can express _,rjf (x) as {_,rf {x), dr Flx,
where i, f denotes the partial dervative of f in the direction of x,,.

The set of all L-jets has a manifold structure [5, 6.1.1]. We denote this set by X+, The natural projection map
pLXY — X, taking an r-jet to its L-equivalence class, is an affine bundle where the fibres are affine space of
dimension g. The fibres of this affine bundle are called principal subspaces relative to 7. We shall denote the principal
subspace through a in X' by R, or B{a). Note that there is a unique principal subspace through each point of X',
In fact, the fibre of X! — XY~ over any b e X~V is foliated by these principal subspaces and the translation
map takes principal subspaces onto principal subspaces.

t-Convex hull extension: Let T be a hyperplane field defined on an open subset &/ of V. For a relation p: R — X'
over X', let Pro(R) consist of all pairs {(a.x) & & = X" such that either p{a) = x or x belongs w the unigue
principal subspace R . when pla) besover v e UL

Let B be a pnncipal subspace and a £ p“'{R}l. We denote by Ct)nvg{,cl_l{R}l,ﬂ}l, the convex hull in B of the
p-image of the path-component of @ in p~ ' (R). If R isa subset in X" then Convg( o' (R): @) is the convex hull in
R of the path-component of a in R N R, and we denote it by Convg(R N R; a).

Let Convy () denote the subset of Pro{R) consisting of all pairs (a, v) such that x = pia) if pla) lies over V4, U,
orx e Cuan{p_l{R}: a) if pla) lies over U, where B = R ;1) 18 the unigue principal subspace through oia).

The map g :Conve (R) — X", jla, x) = x, is a relation over X' If we define E: R — Conv, (R) by Ela) =
{a, pla)y and m : Convy () — R by 7 {a, v) =a then it can be easily verified that Conv () is an extension of .
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Proposition 3.1 [2], [5, Lemma 7.1 [f R is open then Conv (R} ix also open.

The following result, known as the fi-stability theorem, ([2, 2.42{B)] and [5, Theorems 7.2, 7.17]) identifies a key
feature of the convex hull extension.

Theorem 3.2, Let p: R — X" be an open relation and © be a hyperplane field of codimension one on an open set
UV owhich is smooth and integrable. Let o0 = (o, _,rj,}l be a holonomic section af Conve (R) (which implies that o is
a holonomic section of R outside U). Let N be a neighbourhood of j* f{U) in X tJ:. Then there exists a homotopy of
holonomic sections a; = (o, _,rj,} of Conv () such that

i1y oqp=0oand poa) = _.r’,.j so that ay is a holonomic section of T

(2) Forall t, the image | ﬁ{b’}l is contained in N'. In particular, the homotopy f; can be made C" ' -small.
(3) Forall (t,x) [0, 1] = (V\ U), opix)=a(x)

Notation. Let R carry a metrce d and let § be a positive number. Suppose 7 be a fixed hyperplane field on V' as in the
above and let X be the corresponding set of L-jets of sections of X, Foreach b € X, let R denote the intersection
of R with the principal subspace over b. If a € Ry, b € X+, then we denote by Conv® (Rp: a) the convex hull {in X!E,”}l
of the p-image of the path-component of a in Bla, §) MR,

Complement of Theorem 3.2, Suppose that in addition to the hypothesis of Theorem 32, (R, d) iv a metric space
and & ix a positive function on R, such that for eachx € V,

i@ € Com® N (Rpyia(x)):  blx) = j(x) e X™.

Then the homotopy o, in the conclusion of the above theovem can be chosen so that it alvo satisfies the condition
dlo(x) o (x)) = (n4+ Ddlalx)) forall x e U.

The above discussion leaves out the most interesting partial differential relations, namely the partial differential
eguations. However, if R is a closed subset of X" such that &y, is nowhere flat in the principal subspace Xl,;” for
each b e X, then it is possible to prove an h-stability theorem for 2. What helps in this particular situation is that
the convex hull extension of B contains an open relation R* over X' whose closure s B U R, We refer to [5,
Chapter 9] for a detailed discussion on it

The isowropy relation is cleardy a closed one, but it does not enjoy the no-where flatness property as il is con-
tained in a (proper) affine subbundle of p’ (see Section 4). Consequently, the convex hull extension is not sufficiently
large 1o contain any open relation. But, by taking successive convex hull extensions we can get away with this dif-
ficulty. The problem can be asccommodated in the convex integration theory for non-open relations as developed in
[2, 2.4.6], where Gromov has used more general convex hull extensions. The construction of R* in this connection
15 very lechnical. However, it is possible to avond this technicality altogether as long as we are only concemed with
Theorem 2.4, which is a variant of Nash-Kuiper C'-isometric immersion theorem. We shall proceed in the line of
Elashberg—Mishachey [ 1, Chapler 21].

Fmally, one has to remember that the f-stability theorem does not solve the problem completely. We must ensure
that Conv, () has a holonomic section o for Theorem 3.2 1o be applicable.

A special case: Let the affine bundle p’ : X' — X~ admit a complete metric d such that the restriction of d 1o
each fibre is Euclidean (ranslation invadant). Moreover, let R contain a sphere bundle C. This means that, for each
b e X+, Oy is a sphere in some affine subspace ¥, of Xf'] relative 1o this metric . It may be recalled that in the
Nash—Kuiper problem the relevant relation R iself is a sphere bundle.

Suppose, there exists a section f @V — X such that _,r'j:-{.r}l lies in the convex hull of Cypyy for each v € V, where
blx) = _,r';.:?{.r}l: also suppose that _,r"';-{.r}l is neither the centre of Cpyyy, nor does it lie on Chyyy. Then we can uniguely
choose an a(x) Ciyy. 50 that {a,'j".} 15 4 holonomic section of Conv (). Indeed, we can choose o(x) on the radius
vector through f(x) for each x € V.

Let E:,n. denote the complement of Cp, inits convex hull and let EE denote the intersection of the §-neighbourhood
of Cp with E:b. If ¥ = rib) is the radius of Cp, then E:J;. is an open ball of radius 7 (possibly in a lower dimensional
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affine subspace of X};']}. On the other hand if § < 7, then E‘ﬁ is an open spherical shell with outer radius r and inner

radius 7 — 4. It can be seen easily that |

relation R* = L E; A solution of R will be referred as an g-approximate solution of R,
Let & be the positive function on V defined as follows:

m__f-b(_"tmv"f-”'iiﬂh a) contams Eé For each £ = 0, we now consider the

dix)=dlaix), _.r'jf-{.r}l}l for cach x V.

This function can be pulled back by p” to define 4 on R. Note that f 1s a solution of R for any &, = 4. On the other
hand, observe that the set Cpy 1 Blae(x), m}' is connected (where ¥ = Fib(x)) is the radius of Cgy), and
_,r'j.'-{.r}l lies in the convex hull of this set so that _,r'j.'-{.r}l & Cpiyy. Consider a circular are ¥ on Cppy N Bilodx), o/ 278(x))
whose convex hull contains _,r'}'-{.r}l. If we push this curve p normally inward to O within E'n., then after a small
deformation it will stull contain _,r'j,'.{.r}l within its convex hull (since _,r'j;.{.r}l does not lie on Cpyy ). Then, it follows from
the above discussion that _,r’; can be lifted to a holonomic section (f, j) of C:um'r{ﬁ“} for sufficiently small & = 0,
such that j}(x) € Conw/ 2 (RE .+ B(x)).

Now, if C is a sphere bundle of maximum possible dimension, then RE is an open melation. Consequently, the
fi-stability theorem ensures that there exists a solution i of R* so that _,rf“ {x) lies in the convex hull of Cpyy for
each x € V. If £ is less than & then the ‘approximate solution” f; of R is better than the initial approximation f.
Mareover, the CY-distance between _,rj,l and o can be made less than (n + 1)4/2r8 (see Complement of Theorem 3.2).
This implies that the C"-distance between f and f) is less than (n + l]lm + &. Thus, a successive application of
the h-stability theorem gives rise to a C"-Cauchy sequence { f; | which converges to a solution of R, since | (being
closed) is complete relative 1o the chosen metric 4.

Since R* is not open, in general, we cannot diru.tl} apply the h-stability theorem to it. Moreover, for practical
reasons we need Lo include the possibility that f; L) may lie on Cppyy for some x € V. In such cases, we modify Re

by redefining L.r&- as the g-neighbourhood of Cj in X;E, ' Then, clearly R* is an open relation and o = (o, _,rr}l 15 4

holonomic section of Lnnvr{ﬂ“} for every & = 0. Let § be defined as in the above. 1f we apply the i-stability theorem
to the section o and R* for some positive function £ < &, then we obtain, as before, an & dppmumdu, solution f
of B bul, in this case _,r_r-J{.r}l may not lie in the convex hull of Cpey as it does not contain m.r] in the new set up.
Consequently, we can not pass on to the next iterative step. On the other hand, the C'-distance between f and f is
now less than (n + l}w"{ih: + 48 4+ p, where the emror term g depends on £ and can be made as small as we want by
taking £ small enough. We refer the reader to [1, $21.5] for an illustrative explanation for the appearance of p. [

4. From a posilive co-injective section to an isolropic section

Let £ be a smooth manifold with a pseudo-Riemannian metric f such that ro(h) =dim V, and let p: E — V be a
negative submersion onto a smooth manifold V.

Suppose there exists a sirictly positive section of p, namely f:V — { E, ), which is also co-injective (see Defini-
tion 2.3). We want to prove that f can be homotoped to an isotropic C'-section of p.

Our main task is to adjust to the present framework Nash's approach for the construction of isometric €' immer-
stons between Riemannian manifolds [4].

Lemma 4.1 (Approximation lemma). Let f be as stated above, and let g = f*h. Then for everv &, 0 = & = 1,
there exists a CV-small homotopy of co-injective sections connecting fu to fz, where fh is positive definite and is
arbitrarily close to £g in the C"-topology. Moreover, the C'-distance between f and f. can be measured in terms of
the C"-norm of g.

We shall prove the above lemma by an application of the Convex Integration technigues discussed in the previous
section. Before proceeding to prove Lemma 4.1, we observe that the main result of this paper follows almost di-
rectly by successive application of the above approximation lemma. Indeed, starting with the given section f, we can
construct a sequence of positive, co-injective sections { fi} of the fibration p, where fiy = f and f; is obtained from
fi—1 by applying the above lemma with & = 1/2. Thus, f*h = £* h/2= £ fori = 1, and the C'-distance between
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fi—1 and f; can be expressed in terms of the C%-norm of Z2;. Indeed, it will follow from our estimates that { f;} is
Cauchy in the C'-topology. and hence it must converge toa C'-section f. This f is the required isotropic section of
piE—=V,as f*h=limjx ffh= lim; . o £/2' = 0. Therefore, it is enough for our purpose to prove the above
approximation lemma.

Proof of Lemma 4.1. Since the metric g is positive definite, (1 —#)g (0 = £ = 1) admils a decomposition, which is
typical of Nash's construction [4]:

(1—e)g=) ¢ d¥, (1)

where ¢ and vy are O™ functions on V such that the support of ¢y is contained in some contractible open set U; for
some locally finite open covering {Ui}en of V.

For the sake of simplicity, assume that V is a closed manifold, in which case the above decomposition can be
taken to be finite; suppose there are & monomials in the decomposition. Let us define a sequence of Riemannian
metrics {glocigy on V oas follows: gy =g, and g, = g4 —¢fd1ﬁr§ for 1 <k < N. We shall construct a sequence
of positive C'-sections | fi}g=p, . v, such that .ﬂ* is sufficiently close 1o gg {in notation, .ﬂ*ﬁ = gg), where fy = f.
Mote that fy is our desired f,.

Thus a single step consists of the following: We have a section f of p: E — V such that

(1) fis co-mmjectve, and
(2) f*h—didyi =g =0.

We shall prove the existence of a positive, co-injective € '-section f| such that f_l*h = gy, and give an estimate for
the C!-distance between f and f in terms of the C"-norm of g. This is where we shall apply the method of convex
nlegrbon.

Let R denote the first order differential relation consisting of 1-jets of germs of gy -isometric sections of p which
are also co-injective. We shall show that R has an ‘approximate’ solution; explicitly we prove the existence of a
positive, co-injective section f1: V — E such that the induced metric f7h is sufficiendy close w g;.

Recall that gy = f*h — ¢7dyri, where ¢ and v are smooth functions on V and the support of ¢; lies in a
contractible open subset U of V. The function ) defines an integrable hyperplane distribution © on U7 whose
integral submanifolds are given by the level sets of ;. Now, consider the fibration p! :E'V — E+ relative to this
distribution 7. We shall first study the intersections of R with the fibres of the fibration p! : E'Y — E+. At a point
x el let f*h=g +1° where [ is a non-zero lincar functional on the tangent space T, V. Then 1, = ker [. Choose
a tangent vector v at v which is transversal to T and satisfies gy (v, ) = 0. Then A{ fov, fiv) = griv, v+ ||v "i—m’
where g = f*h.

Let b € E*. Then b is of the form (x, v, A1, where 7, — E, isalinear map. If o is a l-etover b e E*, then
o 15 completely determined by its value at v. Thus one can idun[ify the principal subspace over b (corresponding Lo
the hyperplane 7) with the tangent space T,E of E at y. Conseguently, E'" can be endowed with a metric o such
that, under the above wentification, its restaction o the fibre El,tl] is induced from i = h| — hz, where iy = h|z and
fi2 = hly. Recall from Section 2 that TE admits an orthogonal decomposition TE = £ & n, such that the restrictions
of hito £ and 5 are respectively positive definite and negative definite. Therefore, i = hy — h> defines a Riemannian
metrie on T E.

In accordance with this identification T I'"lEIE,” corresponds to the set of all vectors w & T, E satisfying the following
properties:

1y we ﬂ'p_l._l (u);

(2} p2 restricted o Bt ) & {w} 15 injective;
(3) A{w, Bz =0

4y Afw, w) =g (v, v
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Indeed, condition (1) implies that the corresponding 1-jet comes from a section of the fibre-bundle p, while (2)
translates into the co-injectivity condition. Conditions (3) and (4) are equivalent to the soltropy criterion.

A few comments are now in order. Recall that dpl; :£ — TV is a bundle isomorphism. Given a vector v e TV, let
i denote the unique vector in & which is mapped onto v by dp. Thus, if a vector w € dp7 ! (v), then there is a unigue
vector w' € 1y such that w = v 4+ w'.

Let T = pa(f{ty)). Then T is an (n — 1)-dimensional subspace of 5,, and condition (2) on w is equivalent to
saying that w' & T. On the other hand the third condition is equivalent o halw' A1)y = —h{v, 1) forall t € 1,
where #'(t) is the unique element in 77, such that f(t) = r + A'(+). This represents a system of equations for the vector
w' & 1y, which defines an affine subs-:;pm:c of 1y of codimension (n — 1) (because hz is negative definite and h, is
positive definite). Further note that this affine subspace is a translate of the orthogonal complement of T in g, relative
to —ha. Thus, Ry lies in an affine subspace X, of E;hl] such that the restnction of d o Xp i indoced from —f2.

Finally, condition (4) on w may be expressed as fz{w’, w') = gy{v, v) — (v, ©). This equation for " represents
a non-emply set in gy, provided gy (v, v) — hlv.v) < (), in which case it corresponds to g sphere in a codimension
{(n — 1) affine subspace of n, . which is connected if we also have g = n.

Mow, let b= _,r —lx) and wy = df, (v). Then wy satisfies conditions (1), (2) and (3) stated above for w. Moreover, if

we wnte wy =v + "”:]s then h?{mﬂ u:u}l =giiv, v) —Ffl{v,v)4 v "E—m < () since fiz is negative definite. Therefore,
it follows from the preceding paragraph that R M Ell] is 8 non-empty set and d f, (v) lies in the interior of the convex
hullof R N EL.

Note that the affine subspace of i, determined by (2) intersects T in a unique point ¢. So ¢ is the only point on
this affine subspace which does not correspond to a co-injective jet. Clearly, ¢ is different from uy (wy, € T). The
ray from ¢ through wy intersects the subset of o, determined by (3) and (4) above in a uniquu point ). This point

]

in turn defines a unigue 1-jet ¢, in R over J; ix). Thus we can define a section o of p,* covering _,r" Moreover,

dic,ay () < vhi(v.v)—gilv, v).
The above discussion summarises to the following:

i1} The fibre Ty lies in an affine subspace X, of Eltl].

(2) The mestnction of the metric d o X;, 15 induced from —ha.

(3) Ry represents a sphere in X, relative to o

{4) Forevery x € V, d f, lies in the convex hull of Ry, where b = 7 Lix).

Therefore, we are in the special situation discussed in Section 3 (see the special case). Let R be a fibrewise open
tubular neighbourhood of R relative o the fibre bundle p’, . We can choose R so that it lies entirely within the set
of 1-jets of positive, co-injective sections of p:(E. h) — V, because the positivity and the co-injectivity conditions
are open conditions. Note that o = (o, _,rj,}l is a section of Conv (R) and hence is a section of Conv, (). For any
ve TV,

d(ax(v). dfc (1) = [ax(v) —d fi )] ;= e (v) —d fi )] -

Now, since ¢, o (v) and df(v) are collinear

le ) —dfi]_,, < "a W =2, —ldfiw —c|Z,,.

On the other hand since ¢ £ T, and e {v) —c and df{v) — ¢ belong o the orthogonal complement of T relative to
the metric —hz, the right-hand side term is equal 1o

y“Ha W), = [, = —hlav).ex @) +h(dfe ). dfiw).

The last equality can be deduced from the following observation. If we write o, (v) = ¥ 4+« (v), and dfy(v) =
U4 dfi(v), where ¥ € £ and e (v), df(v) € 5. then —hio, (v), e (v)) = —h (1, 0) — Azl (v), o, (v)) and
Rld (v, dfy(v)) = (o, ) + hald (o), df (v)). Thus we amive at the following inequality:

d{ﬂl{l'} d_ft{l}'} v llg—g -
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Now, fix a Riemannian metric £ on V. Since g — gy = (1 —g)g < g, it follows from the above that

dg(o. jr(x)) = sup dloe(v).dfi())< sup v, =4
lellz=1 [lell z=1
where & = /T2 is the C"-nomm of g relative to the metric g.

Therefore, if we apply the A-stability theorem to o and . we obtain a C'” small homotopy of sections joining f o

_fl V — (E. h) HUthhdL_fl is co-injective and _,|F| f o= g Moreover, the C'-distance between Jf and _,|F| relativelo g is
dz(f. i) £(n+1)y2r8 + 5+ p, where r = = SUPy = Y (w v). Note that r = (v, 1) — g1 (v, v) = dic, el (v))
whenever |v]; = )

It may be noted that the homotopy connecting f and fi constructed above need not consist of co-injective maps,
because the image of pz :Conv, & — E'Y may not be contained within the set C of co-injective jets.

However, in the present situation we can do away with this difficulty by restdcting the relation R as follows: Recall
that the fibres Ry, b e E+, are spherical, and that the centres of these spheres are the only points in the convex hulls
of these spherical fibres R, which do not correspond o co-injective jets. Since f is a co-injective map, we can choose
a connected, compact subset Ky in Wy, b= _,rj'“ (), whose convex hull contains _,rJ! (x) and 15 contained in the set O
(see the illustraton in [1, p. 186]). 1f we take a sufficiently small neighbourhood of this K then its convex hull will
also be contained in the set of co-injective jets. Therefore we can obtain an open relation R for which the image of
P Conv; R — E is contained within €, and moreover (o, jj} is a section of Conv, (R). If we apply the h-stability

theorem Lo this 'R then the homotopy f; will consist ufu}-mju_lm sections of p E—=V.

Now, if we repeat the above steps for the map fi and the metric g5 = f'h— 1;!-_, dir3 (which is sufficiendy C%<lose
o g2), we obtain a map fz such that If'-__,*h =2 ga. Moreover, dg{_f:h _,|F_'-.r n4+ 1}1.- 2rd + 8 4+ p. Proceeding in this way,
we oblain f; = _fq.- at the end of the Nth iterative step. Observe that

dz (f, fo) SN(n+ D)V2r8 45+ p),
where 4 = m, and g can be made as small as we want. On the other hand, fe can be obtained so that _f';‘h 15
arbitrarily close to £g in the C"-topology.

If the manifold V is open, then choose a locally finite open covering {L}ien of V osuch that each point x € ¥
has & neighbourhood [T, which intersects {n + 1) members of the covering. Proceeding as in the above, we obtain a
sequence {ﬁ-};;m such that on any of the open set U, x € V, the sequence is eventually constant. Therefore we can
define fe by fe = limj_~ fi. Moreover, on each Uy, dz (f, fe) < (n+ 1){in+ DV2r8+ 8+ p), since only (n+ 1)
many L 's mtersect each L.

This completes the proof of Lemma 4.1. [0

As we have remarked earlier, by successive application of the above lemma with & = 1/2, we canobtain a sequence
{ fit such that
JF'J.*P: ] i’—j and  dz(fi, fic1) = N{{n + 10/ 2ré; +46; + ,ﬂ"},

where & = &/(+2) !, and p; is arbitrarily small. Then cleady { f;} is a Cauchy sequence in the C' topalogy, and
therefore, converges o an isolropic C'-section of the bundle p:E — V proving Theorem 2.4,
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