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Abstract

Maodels where the number of parameters increases with the sample size, are becom-
ing increasingly important in statistics. This necessitates a close look at the statistical
properties of eigenvalues of random matrices whese dimension increases indefinitely.

There are several properties of the eigenvalues that one would be interested in and
the literature in this area is already huge. In this article we focus on one important
aspect: the existence and identification of the limiting spectral distribution (LSD) of
the empirical distribution of the eigenvalues.

We describe some of the general tools used in establishing the LSD and how they
have been applied successfully to establish results on the LSD for certain types of
matrices.  Some of the matrices for which the LSD has been established and the
nature of the limit laws known are described in detail.

We alko discuss a few open problems and partial solutions for some of these. We
introduce a few new ideas which seem to hold some promise in this area. We also
establish an invarianee result for random Toeplitz matrix.
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1 Introduction

Random matrices ocour commonly in statistics; a familiar example is the sample
variance covariance matrix. With increasing examples in statistics of models where
the number of parameters increases with the sample size and with demonstrated in-
adequacy of standard statistical procedures in such models (see for example Bai and
Saranadasa (1996}), the study of such matrices have become important to statisti-
cians. Physicists have also been interested in certain tyvpes of random matrices as
their dimension increases to infinity. We call these lame dimensional mandom matri-
ces (LDRMs) and focus on the properties of the eigenvalues of such matrices.

Usnally, explicit evaluation of the eigenvalues or their distribution is not possi-
ble. But several other interesting questions may be asked. What is the probabilistic
behaviour of the maximum or the minimum eigenvalue? Can we say more on the
spacings between the different eigenvalues? If we consider the empirical distribution
of the eigenvalues, what can we say about its limit, the limiting spectral distribution
(LSD)? If the LSD exists, can we establish the rate at which the convergence takes
place?

Some of these questions have been addressed for different types of matrices of
interest both in the statistics and the physics community. A nice recent review ar-
ticle by Bai (1999) discusses some of the history, techniques and results in the area
of LDRMs. Additional insight in the general area may be gained from the review
works of Hwang (1986), and the books by Mehta (1991) and Girko (1988, 1995).
Random matrices have drawn the attention of mathematicians for various reasons
(in connection to the Riemann hypothesis for example). The books by Deift (1999)
and Katz and Sarnak (1999} deal with the mathematical aspects of random matrices.

The literature on LDEMs is huge. In this article we focus on one specific but
very interesting aspect, namely that of existence and identification of the LSD. We
describe some of the general tools developed in establishing the LSD and how they
have been applied successfully in some cases. Some of these results are described in
detail. These include, in particular, the Wigner matriz which is important in physics
and the sample variance covarionce matriz which is important in statistics.

There are several interesting matrices for which the current techniques seem in-
adequate or diffieult to apply. We introduce a few new ideas which seem to hold
some promise and provide some new results based on these. We hope that this brief
review will encourage others to work and contribute in this area.

In Section 2, we give the basic definitions we need and also a list of the common
matrices (Wigner, sample covariance, F and others) that have been dealt with in
the literature.



Section 3 discusses the two main methods (the moment method and the method
of Stieltjes transform) that are used to establish the LSD.

In Section 4 we give most of the known results on the LSD along with brief
discussions. We also establish a couple of new results. We also discuss a couple of
open problems that have been of interest and put forth some ideas.

2 Preliminaries

The purpose of this section is to provide the basic definitions and to list the matrices
that have received attention in the literature.

2.1 Basic definitions

Unless otherwise stated, the entries of all matrices are complex in general. [ shall
always denote an identity matrix whose order will be clear from the context.

Definition 1 (Empirical Spectral Distribution (ESD)) For any square matriz A, the
praobability distribution P which puts equal mass on each eigenvalue of A is called
the Empirical Spectral Distribution or measure (ESD) of A.

Thus, if A is an eigenvalue (characteristic root) of an n x n matrix 4, of mul-
tiplicity m, then the ESD puts mass m/n at A. Note that if the entries of A are
random, then P is a random probability. If Ay, Aa,. .., Ay are all the eigenvalues,
then the empirical spectral distribution function (ESDF) of A, is given by

i
Fy(z, y)=n"') I{Rek <z, Im)\ <y}
i=1
The expected spectral distribution function of A, is defined as E(F,(-)). This ex-
pectation always exists and is a distribution function. The corresponding probablity
distribution is often known as the expected spectral measure. Note that typically, the
order of A, tends to infinity as n — oo,

Definition 2 Let {4,}2%, be a sequence of square matrices with the corresponding
ESD {FP,}.;2,. The Limiting Spectral Distribution (or measure) (LSD) of the se-
quence is defined as the weak limit of the sequence { P}, if it exists. If {An} are
mndom, the imit is understood to be in some probabilistic sense, such as “almost
surely” or “in probability”.

Some of the main problems that the theory of LDBM seeks to address are:

1. Whether the LSD exists for certain classes of LDRM.

2. Whether the expected spectral measures converge.



3. If the LSD exists, establish the rates of convergence.
4. The behaviour of the extreme eigenvalues (when the matrices are Hermitian).

5. Studying other properties of the ensemble of eigenvalues.

As we have already said, our focus in this article would be the first issue. Often
the second problem is easier to settle than the first and is used as an intermediate
result to address the first issue. We shall not discuss these points here. The literature
on the last two issues is also very rich. In particular, there are some very elegant
probabilistic results known for the limiting behaviour of the maximum eigenvalue and
for the separation of eigenvalues. There are also innumerable unanswered questions
in this area. For more information, we point the reader towards Bai (1999), Bai
and Yin (1988), Bai, Yin and Krishnaiah (1986, 1987) and to the published and
unpublished works of Jack Silverstein (see http://wunef nesu. edu:8030/~jack/).

2.2 Some LDRMs of interest

We describe some random matrices enconntered frequently in the literature on LDRMs.
For a complex random variable X, its variance is defined to be E|X — E(X)|%

Wigner Matrix: A Wigner matriz (Wigner (1955, 1958}) of order n and scale
parameter « is a Hermitian matrix of order n, whose entries above the diagonal are
independent complex random variables with zero mean and variance o2, and whose
diagonal elements are i.i.d. real random variables. This matrix is of considerable
interest to physicists.

Sample Covariance Type Matrices: Suppose {x;. .k = 1.2,...} is a double
array of i.id. complex random wvariables with mean zero and variance 1. Write
g = (Type....2p) and let X, = [x; xa -+ x,]. In LDRM literature, the
matrix

S= -:L_IXﬂX;

is called a sample covariance matrir (in short an 5 matrix). As a concrete example,
if {x;;} are real normal random variables with mean zero and variance one, then S,
is & Wishart matriz. Note that we do not centre the matrices at the sample means as
is conventional in defining the sample covariance matrix in the statistics literature.
This however, does not affect the LSD.

Now let 1o /2 he any p x p Hermitian matrix, independent of X,,. Define
B, =n TP X AT,

The matrices B, are called sample covariance fype matrices. It may be noted that
this includes all Wishart matrices. Also observe that the eigenvalues of B, are the
same as those of n 71X, X T, = §,T,,. One example of the latter product form is the



multivariate F maotric F, = .5'1,,5'.;?1 where S;,, i = 1, 2 are independent Wishart
matrices. This has motivated the study of LSD of matrices of the form B, and S, T,.

Toeplitz Matrix: Let {rg,z1,...} be a sequence of i.id. real random variables
with mean zero and variance 2. The n x n matrix T}, whose (4, F)th entry is z);_j
is a random Toeplitz matriz Non random Toeplitz matrices have been around in
mathematics for a long time and their properties are very well understood. See for
example the classic book by Grenander and Szego (1984). Recent information on this
matrix may be found in Béttcher and Silbermann (1990, 1999). See also Gray (2002).

Hankel Matrix: Let {zy,x1,... } bea sequence of i.i.d. real random variables with
mean zero and variance 2. The (i, j)th entry of the n x n random Hankel matrix
is 7;,;_1- They are very closely related to the Toeplitz matrices. See the references
cited above for the Toeplitz matrices.

Derivative of a Transition Matrix in a Markov Process: Consider a Markov
process with n states and transition probabilities p; j(1). Let x;; denote the derivative
(with respect to t) of p;; at t = 0. Then the n x n matrix (x;;) is known as the fran-
sition density matrir. The entries of this matrix satisfy the conditions Z;Ll Ty =10
for every 4, 1 < ¢ =< n. Motivated by this, consider the matrix

L -
- zi;? Iy T4 Tii ... Tifn-1) Lin
T
I = Zi=1?¢g Tgi T2y -.- Tap-1) Tan
M, = , (1)
n—1
Tnl Ln Ini o0 Tplp-1) — Ehl Tni

where x5, = xp; j < k are iid real random variables. We will refer to it as the
Markov matriz in the sequel for convenience.

LI.D entries: The matrix with Li.d. entries (real or complex) has also received
considerable attention in the literature and has given rise to the so called circular
law conjecture.

3 Two Methods

We now describe in some detail the two most powerful tools which have been used
quite often in establishing LSDs. One is the moment method and the other is the
method of Stieltjes Transforms.

3.1 The Moment Method

Suppose {Y,} is a sequence of real valued random variables. Suppose that there
exists some (nonrandom) sequence [, such that E(Y) — 3, for every positive



integer h where {3} satisfies Carleman’s condition:

fs u)

. e (2)

k=1

It is well-known that then there exists a distribution function £, such that for all b,
Bn = f "dF(x) and Y, converges to F in distribution. (3)

For a positive integer i, the A-th moment of the ESD of an n x n matrix A, with
characteristic roots Ay, As, ..., Ay has the following nice form:

[P 1
h-tl t of the ESD of A = —% " A = —tr(A") = 8,(A) (say 4
1 moment of the ESD o nz g =i r(A") = 8,(A) (say) (4)

i=1

Now, suppose {4, } is a sequence of random matrices such that

Brl(An) — B (5)

Here the convergence takes place either “in probability” or “almost surely” and {3, }
are nonrandom. Now, if {3, } satisfies Carleman’s condition then we can say that
the LSD of the sequence {4, } is F' (in the corresponding “in probability” or “almost
sure” sense). We are tacitly assuming that the LSD has all moments finite.

Note that the computation of 3,(A,) involves computing the trace of Al or at
least its leading term. This ultimately reduces to counting the number of contributing
terms in the following expansion, (a;; denotes the (4, j)th entry of A):

e
tr{A") = Z QiyipMigdy * ** Qi yip Digiy (6)

154y dg.... dp 5N

The method, thongh straightforward, is not practically manageable in a wide
variety of cases. The combinatorial arguments involved in the counting become
quite unwieldy and even practically impossible as h and n increase. In cases where
this method has been successful, the combinatorial arguments are very intricate.

The relation (5) can often be verified by showing that E{3,(4,)}) — /3, and
V{(3({An)) — 0. But even if all moments of the L5D exists, there is no puarantee
that E(3,(A,)) are finite. Thus, to implement this method, the elements of A4, are
first appropriately truncated. Of course then one has to verify that the effect of
truncation is negligible.

This method has been successtully applied for the Wigner matrix, the sample
covariance matrix and the F' matrices and recently for Toeplitz, Hankel and Markov
matrices. See Bai (1999} for some of the argnments in connection to Wigner, sample
covariance and F matrices. For the arguments concerning Toeplitz, Hankel and
Markov matrices see Brye, Dembo and Jiang (2003).

i |



3.2 Stieltjes Transform Method

Stieltjes transforms play an important role in deriving L8Ds. They have also been
useful in studying rates of convergence but we shall not discuss the latter here.

Definition 3 For any function G of bounded variation on the real line, its Sticlfjes
Transform mg is defined on {2z : z =u + iv,v # 0} as

~
meg(z) = f e 1’(‘;(1'1'1‘} (7)
o T— 2

We shall be concerned with cases where (7 is the cumulative distribution function
of some probability distribution on the real line. If a sequence of Stieltjes transforms
converges, the corresponding distributional comvergence holds.

If A has real eigenvalues A;, 1 <i<n, then the Stieltjes transform of the ESD
of Ais

ma(z) = Tll Z i = itr[{A =2I)7Y). (8)

i=1

Let {4, } be a sequence of random matrices with real eigenvalues and let the cor-
responding sequence of Stieltjes transforms be {m,}. If m, — m in some suitable
manner, where m is a Stieltjes transform, then the LSD of the sequence {4, } is the
unique probability on the real line whose Stieltjes transform is the function m. The
convergence of the sequence {m,} is often verified by first showing that it satisfies
some (approximate) recursion equation. Solving the limiting form of this equation
identifies the Stieltjes transform of the LSD.

This method has been successfully applied for the Wigner matrix and the sample
covariance type matrices. See Bai (1999) for more details on the use of this transform

to derive the convergence of the ESD and on the rate at which the convergence takes
place.

4 Limiting Spectral Distributions

4.1 Wigner matrix and the Semi-Circular Law

If the entries of the Wigner matrix are real normal with mean zero and, variances
I and 1/2 respectively for the entries on and above the diagonal, then the joint
distribution of its eigenvalues can be caleulated explicitly. If Ay = ... = A, are
the eigenvalues, then it is not difficult to prove, (see Mehta (1991)), that the joint
density is:



_exp(=XE, N/?2) 1

PO ) = e ey meaty L = )

However, the distribution of the eigenvalues cannot be found in a closed form if
we drop the normality assumption. Nevertheless, even if the normality assumption
does not hold and we assume the entries to be real, quick calculations of the first two
moments will convince the reader that the correct scaling for convergence is n— Y2,
That is, one should look at n—1/2W,,.

The semi-circular law 8 with scale parameter & arises as the LSD spectral dis-
tribution of n=Y?W,,. It has the density function

ﬁf 40?7 — 5% if |s]| < 24,

pﬂ'(-'?} = {Q}
0 otherwise.

This is also known as the quarter cirele law (see Girko and Repin (1995)). All
its odd moments are zero. The even moments are given by

: 2k ) o2k

Wigner (1955) assumed the entries to be i.i.d. real Gaussian and established
the convergence of E(ESD) of n~/2W,, to the semi-circular law (9). Assuming the
existence of finite moments of all orders, Grenander (1963, pages 179 and 209) es-
tablished the convergence of the ESD in probability. Arnold (1967) obtained almaost
sure convergence under the finiteness of the fourth moment of the entries.

All the earlier proofs use the tedious Moment Method. The Stieltjes transform
method can also be used. To give the reader some idea, in Bai (1999} it is shown that
using the relation (8) and an appropriate partitioning of the matrix , the Stieltjes
transform m,, of n=Y2W,, satisfies the following approximate recursion equation:

1

—_——— 8, O — (. 10
::+4cr?mﬂ{z}+ 0 (10)

Malz) = —
Using this, the Stieltjes transform of the LSD satsifies m(z) = — H-_JEI'a::TT This

equation has two solutions for each 2. From some other considerations, it is shown
that the correct solution is

1
D2

m(z) = ——=[z — V22 — 402 (11)

which is indeed the Stieltje’s transform of the semicircular law (9). We state the
result as a Theorem.

=]



Theorem 1 [f {W,} is a sequence of Wigner matrices of order n x n with scale
parameter o then with probability 1. the ESDE of -rx_éwn tends to the semicircular
law S given in (9) with scale parameter o.

Incidentally, Bai (1999) generalises the result of Arnold (1967) by considering
Wigner matrices whose entries above the diagonal are not necessarily identically dis-
tributed and have no moment restrictions except that they have finite variance.

A related result of Trotter (1984) is worth mentioning, specially because of the
distinctly different method employed. He too considered matrices whose entries
are real independent Gaussian variables. To quote his result, define the distance d
between any two probability measures g and v as

d(p,v)? = inf E(X — Y)?,

the infimum being taken over all pairs of random variables X, Y defined on the same
probability space having distribution g and v respectively. It may be mentioned that
this metric was introduced by Mallows (1972) and its properties have been studied
in Bickel and Freedman (1981). Trotter's main theorem is:

Theorem 2 Let A, = {2-11}13*{:'1Iﬂ + M)} where M, is an n x n standard Gaussian
random matriz. Then lim , E{d(F4,, S}?} =0.

Boutet de Monvel, Khorunzhy and Vasilchuk (1996) obtained some other gener-
alizations of Wigner's results with weakly dependent Gaussian sequences as entries.

4.2 Sample Covariance type matrices and the Marcenko-Pastur Law

Suppose X, is a px n matrix whose entries are i.i.d. complex random variables with
mean 0 and variance 2. The sample covariance matrix is defined as 5, = %Xﬂ X
Note that we have not subtracted the sample mean while defining the sample co-
variance matrix. This does not affect the treatment of the LSD. Apart from being
important to statisticians for a variety of reasons (see below), the spectral theory
of large dimensional sample covariance matrices also finds wide application in signal
detection and array processing. See Silverstein and Combettes (1992a) and (1992b).

If the entries are ii.d. normal with mean zero then 5, is a Wishart matrix with
population covariance matrix . In that case much is known about the distribution
of eigenvalues of 5, and related matrices. See Anderson (1984).

As a peneralization of S, the covariance type matriz B, is any matrix of the form
n,_l’i;}m Xa X;’I;: % where T is a p = p Hermitian matrix independent of X,,. Sup-
pose that both n and p are large. There is at least one important reason why one
would be interested in such mtarices. Usually p represents the number of explana-
tory variables and in traditional statistical models, this is held fixed. However, when
the mumber of explanatory variables is very large compared to n, it is natural to



formulate it as a case where both n and p are tending to infinity. See Johnstone
(2001) for examples where both n and p are very large and are of the same order.
See also Donoho (unpublished work) for more examples.

Note that the eigenvalues of B, are the same as those of n='59,T,. Hence, one would
naturally be led to the study of the ESD and LSD of product matrices. Such product
matrices would cover the sample covariance matrices when the population covari-
ance matrix is not a multiple of the identity matrix. Moreover, the multivariate F'
statistics F' = 5155 ! where §; and Sy are sample covariance matrices, is also of the
product form.

It may be noted that many invariant tests are functions of eigenvalues of matrices of
the form F. For example, invariant tests of the general linear hypothesis depend on
the sample only through the eigenvalues of product matrices F' = 5 -5'.1_1 where 54,
Sa are Wishart. However the test statistics constructed by classical methods perform
inadequately when the dimension of the data is of the same order as the sample size.
For instance, consider a two sample problem where we wish to test the hypothesis
H : iy = po against K : gy # o where gy and po are the means of two mmltivariate
populations of dimension p. The classical Hotelling test is not well-defined when the
dimension p is large compared to the sample sizes 1y and no. Bal and Saranadasa
(1996) proposed an asymptotic normal test. Interestingly, they used the results on
LSD of # matrices to show that when both p and n tend to infinity, their test is
more powerful than Hotelling’s test even when the latter is well-defined.

S0 as expected, the product matrices and specially the sample covariance type ma-
trices are very well-studied. There is a host of results available for their LSD and
asymptotic behaviour of their extreme eigenvalues. Since in this paper we concen-
trate on LSD only, we present some important results related to LSD.

The so called Maréenko-Pastur law with scale index o2 is indexed by 0 < y < oc. It
has a positive mass at 0 if y > 1. Elsewhere it has a density:

ﬁy (b—z)(xz—a) fagz<h,
pylz) = (12)
0 otherwise.

and a point mass 1 — % at the origin if y > 1, where a = aly) = a?(l - ﬁ}z and
b=b(y) = o*(1 + y7)°.

The LSD of S;, was first established by Marcenko and Pastur (1967). Subsequent
work on S, may be found in Grenander and Silverstein (1977), Wachter (1978),
Jonsson (1982}, Yin (1986), Yin and Krishnaiah (1985) and Bai and Yin (1988). We
state below the result for i.i.d. entries.



Theorem 3 Suppose that {xi;} are i.i.d. complex variables with variance a*.

(i) If p/n — y € (0,0c) then the ESD of 5, converges almost surely to the
Maréenko-Pastur law (12) with seale index o

(ii) If p/n — 0 then the ESD of W, = \E{Sﬂ —0%1,) converges almost surely to
the semicircular law (9) with scale index o”.

There are several versions of this result under variations of i.i.d. condition of the
entries of X;,. For example Bai (1999} proved the following:

Theorem 4 Suppose that for cach n, the entries of X, are independent compler
variables, with a common mean and variance o°. Assume that p/n — y € (0, oc)
and that for any 6 = 0,

1 ’ ,
&np Zk E ({Ijk} I[IIE;Z:JIE&JH}) il (13)
i

Then ESD of S, tends almost surely to the Maréenko-Pastur law (12) with ratio
inder y and scale index o2,

When p/n — 0 as p — oc and n — oc the theorem takes the following form:

Theorem 5 Suppose that for each n, the entries of X, are independent and complex

random variables with a common mean and variance o°. Assume that for each

comstant § = 0, as p— oc with p/n — 0,
1
(m}y2 -
po2 ¥ HPZL ({Ii““} Iurj,.:-‘|3.;.:ﬂp}1.r:}) ol
ik
ani

1 (m)y4 _
np? § ({"“s‘k ) ‘rnr}:-‘e&wp}l-“} = ol1).

Then with probability 1 the ESD of W, = \E{Sn — o21,) tends to the semi-
circular law (9) with scale inder o2,
In case of multivariate F' = §;5;", where §; and S, are independent Wishart,
Wachter (1978, 1980) showed the existence of the LSD and its explicit form may be

found in Silverstein (1985). See also Bai, Yin and Krishnaiah (1987), Yin, Bai and
Krishnaiah (1983) and Wachter (1980) for related results.

Later it has been shown that the same LSD persists even if we do not start with the
Wisharts but just assume that the orginal variables involved in the construction of

10



51 and S5 are respectively 1.i.d with enough moments. See Bai and Yin (1993), Yin
(1986), Bai, Yin and Krishnaiah (1985), Yin and Krishnaiah (1983), Wachter (1980)
for the details.

For results on general products of the form 8,7, where S, is a sample covariance
matrix and 75, is independent of 5, see Yin and Krishnaiah (1983), Bai, Yin and
Krishnaiah (1986), Silverstein (1995), Silverstein and Bai (1995) and Yin (1986). We
quote one such result from Yin (1986):

Theorem 6 Suppose x;;, the entries of X, are iid with finite variance. Suppose
T, is a p = p non-negative definite random matriz independent of X, and for each
fixed h, jl}t-r{ﬁf:‘} — au, in probablity /almost surely, where the sequence {0y} satisfies
Carleman’s condition. Now, if p/n — y € (0,0¢), then the L5D of 8,7, erists in
probablity/almost surely.

Bai (1999) relaxed some of the conditions of the above theorem. He considered X,
with entries as independent complex random variables satisfying (13) and T;, to be
p  p random Hermitian matrices independent of X, whose L5D exists in probabil-
ity /almost surely. Then he showed that the LSD of S, T}, exists in probability /almost
surely.

Silverstein and Bai (1995) considered matrices of the type B, = 4, + n~'X*T, X,
and proved a general existence theorem. The setup of this theorem reflects the sit-
nations encountered in multivariate statistics. Examples of B, can be found in the
analysis of multivariate linear models and error-in-variables models, where the sam-
ple covariance matrix of the covariates is ill-conditioned. The between-covariance
matrix in MANOWVA plays the role of 4,,. In this setup 4, is introduced to reduce
the instability in the direction of eigenvectors corresponding to small eigenvalues.
Note that the result below is powerful enough to guarantee the existence of the LSD
for 5, in certain heteroscedastic cases. However, the LSD can be computed only
through its Stieltjes transform.

Below, —* denotes vague convergence, that is convergence without preservation of
the total variation.

Theorem 7 Suppose that for each n, the entries of X, = (x1,... . %), pxn
are ii.d. compler random variables with E(|x;; — E(z3,)]) = 1 and that T, =
diag(t{,... 7)., 7' are real, and the ESDF of T;, converges almost surely to a prob-
ability distribution function H as n — oc. Suppose that B, = A, + L X, T, X, where
A, is Hermitian satisfying Fy, —" F, almost surely. Assume X, T, and A, are
independent.

If £ — gy > 0, almost surely then the ESDF of B, converges vaguely to a d.f.
F with Stieltjes transform m(z) = ma(z —y [ liﬂ?:}} where my is the Stieltjes

transform of Fy and z is a compler variable with imaginary part = 0.
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4.3 Toeplitz and related matrices

Consider the space o of all sequences which are square summable. Suppose that
{xi} belongs to ls. Then the Toeplitz matrices with these entries are looked upon as
transformations from [s to {o. This is the basic starting point of the theory of non-
random Toeplitz matrices. See for example Bittcher and Silbermann (1990, 1999)
and the references there. Much is known about the existence of the ESD in such non
random cases.

Random Toeplitz matrix plays a significant role in statistical analysis, particularly
in time-series analysis. In time-series analysis the covariance matrix is a Toeplitz
matrix. It comes up in several spectral estimation methods. For instance given a
real signal with autocorrelation coefficient r (i) the coetlicients of the anto-regressive
model can be estimated by solving the corresponding Yule-Walker equations:

AxY =C

where ¥ is an unknown vector, €' is a vector of known coefficients and 4 is a Toeplitz
matrix with elements (i}.

However, no sequence of (non zero) i.i.d. {x;} can be in [, in any sense and it appears
that the strong machinery available for nonrandom Toeplitz matrices is not of much
nse. At the time of submission of the first version of this article, the existence of LSD
of the Toeplitz matrix remained an open problem. From a private communication
from one of the anthors, we learnt that Brye, Dembo and Jiang (2003} have settled
the question of the existence of the LSD of the random Toeplitz matrix. They used
complicated combinatorial arguments to prove its existence, though its closed form
is not vet known. They also established the existence of the LSD for the Hankel
matrices and identified the LSD for Markov matrices (as the free convolution of the

standard Ganssian and semicirle laws). Following is one of the main theorems proved
by Bryc, Dembo and Jiang (2003).

Theorem 8 Lef the entries of the Toeplitz matriz T, be id.d. real-valued random
variables with mean zero and varience one. Then with probability one, the ESD of
ﬁ’i‘n comverges weakly as n — oo to a non-random symmetric probability measure
which does not depend on the distribution of the entries of T, and has unbounded

support.

It is not hard to compute the first four moments of the ESD n~Y?T},. The limits of
first four moments turn out to be 0, 1, 0 and 8/3. Recently Hammond and Miller
(2003) obtained some useful results for the moments of ESD of a random Toeplitz
matrix normalized by \/n. They show that while the odd moments tend to 0, the
even moments obey the following bounds:

(2k)!

B( ) < S + Ok(3).
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Note that the first term above is the Gaussian 2k-th moment.

We simulated 50 Gaussian Toeplitz matrices of order 200. In Figure 1, we overlap
the kernel-smoothed density estimates for the ESDs of each of these 50 matrices. This
graph gives an idea of the concentration of the random distribution of the eigenvalues.
The expected distribution is estimated by simluating 500 Gaussian Toeplitz matrices
of order 200. The kernel estimate based on all the 500 = 200 = 107 eigenvaluese is
given in Figure 2. Inspite of the look, this curve is not Gaussian (recall that the
limiting fourth moment is not 3).

4.3.1 An Invariance Result

In an attempt to explore the structure of the Toeplitz matrix we discovered an
invariance result. To develop this invariance result, we shall look at matrices as
operators on [0, 1]. Take any square matrix 4 of order n. Define the bounded
linear operator C'y : C[0,1] — C[0,1] by the following.

Teke any f € C[0,1]. Let z = (f(2), f(X),...,f(E1))T. Let y = Az. De-
fine C'4(f) to be the function on [0,1] whose graph is the polygonal line joining
(0,30), (5,31), (2.92), oo s (%2 t0c1), (L),

Recall that in a Banach algebra B with identity e, the spectrim of an element
x € B, denoted by o(x), is defined by

a(x) ={A : Ae —r does not have an inverse in B} (14)

The following are easy to verify (with obvious meanings for the notations):

Crha = ACa
Cap = CaCp

Carp = Ca+Cpn
(15)

However, it is not true that €7 = 1 where 1 is the identity operator on C|0, 1].
Nevertheless, we have the following:

Theorem 9 [nder the notation introduced in this section, o(A)U{0} = o(Ca)U{0}.

To prove this, take any A, such that A # 0 and A & o(A4). We shall show that
Al —C, is invertible in C[0, 1] by verifying that A='(1 — Cyq4_yp-1) = S (say) is
the inverse of AT — (74.

To show this, just use the properties listed in (15) as follows:

S(A1—=Ca) = A Y1=Cua_rn-1)(A1-Cl)
B }.—I{AT—CA—ACAH_M}..i +CA(A—M}-1CA}
= ATYAM = Ca — Cagacan-1ar + Cagaan-14)
= AAT-Ca+ Cata-rn-t(A-a1))

= 1

L3



So S is a left-inverse of (AL —C4). Similarly, it can be checked that S is a right-
inverse of Al — C4. Thus, we have shown that o(Cy) C o(4) U {0}. Conversely, if
A € a(A) then 3z # 0 such that Ar = Az. Let T be the element of C[0, 1] whose
graph is the polygonal line joining (0, xg), {%,;rl}._ {%,Ig}, e {'”T_l,;rﬂ_l}._ (1,z,).
Then r # 0 and (4(F) = AT by linearity. This proves the reverse inclusion. O

Now consider the sequence of normalised Toeplitz matrices n~Y?T,, where T}, is
the Toeplitz matrix of order n formed by the {z;}. For simplicity, we will denote the
corresponding sequence of operators {C - 1-"”1‘”}1 as simply {C, L.

Before we deal with random elements of B and convergence, we must clarify
that the topology on B under consideration is the usual operator norm topology.
Measurability is in terms of the Borel sigma algebra generated by this topology.

It can be easily checked that the map 4 — 4 is contimous from B?*" — B,
and hence measurable. So C,, is a legitimate random variable on B.

The asymptotic behaviour of the law of ), is made somewhat explicit by the
following Theorem:

Theorem 10 (i) If fi1, fo...., fm are twice continuously differentiable functions,
then {(Cnfi, ..., Cufm)}o, converges in law, to a limiting distribution which is not
dependent on the distribution of the {x;} ’s.

(i) If the sequence {Cy} is tight. then it converges in law, and the limiting distribu-
tion does not depend on the distribution of the {x;} 's.

Proof Assuming (i), proof of (ii) is easy. If P is a limit point of the sequence { P},
where P, stands for the law of C),, and C ~ P then for any fi, fa,... , fm € et 0,1],
by (i), the law of (C'f1,... .,C fm) is not dependent on the distribution of the {z;}'s.
Since the C* functions are norm dense in C|0, 1], the above assertion holds even
when f;’s are just continuous. Then, by the usual technique, it can be proved that
P is uniquely determined, irrespective of the distribution of the ;’s.

We now prove (i). For simplicity asume m = 1. Generalization to the case m > 1
is easy. So fix f € C?[0,1]. Let

n—1
Sﬂ = ZI'!' {lﬁ}

i={)

with S, = 0. Let B, denote the function whose graph is the polygonal line connecting
(0, T?,%}, (&, %}, (2, \%}, P s %} It is well known that {B,} converges in law
to the Brownian Motion on [0,1], which we shall generically denote by B. Let
gn = C,f. Let B denotes the Banach algebra of all bounded linear operators from
0, 1] into itself. We shall show that there exists an element ¢ € B, depending only

on f, and not on the distribution of the x;’s, such that

llgn — {(Bn)l| = 0. (17)

14



(We are using the sup norm.) Now since B, = B, therefore o(B,) = (B) and
s0, by (17), g, = ¢(B). This will establish the claim.

Given u € C[0, 1], ¢ is defined by:

P()(&) = JOu(a) + St =) - [ Fla =ty [ £+ puiy
(18)

It is easy to check that ¢ € B. Let us first compute |g,(x) — ¢(B,)(x)| at each x.
We shall first consider = = j—“’ for k=0,1,... ,n—1. Then,

n—k—1

gl }‘Zr{ e Y V,,-f(““? (19)

J=0

Now the first term in the above expansion can be written as

1 4 - k T
> [Z{f( SN Y

j—-l

i=1

b~k T T R T
—f(T}}gv—;—n]‘*‘f(H};E

= (f(ﬂ}—f(km}}z

SV
}}2( f(n}z o
B —i+1. 8 Sk+1 k., o
- pEitd o0 4 f(0) 22— 1) 22
Similarly, the second term can be written as
kel T J-I—k
j=0 vn
| PRl b :+k f+k+1 gulingyy
= 2 2 Z () - F—— M +f() Z o
n—k—
- ¥ {f(‘”}—f(‘*“‘}}ﬁ+f(l}%;{

Let M = supyc, oy flx), My = supyc, oy (), Ma = supge ey f7(x), Dn = supyc,c | Ba(x)],
and 8, = n~Y? maxgeicn_1 |il.



Fix k, 0 <k <n—1. Define h on [0, k;’-n,} by

—i+1

hy) = —= [f f( =] (20)

v’{_
if =l <y<iforsomed, 1 <i<k.
Take any y € [0, k/n). Suppose ";—1 <y< :—1 where 1 <4 < k. Then, by the Mean
Value Theorem,

h{y) = — j:,_l (z) for some z € {k;t‘._ k_:;-l_ l}.
Let y1 = k/n—y. Then |z — | < 1/n
Ih(y) + f'(k/n — y) Bn(y)|
= | ; jf— ' j—,'i—f’ 1 jf'— (y1) + Bul(y)f'(m)|
< 'ﬁ'rl M+ 5 T V,—Ilf ()]
= —Dﬂ."l-.f-g + My,
n
Thus,
k/n
|Z - FE=E0+ [ Pt

L.'ﬂ k/n
= f hy)dy+ [ £/(k/n ~ 4)B,(u)dy]

k/n

< ﬁ (h(y) + £ (kfn — y) Ba(y)ldy
[|

< 1p M, + M, (21)
Tr

It is well known that D, = Op(1), and &, = op(1). Hence left side of (21) converges
to () in probabilty. Now note that the right side is not dependent on k. Hence, the
maximum of the left side over &, 0 < k& < n — 1, also tends to zero in probability.
Similar argnments on other expressions finally show that

P
max |gu(k/m) = p(Bu)(k/m)] L= 0 (22)

low, {¢(Bn)} is a tight family. So, by standard arguments, Vi, (¢(Ba)) L,0as
n — oc, where Vi(u) := supy_,<5|u(t) — u(s)]|. Also, if k/n < z= < (k + 1)/n,
then |gn(x) — gn(k/n)| < |gn((k +1)/n)— ga(k/n)| < 28, M + 6, M, as can be easily

checked from (19). Now using all the preceding observations, it is easy to show (17),
completing the proof of the theorem. O
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4.3.2 A close relative to Toeplitz matrix

In a Toeplitz matrix, each diagonal has equal entries. Consider a matrix where each
anti-diagonal has equal entries in a symmetric fashion. Thus the (i, j)th entry of
such a matrix of order n equals x;;_s. Call this matrix A,. Asin the Toeplitz case,
the natural normalisation turns out to be n~%? and we consider X, = n~Y2A4,,.
With some work, its eigenvalues can be explicitly computed (below | x| denotes the
largest integer less than or equal to x) as:

Min =n-1/2 T__l: Ty
Anjan =n 12y (~1)z, if n iseven
Men = —An—kn = fob, +B ., 1<k <25,
where,
1 n—1 1 n—1
A = —ZJ.‘I cos(2rlk/n) and, by, —Z;r; sin(2mlk /n).

VIII:E =0 VII{E 1=0

Note that if the entries are i.i.d. N(0, 1), then {akn, by} are Lid normal variables.
Hence in this case the ESD is essentially a symmetrised version of the usual empirical
distribution of the square root of a chi-squared distribution with two degrees of
freedom. The latter has the density:

f(z) = |z]exp(—z2), —oc <z < 00

Since the empirical distribution converges to the true distribution almost surely, ESD
converges to the above law in this special case. When the entries are not necessarily
Gaussian, Bose and Mitra (2002) proved the following Theorem. The main idea in

the proof is to use normal approrimation for sums of independent variables to show
that for each x, E(Fx, (r)) — F(z) and V(Fx, (z)) — 0.

Theorem 11 Let {x;} be i.i.d. with mean zero and variance 1 and Elz1* < oc.
Then at each argument, the ESD of X, = n~Y? A, converges in Lo to the LSD with
density | given above. Hence the ESD converges to this distribution in probability.

We provide two new variations of the above theorem using different approaches.
Suppose, {1} is a weakly stationary sequence of random variables with mean zero
and autocovariance function e(u) = E(ziri.). If 2o, le{u)| < oc, then this au-
tocovariance function has an associated density, commonly known as the spectral
density (see Brockwell and Davis (1991) for example) which is given by

s ]

FA) = i Y clu)exp(—idu), —w <A<

w=({)
The periodogram at frequency A of {a;} is defined to be
1
I(3) = =—d3()d3(~A).

2rn
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where d?(X) = 377 o1 exp(—iAl). Therefore, interestingly,

2wk L-.x

I(==) = 5-Akn:

For any random variables Y7,...Yy, its cumulant, cwn(Yy,...Y:) is defined to
be the coefficient of ]_[Ll{t'tj-} in the expansion of log|E exp{i ZLI t;Y;}]. Now
suppose {z;} satisfies the following condition: Let

cp(t, U, ..ty ) = cum(Tu, , Tugy - - Tuy_y )

Then

= )
> (14 |ulen(ur, up, ... un1) < oo, for 1< j<h—1 and h>2 (23)

LTS T e T

By Theorem 2 of Chiu (1988),

=1 T
lim i Y *(2mjfn) = ;‘—I /_ ) FH(NdA  almost surely.

lil=n

The left side equals 23, m—;}ﬁ{aj + h?}"' = L%—l}k— [ x*dF, where F, is the ESD
of X,,. Hence [ z%dF, — (2r)k-1k! [ - FE(A)dN = By (say) almost surely.

By Stirling's formula for large K,

21 T
> B ~ S (omybrakedrbodi ([ g
k=K k=K —m

But |[f(A)] < 3 |e(u)| < M < oc. So the right side above is divergent. Hence { 3o }
satisfies Carleman’s condition. Thus we have proved the following theorem:

Theorem 12 Suppose that {r;} is weakly stationary with mean zero and auto-
covariance function satisfying (23). Then ESD of X, = n~ Y2 A, converges weakly
almaost surely. The odd moments of the LSD are zero and the moments of order 2k
are given by (2r)* k! [T fR(A)dA where f(A) = & Y e(u)e™ .

We now deal with the case where the second moment of the entries need not be finite.

Suppose X is a metric space. Let P(X) denote the space of all probability measures
on By, the Borel o-field of X. Let (£, A,(J) be a probability space. A random mea-
sure A is defined to be a measurable map A : @ — P(X). Then @QA~! € P(P(X))
where QA" is defined by QA" (M) = Q{w € Q: Mw) € M} where M is a Borel
set of P(X). We say that QX! is the distribution of A.

18



Now let A, be a sequence of random measures with distributions QA;'. We say that
A, converges to a random measure A in distribution if QA1 — QA~! weakly, that

is, if fPLK} flz)dQA(z) — fP(x} flz)Q A1 (zx) for all continuous bounded function
fon P(X).

For any probability measure P on R2, let ﬁ{tl._ ta) = ng exp{itiz + itay pdP(z,y)
denote its characteristic function at (¢, ;). Let g be an element of P(P{R?)) which
satisfies for each k = 1,

k
f T 2(ta, ti2)dp(P) = Oiltar, tro, .. . tia, the) (24)
i=1
where
ke

Bultun izt ) =expl— [ |3t con(2mm) + tsin(2mey) e
T =

and [, is the k-dimensional unit cube. Such a g exists by Lemma (34) of Freedman
and Lane (1981).

Let g : P(R?) — P(R) be defined by g(m) = [ where [{A) = m(f~1(A4)) for any
Borel set A in R and f(x,y) = \/f.'r? + 4?). Then we prove the following:

Theorem 13 If {x;} are i.d.d. such that n~= > j-1T; converges in distribution to
a symmetric stable law of index o < 2 then the ESD of the X,, = n~V*A,, which is a
mndom measure, converges i distribution to o random measure whose distribution
is given by v = pg™' with u as defined above in (24).

Proof: Define

i m
A n-a Z;l:j cos(2mjs/n) and Z, =na Z‘TJ sin(2mw js/n).
j=1 =1
From the arguments in Freedman and Lane (1980) it follows very easily that the
joint empirical distribution &, of {(Yas, Zns) hize<n converges in distribution to a
random measure whose distribution is .
On the other hand, the sth eigenvalue of X, = n~ VA4, is A, = VY2, + Z2..
Convergence of {G,,} in distribution ensures that the ESD F,, converges and to the

limit » := pg~'. This proves the Theorem. O

4.3.3 Hankel and Markov matrices

In addition to the Toeplitz matrix Bryc, Dembo and Jiang (2003) solved the problem
of existence of LSD of two other related matrices, the random Hankel and the Markov
matrices. The main results they obtained for Hankel and Markov matrices are the
following:
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Theorem 14 Let the entries of the Honkel matric H,, be i.d.d. realvalued random
variables with mean zero and variance one. With probability one. the £5D of ‘%Hﬂ
converges weakly, asn — oo, to a non-mndom symmetric probability measwre which
does not depend on the distribution of the entries of Hy, . has unbounded support and
is not unimodal

To state the theorem on the Markov matrices, define the free convelution of two
probability measures ;o and » as the probability measure whose nth cumulant is the
sum of the nth cumulants of ¢ and v). The proof of the following result involves
intricate combinatorial argument. For details, see Brye, Dembo and Jiang (2003).

Theorem 15 Let the entries of a symmetric Markov matriz My, be id.d mandom
variables with mean zero and varionee one. With probability one, the ESD of iﬂ.-"l:'ﬂ
converges weakly as n — oo to the free convolution of the semicirele and standard
normal measures.  This measure is o non-random symmetric probability measure
with smooth bounded density, does not depend on the distribution of the underlying
random variables and has unbounded support.

4.4 LLD. entries and the Circular Law

Since a sequence of ii.d. random variables exhibits ‘invariance behaviour”, (for
example CLT), it is very natural to ask if such invariance holds for the LSD of
matrices with i.i.d. entries. To state such a result, define the circular low as simply
the uniform distribution on the unit disc of the complex plane. That is, its density
is

clz+iy)=ntif0o<? 4+ <1 (25)
Let X, = ((xi;))ij=12. . n. Then the circular law conjecture states that

Conjecture. If {zi;}ij=12... are Lid. compler random variables, with mean 0,
variance 1 then the LSD of {n=Y?X,} is the circular law given in (25).

This conjecture is widely believed to be true. It has been established in certain
special cases. However, a resolution of the conjecture in the completely general case
has so far not been achieved.

Assuming that the entries are complex normal, (the real and complex parts being

ii.d. real normal with mean zero and variance 1/2 each), Ginibre (1965) showed
that the joint density of the (complex) eigenvalues of X, is given by:

1 T
e [T = M exp{—5 Y Inl*}-
k=1

i#k
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This was used by Mehta {1991) to verify that the conjecture is true in this case. See
also Hwang (1986) who credits it to unpublished work of Jack Silverstein.

Edelman (1997) derived the exact distribution of the {complex) eigenvalues when
the entries are real normal, given that there are exactly & real eigenvalues. He used
it to show that the expected ESD converges to the circular law.

Girko (1984a, b) gave a proof of the validity of conjecure under some restriction on
the densities of the entries. He used the technique of V-transformation by which the
characteristic function of a non-selfadjoint matrix is expressed in terms of ESD of
Hermitian matrices. But researchers have found these proofs extremely difficult to
understand.

Bai (1997) proved the cireular law under reasonably general conditions by using some
of the ideas of Girko (1984a, b). His result may be stated as follows:

Theorem 16 Suppose the entries have finite (4 + €)th moment and either the joint
distribution of the real and compler parts has a bounded density or the conditional
distribution of the real part given the tmaginary part has a bounded density. Then
the circular low conjecture is frue.

4.4.1 An Idea

The conjecture has eluded a proof in the general case so far. Note that the eigen-
values of the matrix need not be real. Hence, the moment method or the Stieltjes
transform method apparently become inoperative. In this section we suggest a dif-
ferent approach. Though we do not have any rigorous results, we hope that the ideas
given here would eventually turn out to be useful.

Let X be a complex valued random variable with law P. Let B = Bla,r) =
{z: |z —a| < r} denote the open disc of radius r with center a. Let I' denote the
cirenmference of B, parametrized in the usual way by the path 5. Also, suppose
f(z) := E[(z — X)) exists ¥z € T".

Note that if X is a real valued random variable, then — f is the Stieltjes transform
af X'. The eigenvalues of Hermitian matrices are real and Bai (1999) has mentioned
that the Stieltjes transform technique works only for such matrices. However, if the
conditions for applying Fubini’s theorem hold, we have

P(XeB)=E (i f _LX) = Lﬁf{’]’}d’}' (26)

2 Jr © 2mi

This suggests that f may be used for non-Hermitian matrices in a manner similar
to m for Hermitian matrices.

Note that if Aj, Ae, ..., A, are the eigenvalues of A, then the eigenvalues of
(zI — A)~! are precisely (z = A1) (2= A7t .o. i(2 — Ax)”). Hence, if 2 is
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not a characteristic root of the n = n matrix A, and PP is the ESD of 4, then
Ep[(z —X) Y =nttx|(z] — 4)7Y].

For the matrix X, with iid entries, let Ay, As, ..., Ay denote the eigenvalues of
n~Y2X. . Define fnon ©, = the complement of the set of all eigenvalues of =/ Y.
as

= 12 i _ % : 1
fal2) = ~tr [(zI— n~Y2x,) ] T (27)
Then ¥z € 01,
1 g.(2)

fa(z) = == 28
(=2 (28)

where g, is defined on the plane by
gn(z) = det(z] —n~Y2X,) =] (2 — &) (29)

=1

Clearly, g, is a polynomial in 2 of degree n. Let us write

.Qn(z} = Z{-‘nk:ﬁk {Bﬂ}
k=0

where the coefficients ¢p are random. Now, for z € Q, U {0},

k k
1g.(2) _ 15 0r k2" _ 13 k0 ptnk
n gn(z) z ELH*"ﬂk:k 2 Y k—otnk

where t, = capz”. Note the last expression in (31) is =~ times an affine combination
of kfn, k=0,1,... ,n. If it so happens that the values {,,;, are “insignificant” when
k/n lies outside a small neighbourhood of some number a(z), then f,(z) will be
approximately equal to az)/z. So let us inspect the nature of the random variables
tak. Direct evaluation of the determinant det{zf — n~1/2 X ) shows that

fulz) =

(31)

enk =N N "0y, g G 2 dnk) T Tinia Tiegines (32)

where the summation is taken over all 4,40, ... ,fn_k. j1. 2, ... s jn—k such that 1 <
i1 <is < - <ip_p=nand (f1,f,... ,fa—k) is & permutation of (i1, 42,... ,in_k),
and s{i1, ... yEn—k, J1s- .. 5 Ju—k) is either 1 or —1.

22



Since {x;;} are independent with mean 0 and variance 1, any pair of terms in (32)
are uncorrelated. To see that, just note that in each product term, all the elements
are forced to be distinct since ¢y < iy < --- < i,_j. Also, the number of terms is
ﬂlTl since we can choose (i1,...,i,_;) in "C} ways, and for each such choice, we can
choose (j1,... . fn—k} in (n — k)! ways, and there are no overlaps. Thus,

nl|z| 2

E (ftasl) = E (leas?™ ) = =5 = Tk (s9) (33)

Now note that

Trak+1 _ n|z|?
Tn.k k+1

(34)

Hence, T is maximized when k is such that % el E L—I—l if |2 <1. Hz| 2 1
then the maximum is attained at k = n.

From now on assume that |z| < 1, z # 0.
Using (34), it is easy to prove that 1, are negligible when k/n falls outside
(1221 = n7Y3), |21%(1 + n=Y?)) = (an, Bn) (say). More precisely, we can show that

2
A Eﬁn{%{ﬁn Tnk / Eﬁn{%{ﬁn E (lfﬂkl )
lim —=2—— = lim

[ — ZI:HT""‘": ==—rbu Z:=" E (ltﬂklgj

=1 (35)

Now, it is again easy to see, using (32), that if & # j then ¢, and ¢,,; are uncorrelated.
Using this, we get,

¥ E| (-2t oa®
Y Eltnkl”

Elz;:_-n(ﬁ_P'?}tnklz
Elzz_n tn.k |?

=T o

lim,, ..,

k|2 : k(.2 2
— lllnn E%E[“H-'!‘rt] El{"_l_l }fnkl — E%E[“‘H-GHJEH “_l_l }tnkl
=0 Y Eltl” Btk (36)
2 —1 732 2
& lilnﬂ E%E[“n-ﬂn] Eltnwl + m |=| E%E[ﬂn-ﬁn] Eltaw|
- 3 Eltnsl” 3 Eltusl”
=10

The first term inside the limit vanishes due to (35), and the second term is dominated
by n~ Y3 Now, if we could only show that

a
K 2

=0 {E - |z|?] Lk
ZE:{; tok

lim E‘ 2k =0, (37)

then it wonld follow that



i k -
1 D g 7 Crk?

En : : S = 3%
= Z:.:r:-l‘:“1"’:71-*”?'\‘Jl { }

falz) =

2
So, if |z| < 1 and 2z # 0 then fa(z) Lz Forz= 0, this can be proved
independently. If this holds, then by Jensen's inequality and Fubini's theorem, it is
easy to verify that for any ball B with boundary I', which is contained in the unit
ball,

_ 1 S, 28 A o
P(B) = 5 [ folhiz 25 o [ sz = ntaren(B) (39)

where P, denotes the ESD of n=%/2X,,. This implies that the LSD of {n~Y2X,} is
indeed the cireular law.
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Figure 1. Kernel density estimates for the ESD for 50 simulated Toeplitz matrices
of order 200 with N(0, 1) entries.



Figure 2. Average kernel density estimate of the ESD from 500 simulated Toeplitz
matrices of order 200 with N(0, 1) entries.
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