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Abstract

Discrete time-series models are commonly used to represent economic and physical
data. In decision making and system control, the first-passage time and level-crossing
probabilities of these processes against certain threshold levels are important quantities.
In this paper, we apply an integral-equation approach together with the state-space
representations of time-series models to evaluate level-crossing probabilities for the
ARIp)y and ARMA(L, 1) models and the mean first passage time for AR(p) processes.
We also extend Novikov's martingale approach to ARMA(p. g) processes. Numerical
schemes are used to solve the integral equations for specific examples.
Keywonds: First passage time; level crossing probability; integral equation; martingale,
AR process; ARMA process
2000 Mathematics Subject Classification: Primary 62MI10; 91B84

Secondary 45B03; 60G17: 60005 65C50

1. Introduction

Letg,re={..,-2,—1,0,1,2, ...} be asequence of independent and identically
distrbuted (i.i.d.) random variables on a probability space {£2, 7, P}. A general linear process
{X;} can be defined as X; = Z‘i_w apf; i, where {a;} is a sequence of real numbers. The
autoregressive AR(p), moving average MA(g), autoregressive moving average ARMA(p, g)
and autoregressive integrated moving average ARIMA(p, d, g) models are all special cases of
the linear process. We define a stationary ARMA( p, g) process 1o be a process satisfying the
following equation:

Yi=diYior+ -+ dp¥ip +01&E- 1 +- -+ gy + &1, (1.1}

where t € Z, ¢y, ..., L P P f, are constants, and where ¢, ..., gy are such that all the
roots of the characteristic polynomial of the AR(p) part (that is, ®(z) = | — ¢z — ¢z” —

- — ¢rpz”} are outside the umit disk. When &, .. .. #y are all zero, we say that the above
process 15 a stationary AR(p) process. In this case,

r:=¢l}’:—l+"'+¢pr:—p+$:- (1.2)

In this paper we study the level-crossing probabilities for ARMAI p, g) processes using
two techniques: (i) the martingale approach used by Novikov [7] and (i) an integral-equation
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approach. These processes are commonly used in econometrics to model various data. In
makmg decisions, we may wanl o know how Likely itis that the process will attaim a certain
high level before it drops back to or even below the present level, or we may want to know
the expected time for the process o reach a certain level. The results of this paper answer the
above questions for some of the above-mentioned linear processes by evaluating the following
quantities: (i) the probability of crossing a level b before a level a and (ii) the expectation of
the first-passage times T (b) and T {a. b) defined as

Tiby=ml{r: ¥, = b}, B> X0, X_]y o0y Xopgls

Tia, P =mlf: ¥y = bor ¥, < al, b= 20, X_1,y 000y Xopyl > a.

The paper is organized as follows. We present background material in Section 2. Section 3
deals with the representation of mean first-passage times for ARMA( p_ g) processes using
the martingale approach of Novikov [7]. We extend his work from AR(1) 1o ARMA(p, q)
processes. In Section 4, level-crossing probabilities and mean first-passage times for AR p)
processes are discussed with an example. Section 5 deals with ARMA(L, 1) processes with an
example while Section 6 gives conclusions and discussions. Some of the detailed calculations
are given in the appendices.

2. Background
In this section we discoss some background matenal. Section 2.1 deals with the state-space
representations of AR(p) and ARMA(p, g) processes used in Sections 3-5. In Section 2.2,
some of the theory of Fredholm integral equatons of the second kind is described. Theseresults

on Fredholm-integral equations are used throughout Sections 3-5. Sectuon 2.3 descnbes the
collocation method, which is used in Section 5.

2.1. Siate-space representation and stationarity

For the stationary time series satisfying (1.2), we have the following state-space representa-
Lion:
¥, = GX;, te &,
- - (2.1)
X = FX, 4+ HE, t € &,
where

E: = “‘/r—p—:h R 2 r:}'_l~

B (0,005 0. 13",

G =005t 0, 1),
0 1 0 e 0
0 0 ]

F = - : ;
D e om0 1
hp Gp1 -0 2 i

The state equation demonsirates the underlying Markov property of the AR( p) model that
is crucial in our discussion. ARMAI p, g) processes, defined in (1.1), can also be given a
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sLile-Space representation:

Y, =GZ;, €k,
. g 22)
Zi1 = FoZi + &, fe X,
where
5 = X
Z: — {h’—,l:l—h B r:—l~ rh'EI—:_f—fh - 'Er}' = (ﬁ:) -
(]

G=1(0D,..., 0,1,0,..., 0y (a (p + g)-dimensional vector with 1 at the pth place),
gE=100,..., B F8 o | Rt 0,18y (a i p + g)-dimensional vector with £ . at the pth

and {p + gith places),

_{Fu Fi2
ﬂ]_(Fy F:z)

0 1 0 0
B sen g
0o 0 1
el b : T Fop=|]: - . ;
L] 0 FET | - L L |
B, By - B 00 ... 0 1
o0 ... 0 0

Thus, the Markov property also holds for the state equation of the ARMA(p, ) model.
2.2, Introduction to integral equations

In this section, we will only focus on results that will be useful in later discussions and
the theorems stated here will not be proved. Background material in this and the following
subsection is mainly ken from [1]. The equations that we are interested in are of Fredholm
type of the second kind. The general form is

Ax(t) —f Kir.s)x(s)ds = yir), teD A£ED,
n

where D is a closed and bounded set in BE™ for some m = 1. The function & (-, -) 1s called
the kernel and 15 assumed to be absolutely integrable. The function x(-) 15 the unknown Lo be
solved for. Since the probabilities and expectations we consider should be continuous functions
of the initial states, we assume that xi-) € C{D). Next, define the integral operator J by

Hx(t) = f Kt s)x(s) ds, te D ox eCiD). (2.3)
n

Definition 2.1. Let B and @ be nommed vector spaces and let K © B — €@ be linear. Then K
is compact if the set

(Kx | Ixl = 1)

has compact closure in ©.



640 G. K. BASAK AND K.-W. R. HO

Theorem 2.1. The integral operator K defmed in (2.3) is bownded and compact in C{D)
equipped with the supremum novm || - ||~ wnder the following conditions:

(1) K(s.1) is Riemann integrable in s forafft € D;
(11)

lim max max f |Kit,5) — K{z.5)|ds = 0
h—=0rreDi-1|=h Jn

(111}

refl

maxf |K(r, )| ds = oo
n

Notice that the above conditions are fulfilled if K{t,5) is continuous in s and t.
For compact operators, there is a central theorem [1].

Theorem 2.2, (Fredholm alternative.) Let B be a Banach space and let X : B — B be
compact. Then the equation (). — K )x = v, L #£ 0, has a unigue solution x € B if and only if
the homogeneous equation (, — Kz = 0 has only the trivial selution z = 0. In such a case,
the aperator ). — K © B — B has a bownded inverse (L — J)~ 1

Next, we state a version of the useful contraction mapping theorem [1].

Theorem 2.3. Let B be a Banach space and let A be a bounded operator from B into B, with
|| = 1. Then I — & : B — B iy one-to-one and onto and (I — .Ha}l_l ix a bounded linear
operator; where [ 2 B — B iy the identity operator.

2.3. Collocation method

The collocation method is a convenient method commonly used to solve integral equations. A
general introduction can be found in [ 1] and here we give a description for our case. Toevaluate
equations like (3.3) in Section 5 numerically in the domain B = Cla, 8], we introduce the
Lagrange basis functions for piecewise linear interpolation:

It —g5] :
L) = B frojrmf Sy 0= 0100 n,
0 otherwise.
Hewtp =ty =B . ti=w+ihfori =1,..., n—1h = (f—a)/n and we define the

following projection operator on Cle, f]: for f € Cla, ],

Pu f(x) = fulx) = Z_f'{-ri}'fi{x}, x=o+ih i=01,..., n, x €la, g (24)
1=

It was proved in [ 1, p. 39] that & 15 a bounded linear operator and Py f — f asn — o0
for all f € Cle, f]. The projection operator P, maps any f € B 1o a function f, in B,
the (n + 1)-dimensional subspace of B that contains functions of the form 37, f{xi)i(x).
Thus, if we represent equations like (5.3) in the form of an operator equation (with P in (5.3)
replaced by f w avoid confusion and Py as defined in Section 4.2), we have

(1-XKi)f= b, fe 8. (2.5)
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We intend to approximate the solution of (2.5) by the solution f;;, of the following equation:
(1— P 1) fu= A, I € By (2.6)

We state the following theorems for general Banach spaces from [ 1, pp. 35, 57| which ensure
the convergence under certain conditions.
Theorem 2.4. Let B be a Banach space and assume that J : B — B is bounded and that
| — K : B — B is one-to-one and onto. Furthermore, assume that
| — P = O asn — o0,

where Py, iv as defined in (2.4). Then the solution f, of (2.6) converges wniformly to the solution
f of (2.5).
Theorem 2.5. Let B be some Banach space and let Py be a family of bounded projections on
& such that

Pof = f asn— ocfor f e B.
If ¥ : B — B is compact, then

| K — Py K| = 0 asn — oc.

3. ARMA( p, g) processes: a martingale approach

The approach we use here comes from Novikov's work [7] on AR(1) processes which we
modily for ARMA(p, g) processes. 1L is clearer if we start with AR(p) processes. We have o
tmpose 4 mikd condition on the stationary AR( p) processes under consideration. For an AR(p)
process satisfying the state-space representation (2.1), we assume that ¢y, = (. Under this
constraint, the coefficient matnix F is nonsingular. Since the charactensuc polynomial of F
is Or(x) = xP —gx? ! —gox? ™t — . — gy, ©p(0) = —pp < Oand Pp(x) — ocas
x — oo, This means that the characteristic polynomial of F has a positive moot, i.e. F has a
positive eigenvalue, say A, Assume that the corresponding row eigenvector is ¢ and notice that
0 = & = 1 by stationarity. We can then rewrite (2.1) as

EXi1=EF X, + CHE 1.
By choosing ¢ such that ¢ = | or such that the last element of € is 1, we have
FXip1 = X, 4 Erpr. (3.1)
Thus, W, := X, satisfies an AR(1) equation,
Wepr = AW, + £y,

with () = & = L.

We now develop a similar AR(1) equation for ARMA( p, g) processes. Besides stationarity
and invertibility of ¥, , we further assume that the characteristic polynomial for the autoregressive
part and the characteristic equation for the moving average part have no common roots. This is
a quite natural assumption inorder 1o have a unique cavsal representation of an ARMA process
¥;. With the same notation as in Section 2.1, we observe that

det(h1 e, — Fo) = det(Al, — F)A9.
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Therefore, the eigenvalues of Fp are the eigenvalues of F and g zeros. Hence, for ¢y = (1, we
zel 4 positive cigenvalue; this eigenvalue 1s &, as above. We take the same eigenvector © and
observe that € Fy| + d F2p = A¢ for any g-dimensional vectord as /5, =0and Fi = F. We
find d by solving the following (equivalent) equations:

cF+dFs =2d, P [ S ) +dFs=3d, AT — Ea)=es0i .0 ).

The solution is unigue since, whenever 0 = L = 1, A — Foo is nonsingular (in fact, det(3J —
F2) = 39 Also, it can be noted from the above equations that
cplly = Ad),

; (3.2
cplg_i +di =hdiyr fori=1,..., g—1. )

Hence, c,8) +d,_| = Ad,. Notice that, if d, = —c,, then, from (3.1),

cpbly = Aedp = Ahdz — Cpbla_1)

= .:"-.Iﬂlg — Cphlly_

= Md, —cp(Aby_1 + 22052 +---+ A7 1gy)
= —cp (AT + Al + 278, 2+ +27719)).

This mmplies that
cplfy + A8, + )'-2'-':-"4-—2 + -+ )'-q_l'-':-"l +x) =0

and, since cp # (), this means that & is a root of the characteristic polynomial of the moving
average part as well. Butl, as ¢F) = Ac, & is an eigenvalue of Fyp and A is also a root of the
characterstic polynomial of the autoregressive part. This is not possible under the assumption
that the autoregressive and moving average parts have no common root. Hence, dy # —ep.
Now Lake

R (€.d) = (1. dun),

- cp+dy

with d as above and where E1g = (1/(c), + dy))¢ and dyg = (1/(cp + dy))d. Then &) is the
eigenvector corresponding 1o the eigenvalue 3. Hence, if we define Vi = 0 Z;, then

=" - - . L= c,+d
Vis1 = E1Zis1 =C1FoZ; + E1Fry) = A6 2 + L—1

L= AV 4. (33
f'p+dq$r | i) 'E: I }'

Next we assume that £) has finile expectation and that
Eexpiug)) = exp{rin)} = oo forall u = 0.

The function ¥riu) = In E{uf)) is convex and is bounded by a linear function for small wu.
Define

]
wlu) = Zm)ﬁu}, w=0. (34)
k=0
Then, g;.(-) is bounded on any finite interval and

i) = @ lho) + ).
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In the case of a normal distibution, say £ ~ N{ ., -::rz},

Win) = pu+ 31,0'21!2,

I 1 o2 4
mu) = 1—.}'-.“+;1—)-.2u_' |l < oc.

Now suppose that E:] = (Peptlseony vo. Kgf::lT is the imtial vector with v, y—1. ...,
V_p+l = b Let F; = o (X )s <. Following Novikov's construction [ 7], we define a martingale,
with mespect o {5},

od
6 f w expud, Z,) —explud, Zg)] expl—g, (1)) du —rlug(;;)
0

= f u~ ! [exp(u V) — explu Vo) ] exp(—g; (1)) du _rlug(%}
0

whenever

3]
f P uxp{uf"mfn — () du = oo, (3.5)
1

A proof of the martingale property of Gt} is given in Appendix B.
Theorem 3.1. Assume that

O
f ! exp{uk — g u))de = oo (3.6)
1
Sforany positive constant K. Then ET (a, b) = oo and

ETia.b) . Ef n“'[mp{ufﬁfg—mm}—uxp{uf"li:]}llﬁnp{—m{u}}du. (37

log(1/A)  Jo

This theorem is proved in Appendix B.

The above result is particularly useful when the disturbance follows a normal distibution.
In that case, £, satisfies the basic assumptions and the condition (3.6). Thus, for stationary and
invertible Gaussian ARMA( p, g) processes with no roots common Lo the autoregressive and
moving average pars, E T (a, b) is finite forany a, bsuchthat b = vi—p + 1), ..., vi0) = a.

Theorem 3.2. Assume that the autoregressive coefficients ¢ are nonnegative for j = 1
p— land ¢ = 0 and that the moving ave rage coefficients 8; are nonnegative fori = 1

Furthermore, assume that
]
f u! exp{uk — g u))de = oo (3.8)
1
[forany positive constant K. Then ET (b) = oo and
1 20 5 =
ET(h) = ——— Ef u l[uxp{uﬁ Z7 i) — expluc) Zo)] expl —gs () ) due. (3.9)
log(1/4)  Jo
This result is proved in Appendix B,

Stationary AR(p) processes are important special cases. We can achieve similar results with
a shightly milder assumption.



650 G. K. BASAK AND K.-W. R. HO

Theorem 3.3, Assume that
O
f u_lcxp{nﬁEb,,.il,i — @)y du = oo,
|

where by = (b v (—a), .. ., bv (—a)" and ¥ = laivil +---+ lxpyal for x, ¥ € RP.
Then ET (a, b) = o and

1 o0 _ }
= ————E | [exp(uf X7 ap) —expuéXo)] exp(—ga(u)) du.
log(1/%) L w” ! [exp(uc X7 (a,p)) —exp(ucXa)l exp(—gi(u)) du

Thus, for stationary Gaussian AR( p) processes with positive ¢y, E T(a. b) is finite for any
a.bwithh = y(—p4+ 1), ..., ¥{0) = a.

ETi{a.b)

Theorem 3.4. Assume that the autoregressive coefficients ¢; are nonnegative for j = 1, ...,
p— land ¢p = 0. Furthermore, assume that
oK) -+
f ! explucph — @ (n))du < oo, (3.100)
1
where 5 =B b}l_'. Then ET (b) = o0 and

)
ET(f) Ef I!_I'[IJK'P{HE(]XT'm]} — explucy Xo) | expi—e () due.

~log(/n)
4. AR(p) processes: an integral-equation approach

The main objective of this section is o derive integral equations for AR(p) processes that
lead o the evaluation of (i) the probability of crossing a given level & before another given
level @ and (ii) the mean first-passage Gme o attain a level 5. In owr formulation, we depend
heavily on the Markov nature of the state-space representation of the time series. The form of
the state vectors of AR{p) processes means that the integral equation is of Fredholm type of
the second Kind and can be handled through developed numernical schemes.

4.1. Time-homogeneous Markov processes

We define a diserete-time real-valued Markov process | X, } on a probability space {£2, 7, P}
with stationary continuous transition density  fx, v) continuous in both x and v. The term
fix, v) denotes the transition density of reaching v at the next step given that the present stale
is x. Suppose that Xy = xp and that we are given levels b = a, where vy € [a, #]. Define

Pul(x0) := By*"(x0)
=Pla=X =5 ..., a=Xy =0 Xy =8| Xg=xp).

By looking at the first step and using the Markov property, we have, forn = 2,
b
Fylxp) = f P10y} flxo, ¥) dy. (4.1)
[
Summing the terms By (xg) in (4.1) forn = 1 gives
b
Pixp) = f Piy)fixg, y)dy + Pi{xp), (4.2)
[

where P(x) := 3 % | P,(x). The equation (4.2) is a Fredholm integral equation of the second
kind. The first concem is the existence and unigueness of a solution o (4.2).
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Theorem 4.1. The eguation (4.2) exhibits a unigue solution in Cla, b| given that

]
Flx,vidy = 1 forallx € |a, bl (4.3)

[

Proaf. By virtue of the unnlrw:li%n mapping theorem (Theorem 2.3), it suffices 1o show that
the integral operator A{P)x) = _,l:f Pi{v) fix, v)dy has operator nomm less than 1. Here we
use the supremum nomm in Cla, b]. The condition is fulfilled when (4.3) holds.

Thus, solving (4.2} leads to the probability of crossing the level b before the level a. To
formulate the result for mean firsti-passage time o a given kevel, we first have the following
well-known result which we now prove m a new way.

Theorem 4.2. Under the condition (4.3), P{T, pixp) = oc) = 1. Hew T plxp) denotes the
exit fime aof the interval [a, b] provided that the Markov process defined in this section starts at
xp £ [a, b].

Proof. We can formulate an integral equation similar to (4.2) by replacing P by P and Py
by P, where P'(xp) =¥ o=y Prixo) and Pyxg) = Pla = y1 = b, ..., a = yu—1 = band
¥u = bor vy, = a | Xg = xp). Thus,

b
P'(xp) =f P'(y) flxo. y) dy + Pj(xq). (4.4)

[

We see that P'{xg) = P(T, plxg) = oc). Itis clear that P{-) = 1 satsfies (4.4). So, by the
unigqueness of a continuous solution, the result follows.

Mext define M(xg. 2) := 3 | Pl {xg)z" where 0 < z = 1. Analogous to the formulation
of (4.2), we have

b
Mixp.z) = zf My, 2) f(xp, ¥)dy + 2P| (xp). (4.5}

Differentiating (4.5) with respect 1o z and evaluating at z = | give

b 1]

E(T% o (0)) flop, w) du +f M, 1)z, w) du + Pyixo). (4.6)

[

E(T 5 (xp)) =f

[

Since Miu, 1) = P(T, plu) = oc) = 1l forallu € [a,b], by Theorem 4.2, the last two terms
on the right-hand side of (4.6) sum to 1. Thus,

b
E(Taplx0)) = f E(T p{u)) flag, w)du + 1. (4.7)

Although, in general, we can only solve the integral equations numercally, there are some
special cases where the integral equations can be solved analytically. One of these cases was
addressed by Greenberg [6] who used a Markov-chain approximation o evaluate a kKind of
mean level passage time. In his paper, the innovations follow a hyperexponential distribution
which is useful as an approximation 1o other positive distributions (see [2]).
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4.2. AR p) processes: level-crossing probability
On a probability space {£2, 7, P}, define an AR({p) process as in (1.2):

¥; :‘i'l}’:—l +"'+¢'pr:—p + &,

where £ are 1.1.d. random variables.

Hereafter, we will assume that £ has N {0, n‘J’I}I distribution, but the results also hold for most
disturbances with a continuous density function satisfying certain conditions. Now, {1.2) has a
sLale-space representation

Y, =GX:, tekZ,

Yo =EX:uwHE, teZ,

whene E’, =(¥_ps1s+0 ., ¥i_1 ]f’,}l_‘ and F, . H are as defined m Section 2.1,

MNotice that the state vector EI consists of exactly the past p states of the orginal process.
This is crucial for our integral equation o remain of Fredholm type. Analogous w the previous
section, we define, forn = 1,

Pu(Xp) 1= (%)
=Pla=y =5,.. ., = Yo b,y =8| Xo = o),
where Xp = (y_ps+1, ..., y_1.v) anda <y <hbfori=0,-1,..., —p+ L. So,
B Pl
= 4 {1 — ghap)
Fyy1i{xp) = f Pnl[xmuxp(—T)du, (4.8)
2na Ja a=
where &1 = (y_ps2, ..., yo. u) | and 5 =lgp, ..., @’

Define P(¥p,2) = Y oo, Pu(%p)z" for z € (0,1]. Then, multiplying (4.8) by z" and
summing over all n = 1, we gel

- b T =5
Pixp. z) = ; f Pz, E}CHP(—%)GH + zP{xgp). (4.9)
IO Ja

The integral equation of the probability generating function will be useful in determining the
mean first-passage time. For calculating the level-crossing probability, set z = 1 and rename
%, 1) as P(¥p). Then iterate (4.9) p times o get an integral equation of oder p:

1 B B
P{-\’t]}'=mﬁj‘; 1; Plup,up,..., p)
Z‘P_ﬂ‘-"p}f _&fi—l}'l = =
®exp| ——— drg...d FP; ; 4.10
P( 502 i ) + Z ") (4.10)
i=l
where 3y = (¥—ps1...., 00 R = Uiy yo.u1) T, ¥ = (y_ps3, ..., Yo, w1, u2) 7,
ete, and ep = (0, ..., L

The equation (4.10) is a standard Fredholm integral equation of the second kind., The
existence and uniqueness of a continuous solution is guaranteed by the contraction mapping
theorem because the kernel is just a p-dimensional Ganssian kernel and the integral is taken
over a compact el
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4.3, AR p) processes: mean firsi-passage time

In this subsection, we want to caleulate E{Ty{ 5} ), that is, the mean first-passage lime over
agiven level b of an AR( p) process starting al an initial state vector 1. We proceed by adding
a lower boundary a first. Let T, 5(¥g) be the fisst-passage time of an AR( p) process over the
upper level b or the lower level a given the initial state vector 1y in [a, b7, let

]
P(.2)=) FE
i=l1
and
Pix)y=Pla=y =b...., a=y_1=b,yi=bory<al| Xo=1)

In line with the argument of Theorem 4.2, differentiating (4.9) with respect to £ and evaluating
atz =1 give

E(Ta 5(F0)) = m)du

b
f E{ffif.b{fl}}cxp(— 52

b =
f P, l}uxp(—M) du + P (xqp). (4.11)

2=

Far g v

+

2ra

From a result analogous to Theorem 4.2, we find that the last two terms on the right-hand side
of (4.11) sum to 1. Thus,

E(T plx0)) =

b PR i
f E{.’T',,-_;g.{h}l}uxp(—%) dut1.  (412)

FATY PR

Through iterating (4.11) p times as in the formulation of (4.10), we get a Fredholm integral
equation of order p and we can caleulate E(T,, 5 xn)) for any given a, b and initial state vector
Ipin[a, b]°.

Since E(T, 5(¥p)) converges monotonically o E{Ty(xg)) as a — —oo, we can gel an
approximation of E{T; (xp)) by evaluating E(T, 5{xp)) s a — —oo instead.

Notice that, under the sufficient condition (3.10) of Section 3, E{T,(xy)) = oc. Cleardy, the
Gaussian kemel satisfies this condition.
4.4. Numerical example: an AR(2) process

As shown in previous subsections, the determination of P(Ty) and E(T, 4(¥)) through
solving (4.11)and (4.12) in general can only be treated numerically. In this subsection, we give
a numerical scheme for an AR(2) Gaussian process and some numerical examples. Consider
the integral equation

B B
Silx, v) =f f Kix, v, E.q)flE. mdédy+ Wiz, ¥), (x,y) €[a b] x[a b], (4.13)

where the function K : [a, b]* — R is continuous and integrable with respect to all variables
and the function W : [ﬂ,bll — [ is continuous in both varables and is not identically 0.
We adopt the Nystrim method and a particular quadrature rule as discussed in Appendix C to
handle (4.13) (see [1] for details).

We study an example of an AR(2) process:

= ﬂ-z}':—l + 03y 2+ &, £ ~ N0, 1).
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TasLe 1@ Probability of crossing level & before —1 for v, in(4.14).

b=1 b=12 b=3 b=1

05908 0.2426 00343 00016
05911 0.2426 00343 00016
05913 0.2426 00343 00016

[ 05914 02426 00343 00016
Simulation 05912 0.2433 00352 0.0015

Lol | 3

TasLE 2: Mean first-passage time of level a or level b = 1 for y, in(4.15).

ga==1 a=-=-2 a=-3 a=-4 a=-=-5 a=-6 a=-=-7T a=-8

"
4 30404 52297 6.5769 6.8044 6.8281 6.8567 6.9731 Tan7
5 30414 52304 657500 67974 68141 68228 68358 6.8690
6 30420 52309 65743 67949 6BOB6 68132 G.B19T 68284
7
8
9

3424 52312 65741 67938 68063 O0BOBY 68125 68176
3426 52315 65740 67933 68052 oB06E 68094 68120
30427 52316 65740 67931 6846 68059 68070 6.8089
10 30427 52317 65740 67929 6843 68051 68059 68071
11 30427 52317 65740 67928 60841 6BME 68053 68061
12 30427 532317 65740 67928 6840 68044 68052 68054

We further assume that vy = 0.5 and y_| = 0.5, We study the following cases:

(a) Fix a = —1. We calkeulate the probabilities of crossing a level b before a level a by
solving the following equation:

1 bopb 2 2 — i)
P{}'n}sz f P{ul,ug}mp(—E:l{mx‘ (i) )du;dul
= a Ja
¥

2ol
+ Y Pj(To). (4.14)
=l

We can use the numerical methods discussed here to obtain the results m Table 1.

(b} Next we derive the mean first-passage time for y, for two specific kevels. We solve the
following equation, letting a — —oo:

~ 1 b b Lo et = B 11
Ei:f,b{xuhﬁf f ETﬂ.b{ﬂhuz}"31['-'(_2‘_[{82;;_«. it )duldul
T Ja Ja b
N (w1 — po)’
+14 — f cxp(——)dm. (4.15)
‘\"@-ITG' i@ 2"'72

The results for b = 1 are given in Table 2.

The mean first-passage lime in this case is about 6.805 while the simulation result is
around 6.845,
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5. ARMA(L, 1) models

In previous sections, we mainly discussed the dedvations for AR{ p) processes where we
naturally used their Markov properties in the state-space representations and formed standard
Fredholm integral equations that can be solved. 1o this section, we will follow the same idea and
use the Markov nature of the stale-space representations of the ARMA model to form similar
inegral equations. However, the integral equations formed will not be of standard format
and will need further considerations in the numerical procedures. Moreover, we restrict the
discussions to the Gaussian ARMA(L, 1) case to simplify the calculations, but the main idea
can be applied 1o processes of other types or with higher dimensions.

We give the formulations of the integral equations in Subsection 3.1 and discuss the solv-
ability in Subsection 5.2, We then use the collocation method introduced in Subsection 2.3 1o
obtain numerncal results for specific examples.

5.1. Formulation of integral equations for level-crossing probabilities
The process {vy, t € Z} issaid to be an ARMA( 1, 1) process if { y } is stationary and if, for
all r,
Y =¥ +85 + g,
where {z; } are Lid. random varables. Here we assume that {z;} ~ N{D,a’l}l. This process has
the following stale-space representation:
vi = X + 2, te &, (5.1)
X =¢X + bz, teZ. (5.2)
Here o = ¢¢ + & and note that o = 0 implies that y, = z;, which is an i.i.d. case that we shall
not consider; we assume that ¥ = 0. We use the notation from Section 4.2 where

Pux) = PiP(x)):=Pla<y =b,...,a<y,_1 by, >b| X =x),
ad

P(x1) =) Palx1).
n=l

Here the level-crossing probability is a function of the initial state variable vy in (5.1) and (3.2)
because that variable captures the necessary initial informaton for the evolution of vy, va, ...
By considering the first step, using (5.1, the Markov property of ( 5.2) and a change of variables,
we get, for vy € B,

Pox))=Pla<yv=<bh, ..., a= Y1 b =8| X =x1)
1 wh(dh—yixg {x2 —¢.rl}|1
- V2zay L:Hm—ﬂfln I:xp(— 202y )
“xPlasw=b,. .., A=y 1 =2b yy=b| Xz =x2)dx;

1 f@n‘fb-e-m—ﬂf].t': (x2 _¢xl}1
= — P _ﬂ.r:}uxp(—%) dxa.
VInay Jyarg-wn 2a-y=

Summing for all n = 1, we have

1 et (x2 —pxy)*
Plx)]) = — f Pixa) CHP(_ uio I it o )dx: + Py(x)).
V2may Jyatig—win aly?
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TapLE 3: Probabilities of crossing a level b before 0.

i b=1 b=12 b=3 b=1
2 06081 03468 030899 02310

4 06111 03722 02251 01721

8 06130 03361 01200 00407
16 0.6136 03180 01048 00229
32 0.6135 03156 00997 Q0187
64 0.6134 03150 00980 00177
128 0.6134 03151 00977 00174
256 0.6134 03151 00976 00174

Simulation 06120 03148 00002 00177

When v = 0, we just interchange the limits of the integral and everything else remains
unchanged. Next, letting v = x2 — {¢h — 1¥r)xy, we get the following integral equation with
constant limits that we are going 1o solve in later subsections:

(y ‘i{"l}'

1 Wi
P{.rl}l = - A f P{l‘ +{¢ V}rﬂLKP( ja_,._rl;r

W 2ma il Sya

5.2. Existence and uniqueness of a solution

)d'!r+P|{-l’1}' (5.3)

Analogous to the AR( p) case, we prove the uniqueness of the solution for (5.3) in C(D0)
where [ is compact. Define the operator JC, by

o (F)(x) = Flyk (= yfr}r}up(—m J’“}')d;. (5.4)

1 b
2 T f 2yt
Theorem 5.1. The operator J| defined in (5.4) iv compact in Cla, 8] for some i > «.

The proof is given in Appendix B.
53. Numerical examples

In this subsection, we use the collocation method desernibed in Subsection 2.3 1o deal with
two ARMACGL, 1) processes which correspond o the cases where 8 18 positive and where 8 15
negative. The range o, f] should be chosen according to the erteria established in Appendix D.
In these cases, all conditions in the theorems of Subsection 2.3 are satisfied and so we can

use (2.6) o approximate (2.5). In practice, we solve the following system of equations for
3= sy nand v; = w + ih:

wh "
Fix;) _V'{_Tﬂ'yfff Zﬁr{-r.l}f_.'“'i'{‘?' 19!’}'-1'1}”-'5?( %)d + Prix).
21 J=l

Afersolving the values at the collocation nodes, we can approximale the whole solution through
(2.4).
Simulation results are also provided for comparison.

Case 1. Here we choose ¢ = 0.5, 8 = 0.4 and o = | as the process parameters and the lower
barrier a = () and the initial state xp = 1. The results are given in Table 3.
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TapLE 4! Probabilities of crossing a level b before 0.
] b=1 b=2 Pb=31 b=4

2 0.5430  0.2239 00465 000043

4 04980 01952 00347 00027

# 05333 0.1757 00353 0.0020
16 05807 02417 00331 00018
iz 0.6430 02407 00326 0007
64 0.6431  0.2406 00324 0007
128 0.6431  0.2406 00324 0007
256 0.6431 02406 00325 0007

Simulation 06445 0.2430 00325 00016

Case 2. Here we choose ¢ = 0.5, = —0.4 and o = 1 as the process parameters and the
lower barrier @ = 0 and the initial state x; = 1. The results are given in Table 4.

The result is guite satisfactory and a faster rate can be obtained if higher-order polynomials
are used in interpolations.

6. Conclusion and discussion

In this paper, we have proposed an integral-equation approach o evaluatng the probability
of AR(p) and ARMA(1, 1) processes crossing a level before another level and the mean
first-passage lime o cross a level for AR p) processes. We have also extended a martingale
approach, developed by Novikov [7] for autoregressive processes, 1o ARMA(p, g) processes
for a representation of the mean first-passage time. While time-series processes are commonly
used in modelling data such as exchange rate, GDP and unemployment rate, this type of level-
crossing probability is useful in making decisions where we have o weight the gain against the
loss with some threshold levels m mind.

Our method relies heavily on the Markov nature of the state-space representations of time-
series models. As discussed in [3], any ARMA or ARIMA model can be represented as a
finite-dimensional model. Thus, the integral-equation approach can be extended to handle
more complex lime series. OF course, some conditions on the parameters will be needed as in
the ARMACL, 1) case w make the integral equation solvable.

We further aim to develop a methodology for long-memory, ARFIMA( p. d, g), processes.
Since long-memory processes have infinite-dimensional state-space representations (see [4]
for details), we believe that, using a truncated stale-space representation {as used in [4]), an
approximate level-crossing probability can be found and proved to converge as the dimension
tends to infinity. We intend to pursue this in future.

Appendix A. Characteristics of ¢ ()
We first prove that (-} defined in Section 3 is convex. Forall x, vy = 0and (0 <= b = 1,
AP (x) + (1 — D r(y) = AIn(Ee™) + (1 — ) In(Ee*™)
In(Ee™ ) E e —*
In(E 51 +(1-2¥8y - (by Holder's inequality)
= Yihx + (1 —A)y).

IV
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S0 (-) 1s convex. Nextwe show that 1 {u ) is bounded by a linear function forw <= 1. Consider

Yiu)  In(Ee"h)

I I
= In“EcuE,}l.-'ul
= IniEc¢fy foru = 1
= ().

So vr{u) is bounded by a linear function for w = 1. The boundedness of @ (1) comes directly
from the definition and the above properties of yr(u).

Appendix B. Prools

B.1. Proof of the martingale property of G,
We show that G is a martingale:

E(Gis1 | F)

- l:|:f w” [exp(uhéi Z, 4 ukii1) — explué) Zo)| expl—gs () du I 3’?]
i

—(r+ l}lng(%)

= fxu‘l[uxp{ulﬂf; + Yru)) — explucy Zo) lexp(—g; (1)) die — (¢ + 1) mg(.)l.L)
0

— f u—l[mp{u}-_c—']f:} — uxp{u.}'-.c_"li:]}luxp{—fpl{)-.u}}du —{r+1) Ing(%)
0

O
—f 'S l[cxp{uf"l Zo — @ iu)) — expiuie) Zyg — @ (hu)) | du.
0
The last integral equals log & by the Frullani identity,
)
f w Y flau) — fibu)]|du = F(0) logib/a), b=a=10,
0
which holds whenever the function f is continuous at 0 and _,I::;E w”™! f(u) du converges (see
[5] for details). Thus the result follows.

B.2. Proof of Theorem 3.1

MNote that (3.6) implies (3.5). Hence, by Doob’s optional stopping theorem on martingales,
(3.7) holds if T {a.b) is replaced by any bounded stopping time, say by Tia, b) ~r. As
Zy =(X0.09)7,

E(T (a.b) ~ D) log(1/3)
=Ef u” [exp(ue) Zr (apyns ) — explud) Zo) ] exp(—gs (u)) due
0

a0
= Ef w” exp(uEi0 X Tia mar + w1077 (g pyar) — expludioXo)l exp(—pa(w)) du.
i
(B.1)
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We intend 1o take the imitas ¢ — oo and nterchange the limit and integral using the dominated
convergence theorem. Split the domain of the mu:gral on the right-hand side of (B.1) into the
sets {r = Tila, )} {Tia. b) =1, dmvg-[,,.b] = .{{u -+ 1}_1} and {T{a.b) =1, dmvg-[,,.b]
kiw® + 1)~} where & = 0. Then the right-hand side of (B.1) does not exceed the following
surm:

fu o lexplulIEr0ba | + uK )] exp(—gs (1)) du

el Lo ke i = *
+L H_I|:'3-‘F'(I!|llc'm-’?u|ll+“:+ 1) —MP{HCL:]X:]}'] expl—yy (u))du

s o)
- l:f 1{T(a. b)< t.d10V7 (ap) > klu® + 1) ™!
0

x [explul|Eioball + udioVr .p)) — explud) Zo) [T exp(—ga(w)) du.  (B.2)

lovertibility of the ARMA process implies that

Zq_l Fdlt

dw¥; < Ch, =i=1— o
g T Cp

sy,
where C = 372 W] < oc and where the 1f; are such that & = 372 ¥ ¥, ;.

By (3.6) and the boundedness of ¢ () (defined in (3.4)) on [0, 1], the first and second
integrals in the sum (B.2) are bounded and independent of 1. Denote the upper bound by ).
Now, for a stopping time 7 for X and for a nonnegative function f, observe that

AT

E(f(dioVr) Leer) =E Y fldioti) Lrei
=1
AT

=E Z f(do).

The last inequality is valid as 1.—; = 1 and f is nonnegative. Now, using the above argument
i(which is similar to Wald’s identity) the third integral in (B.2) can be bounded as follows:

Tl bira
E Z f l{dmvj }Hu Ay } —I[L1r||<,._.b,.||-l-.|r=.']._.u,. - mchUI-l- —-,ﬂ,u.']d“

i=1
g
< E(T (a, b) m}f u ' Eldily = k(u® + 1)7")
i

i B +u.fw wfinXoy+ . —a i
% [ 11 108 | 412 _ g€ UI P CALD I

o0 - - -
+E) f u™ ENdioly > k(u® + 1) e IFiobell ol _ giéoXo pe=enlid gy,
0

(B.3)

Letting & — oc, the above integrals decrease monotonically to zero by the dominated conver-
gence theorem, (3.1) and (3.6). So, by choosing & large enough, the values of the integrals in
(B.3) can be made arbitrarily small, say smaller than £ log{l /L) with 0 = & = 1 for the first
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integral while the sum of integrals in the second tenm can be bounded by a constant C>. So,
from (B.1), (B.2) and the above,

E(T(a,b) ~ ) log(lfd) = L;LLZ

= .

This implies that ET {a, b) = oo simply by Falou's lemma. Using a similar argument for
Ti{a, b) as 1s done above for T{a. &) ~ ¢, we obtain that

]
Ef u_l[mp{ufﬁzﬂ,,.m} —expiuc) Zo) | expl—g(u)du = oo, (B.4)
0

In addition 1o the integrand of (B.4), which acts as an upper bound, we also need a lower bound
to apply the dominated convergence theorem in (B.1). To find this, note that

O
L u” [exp(ué) Zo) — exp(u) Z (o pyas )] €xp( —gs (1) ) dae
x —
Ef u " expliué1 Zo) — galu)] du
1
1

+f u~texpliuci Zo) — ()1 — expl—ullE (27 myr — Zo) 1) due

il

O
= f u" expl(ué1 Zo) — gal)] du
1

+ sup expluéi Zo) — @I Z T o — Zo) -

Dzu=l
Since 0] E; = M5 E:] 4 Z;=| )-.I_‘.J';';,

T e s

WE1Z 7 a pynr — E1 Zoll = IE1Zoll + Z 161
=l
Also, since E T (a, b) = oo and by Wald's identity,
ENE1 Z7 @ syn — C1Zoll < o

With the upper and lower bounds, we have (3.7) by the dominated convergence theorem.
B.3. Proof of Theorem 3.2

For an ARMAI p, g ) process satisfying the state-space representation (2.2), i we assume that
p = 0and ¢y, ..., fp_1 = (), then the coefficient matrix F is nonnegative and nonsingular.
As a result of the Perron-Frobenius theorem, F 7 possesses a largest real positive eigenvalue
A and that corresponds to a real positive eigenvector &, We further notice that 0 = A < 1 by
stationanty. Again, from (3.2) it is clear that, if © and & are nonnegative and & = 0, then o is
also nonnegative. In fact, ifﬁ'q. = (), then d 1s posilive as ¢ p = (L 50 we can rewnle (2.2) as:

C1Ziy1 =1 FoZy + €184,
Asin (3.3),
E|Z;.;.[=J"-.E[Z; + Er41. (B.5)

Thus, V, := &, 7, satisfies an AR(1) equation with ) = A = 1.
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Now we mimic the the proof of Theorem 3.1, but with a variation, o give the upper and
lower bounds for the right-hand side of (B.6) below.

Note that (3.8) implies (3.5). Hence, by Doob’s optional stopping theorem on a martingale,
(3.9) holds if T (B) is replaced by any bounded stopping time, say by T () ~ 1. So,
o

E(T (b) A1) log(1 /%) :Ef u”  [expludy Z7 vy ) —expluc) Zo) ] expl—e (1)) du. (B.6)

i
We intend to take the himit as ¢ — o¢ and intlerchange the himit and integral by the dominated
convergence theorem. Split the domain of the integral on the nght-hand side of {B.6) into the
sels

[t < T},
(T () < t.diore < k@ + D)7
and
(T(b) < t.diobrp > k(u® + 17},
where & = (0. Then the right-hand side of (B .6) does not exceed the following sum:

]
f u_l[uxp{u3|b+ uK — expiuc) Zo)|expl —py (u) ) du
0

e f u! |:uxp(115|;]5+ ?.ku ) —uxp{uﬁi;]}] . expl—gy () du
0 w4+ 1

og 5
+Ef 1{T () < 1. diobrp > k(u? + 1)~ !
0
% [cxp{ui:mg + u.r?mﬁﬂm}l —expluc) Zo) |7 expl —g; () ) due. {B.7)

Here, K is derived as in the proof of Theorem 3.1. By (3.8) and the boundedness of ¢ (-) on
[0, 1], the first and second integrals of (B.7) are bounded and independent of ¢, Denote the
upper bound by . Now, using Wald's identity, the third integral of (B.7) can be bounded as
follows:
T b s o oo .
E Z f l{t?[:]ﬁ" s .HI!I + 1}—1 e 1 [um"',h-i-m.'m[", - cuf", ZUI+C—<,:~}_ ) g
0

i=l
oo < 1 . -
= E(T(b) m}f u~ ' E Yty > k(u® + 1)1 [e" 1500 _ pwiZaphe—enln) g,
0

g—1 s . e .
+R Ef “—l E Hd[:]l_.l"‘ = .Hul i 1}—I }[culle bl cu,-jz,_,l-;-c—-,:*}_w] du. (B.8)
]

Letting & — oc, the above integrals decrease monotonically to zero by the dominated conver-
gence theorem, (B.3) and (3.8). So, by choosing & large enough, the values of the integrals
on the right-hand side of (B.8) can be made arbiwarily small, say smaller than & logi 1 /) with
0 = & = | for the first integral while the sum of integrals in the second term can be bounded
by a constant (2. So,

G+ G2
E{T (b)) ~t)log(lil) = 1— < OO,
o
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This implies that E T (b) = oc simply by Fatou’s lemma. Similady,
. —_ —
Ef u_l[uxp{uf"lzrm.]} —expluc) Zg) | expl—egpu))du = oc. (B.9)
0

In addition 1o the integrand of (B.9), which acts as an upper bound, we also need a lower bound
to apply the dominated convergence theorem in (B .6). To find this, note that

O
f u " fexp(ué) Zo) — exp(ué1 Z by n0)] expl—g (1) du
]

Ef w ! expluc, Zo) — gy (o) Jdu
|

+ sup expl(uéiZo) — @ NG Z7 5y — Zo)I-

N=tue =]
Since &1 Z; = ME1Zg+ X Mg,

T (B)ar
€1 Z7imias — €1 Zoll = €1 Zoll + E 1&:l.
=0

Since ET (B = oo and by Wald's identity,
E 161 Z7 e — E1Z0ll| < o0,

With these upper and lower bounds, we obtain (3.9) by the dominated convergence theorem.

B.4. Proof of Theorem 5.1

Ini5.4), wesee that there isa shift in the argument of § in the integrand that may stop us from
defining f just inside a compact interval. However, if the domain of § is chosen suitably, this
problem can be avoided. For any nonzero values of 1, we can show that a sufficient condition
for considering f just on [a, A] is that —1 < & = 1 and that [e, 8] be sufficiently large (see
Appendix D).

Now, with —1 = @ = 1 and [o, #] large enough as mentioned above, we can show that a
unique solution of (3.3) exists in Cla, 8], First we observe that JCp in (5.4) is a linear operator
on the Banach space Cla, f] equipped with the supremum norm. Next we see that this operator
has norm less than 1 once [a, b is aproper subsetof . So, by the contraction mapping theorem
(Theorem 2.3), we know that a unique solution exists for (3.3). Moreover, K is a compact
operator on Cle, #]. To justify this fact, we know from the Arzeli-Ascoli theorem that any
subset & < C(0) has compact closure if (1) £ is a uniformly bounded set of functions and (i)
& is an equicontinuous family. Now consider the set

$§={H\1f| fFeCD). || flle = 1}

So, by Definition 2.1, we just have to show that § satisfies (1) and (ii). Firstly, § is uniformly
bounded as the norm of J| = 1. Secondly, let x, 5 € @, A] and, for convenience, let x > &



Linear provesses 603

and g —1fr =0 Asx — 5,

E-i‘flf'[x} — Ky fis)
W
~~~~~~ O+ - mxmp(—ﬂulﬁél) dy
207

1 vh —vay |
.. A d
szwf_ fo+@-vwen( S50 o)

w4 (gh—a )x
T o I fz }up( il )a‘
7Jn;r1,{r Wat (- x 20y

bt — il )s — ¢bs)
— f{c}txp( )d:
Lu-!-m—g.-]_‘ 20’—1,{:'3
|| pub—s PTG e |
= —|f f{z}[uxp(—ﬁ)—cxp(—ﬁ)]dﬂ
V2ray [Jya+ig-w)s 2oy~ 2oy
1 | pirb+(d— ¢x}_
+ f{zmp( : )
Viray |f@»‘=b+l¢—w- 20%y?
1 | fva+ig—ux _r}_
[P g B
2o Vyas(g—vis 202y
Wl —r)s | -
N G R -
2nay Jyato—wy 202
| Wb+ (- x| -
o R f |l:l[.'i( @ ¢x} )|d
V2may Jyssip—ws 202y
1 wra+(gh— W )x | - AN
=+ —f |cxp(—%)
V2roy Jyaria-wi 204"
Since the kemels are continuous and x, s were chosen from a compact set, this upper bound
converges to 0 as v tends 1o 5. As the convergence rate is independent of f and by uniform

continuity, we established the equicontinuity of . Thus, by the Azeli-Ascoli theorem, the
operator JCp is compact. A similar argument holds when ¢ — o = 0.

dz

dz  smmee || fllae = 1.

Appendix C. Numerical integration over triangles

The background material in this appendix is mainly taken from [1]. The first step of
the numerical scheme is 1o divide the domain of integration into small triangles and apply
a quadrature rule w perform numerical integration. Since our domain here is simply the square
la. b]x [a, b], wenaturally divide it into 27 triangles as in Figure 1 (withn = 2 asan example).

Suppose that A is one such triangle, with vertices vy, vz, va. Introduce the unit simplex

a={{s.0) st =054+ =1}.
Define 8 one-to-one and onto mapping T - o — A by

Tis.t)=(1 —x — vy + tva + sva.
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) b, by

e, ax ) b, a)

Figure 1: The square [a. &] = [a, &) divided into § =2 = 22 triang les.

Through the change of variables {x, v} = T{s, 1), we have
f glx, vidxdy = '_’un:,a{&}f g(Ti{s, 1)da,
A o

where the function g : [a, b]* — R is continuous and integrable. We can thus use schemes
developed on the unit simplex to do the numerical integrations on the triangle A The quadrature
rule used here is a seven-point formula provided in [1]:

fg{a‘,f}ldcr & ng(3. 3) 4 g5le(0.0) + (0, 1) + g(1, 0)]
+ 1zlg(0, §) + g(5. 3) + 2(5. 0)]. (C.1)

This rule has degree of precision equal to 3, i.e. there is no error if g is a polynomial of degree
no greater than 3, and it can be derived using the method of undetermined coefficients. When
it is used in the composite formula, the nodes from adjacent tiangles overlap. Thus, the total
number of integration nodes will be 6n7 + 4n + 1 instead of 1407,

Suppose that K(x, v, £, i) 15 continuous over [a, B = [a, &) and that we use the composie
numerical integration rule (C.1), which can be writlen as

[

f gls, N do =Y wig(u), (C2)

i=l

where p; € {(§. §).(0,0), (0, 1), (1,0), (0. }). (}, §). (}.0)} and w; € {5, zp. 15} is the
comresponding coefficient. We can now approximate the integral in (4.13) by

)
n=

b el 7
f f Kix,v. & ) flE, mydedy=2 Zm{ﬂg} Z wi Kix, v, TG ) F(Tedpei))
a Ja =l

i=l

= ij.l‘f{x, _F.IEJH nj}f{E_,l'1 n_."}‘

i=l
where T =T a0 — A, m= 6n + dn + 1 and w15 the weight of the jth node. Thus, the
integral equation (4.13) can be approximated by

L

Julx, ¥) — E"JJ'K{I~ Y. & ni) il mj) = Wix, y), (x.y) € la.b] x [a,b]. (C3)
i=l



Linear processes [i7ih]

We can then evaluate the values of f; on the node points by solving the following system of
linear equations:
L]

JalEi.mi) — Z"JJ'K{*EIW m'~'$_,l'~ ’J‘_,l'}'.f:lr{'-‘;'_,h ?’J‘_,l'}' = W&, ), il R Hl.
i=l

Finally, we can use the Nystriym interpolation formula to oblain the remaining values of f; on
la. B] = [a, b]:

L

Fule, )= 0K (x, 3, & 1) ful&gs n)) + ¥ (x, ).
i=l
We state the following theorem (from [1]) to justify the convergence of £ to f and to calculate
the rate of convergence.
Theorem C.1. Let R be a polygonal region in B® and let | T, } be a sequence of triangulations
of R. Let

8y i= max diameter{fg) — 0
k=1,...n

and assume that §, — 0 asn — oo, Assume that the integral equation (1 — J)f = W
iy wniguely sofvable for W & C(R), with JC a compact operator on C{R). Assume that the
integration formula { C.2) has degree of precision d = ().

(a) For all sufficiently large n, savn = N, the approximating equation { C.3) is uniguely solvable,
and the inversexs (1 — K, }_l are uniformily bounded on C{R). For the ervor in f;,

f—fa=Q1=F)"(Kf - Knf)
and f, — fasn — oo
(M IfK(x,v,- ) € CHYR), forall (x, y) € R, and | € CTHU(R), then
If = fulloo =8 n=N.

The proof is omitted here; the interested reader can consult the reference [1]. Note that the
guadrature formula (C.1) we used is of precision & = 3, so the rate of convergence is O(n ).
Appendix D. Sufficient condition for (5.3) to have a unigue solution

For fixed @, b we want to make sure that (3.3) can be solved uniquely in C(0), where D is

acompact mterval.
Case 1. r = 0,8 = 0. We want
vra—foza and Wh—H8 < g,
in other words,
vra = (1 +6) and b = (14814,

which is the case if and only if

wa

144
Thus, if 0 = # = —1 and o is chosen sufficiently small and § sufficiently large, we can
guarantee that the argument inside f will fall in [o, 4]

o=

Wl .
and A= —— ifd=—1.
144
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Case 2. v = 0,8 = 0. We want

Wa—@88=a and b —fa = fi,
which is the case if and only if

wa =488 and Vb = 4 Fo.
So,if 8 = 1, we choose o = —f and the sbove inequalities become

Vaz(#—-1)f and b= (1-6)p.
Thus, f can be chosen large 1o satisfy the inequalities.
In the cases where W = (0, the proof is similar.
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