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Abstract

A tree with attached graphs is a tree, together with graphs defined on its partite sets. We
introd uce the notion of incidence matrix, Laplacian and distance matrix for a tree with attached
graphs. Formulas are obtained for the minors of the incidence matrix and the Laplacian, and
for the inverse and the determinant of the distance matrix. The case when the attached graphs
themselves are trees is studied more closely. Several known results, including the Matrix Tree
theorem, are special cases when the tree 15 a star. The case when the attached graphs are paths
isalso of interest since it is related to the transportation problem.
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1. Introduction

Minors of matrices associated with a graph has been an area of considerable inter-
est, starting with the celebrated Matrix Tree theorem of Kirchhofl which asserts that
any cofactor of the Laplacian matrix equals the number of spanning trees in the
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graph. Several papers have been devoted to the theme of Matrix Tree type theorems,
see [19,10.3.4] for more information and further references.

Another matnx whose determinant and cofactors have been explicitly calkeulated
15 the distance matrix of a tree. An carly, remarkable result for the distance matrix D
of a tree on i vertices, due o Graham and Pollack [13], asserts that the determinant of
D equals (—1)"'(n — 1)2"2, and is thus a function of only the number of vertices.
In subsequent work, Graham and Lovise [14] obtained a formula for D™ E, amaong
other results.

The distance between two vertices in 4 graph is tradiionally defined as the length
of a shortest path between the two vertices. In contrast o this notion, the concept
of resistance distance, intrmoduced by Klein and Randié [17] anses naturally from
several different considerations and 15 more amenable 1o mathematical treatment.
The concept has also been of interest in the chemical litemture, and in particular, an
analog of the classical Wicner index based on the resistance distance has been pro-
posed. We refer 1o [1.8,11.16.25.26] for more information on the resistance distance
and for additional references. For a graph 7, the matnx whose (i, j)-entry is the
resistance distance between vertices @ and § s called the resistance distance matnx
{or simply the resistance matnx) of the graph. For a ree, the resistance distance
coincides with the classical distance. Expressions for the determinant and the inverse
of the resistance matrix are given in [26.2].

In this paper we introdoce the concept of a ree with attached graphs, which is sim-
ply a tree with graphs defined on its partite sets. We introdoce the notion of incidence
matnx, Laplacian and distance matnx for a tree with attached graphs. Formulas are
obtained for the minors of the incidence matrix and the Laplacian, and for the inverse
and the determinant of the distance matrnx, When the tree 15 4 star, we recover some
known results concerning the determinant and the inverse of the resistance distance
matnx of a graph. On the other hand, when the attached graphs are paths, we obtain
results for the distance matrix of the tree associated with a basic feasible solution of
a ransportation problem. We refer to Section 7 for details.

It is possible o state and prove the results of the present paper in the context of
weighted graphs. However we mestrict ourselves to unweighted graphs for the sake
of clarity of presentation. For an illustration of results in the weighted case, see [3].

2. Preliminaries

We consider simple graphs, that is, graphs which have no loops or parallel edges.
The wertex set and the edge set of the graph ¢ are denoted by V(G) and E{G)
respectively. By a directed graph we mean a graph in which each edge is assigned
an onentation. It most be remarked that even when we consider a directed graph,
wi focus on the underlying undirected graph when defining paths, eycles, spanning
trees, connectedness, ete. Thus by a “connected directed graph™ we mean a directed
graph whose underdying undirected graph is connected. The transpose of 2 matrix 4
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is denoted A’ If G is a directed graph with n vertices and m edges, then its incidence
matrix 2 is the v x m matrix defined as follows, The rows and the columns of
are indexed by V(@) and E{G) mespectively. If i € V() and j £ E(G), then the
(i, fientry of Qs Oif vertex § and edge § are not incident and otherwise it is 1 or
—1 according as j originates or terminates at § respectvely. The Laplacian matnx
L of G is defined as L = @ (. The Laplacian does not depend on the orfentation
and thus is defined for an undirected graph. We assume familiarity with basic graph
theory and with elementary properties of the incidence matrix and the Laplacian, sec,
for example, [B.19.24].

We now introduce some more definitions. If A 1sann x m matrix, thenanm x n
matrix & is called a generalized inverse (or a g-inverse) of A if AHA = A, The
Moore=Penrose inverseof A, 1sanm = n matrix A satisfying the equations AH A =
A HAH =H, (AH) = AH and (H A = HA. Itis well-known that the Moome—
Penrose inverse exists and is unigque. We denote the Moore—Penrose inverse of A by
A7, For background matenal on generalized inverses, see [7.9].

If 415 an n x n matnx, then for i = 1, ....n. A]{) will denote the subma-
trix obtained by deleting row @ and column i, Similady ford, j=1,..., ni#£j,
AL, i f) s the submatrix obtained by deleting rows i, § and columns i, §.

Let (7 be a graph with n vertices and ket L be 1s Laplacian. For i, f £{1...., nt.

the resistance distance between vertices i, § is defined as
il det Lii, fli. j)
dii, j)=dij = T
det Lif|i)
The matnx D = [df_."l 15 called the resistance distance matnx (or the resistance mat-
rix) of . For several equivalent definitions of the resistance distance see [1,17]. We
denote the column vector of all ones by 1 and a matnx of all ones by J. The size of

1)

these is clear from the context.

Lemma 1. Let A be a symmetric n % n matrix with zero row and column sums and
afrankn — 1. If H isa g-inverse af A, then foranyi = j,
det A5, fli, j)
—————=— = hjj + hjj — hij —hj;. (2)
det Alifi)
Proof. Fixi,je{l,. .., n}, i % j. Let x be the column vector with x; = 1, x5 =
— 1 and with its mmaining coordinates zero. Then x 1 orthogonal w0 1. Smee A has
zero row and column sums, 1 s in the null-space of A, Also, since the mnk of 4 s
n — 1, any vector orthogonal w 1 is in the column space of A and thus x = Ay for
some y. If A is a g-inverse of A, then
hij +hjj—hij —hji=x'Hx = yAH Ay = y'Ay
and hence fiy; + hjj — hyj — fj; s invanant with respect o the choice of g-inverse.
We now construct a specific g-inverse of A. Let H be the n x n matrix defined
as follows. Set Hiili) = A{fif}_' and set the entries i the ith row and column of
H 1o be zem. It 1scasily verified that H isa g-inverse of A. In fact, the construction
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that we have described is a standard text-book method of computing a g-inverse,
see, for example, [20, Chapter 1]. Note that since the ith row and column of H are
zera, by = hi; = hji = 0, while, by the cofactor formula for the inverse of a matrix,
7 det AL, |i, ) i 7 P P det AL |1, )
hjj = =g EYHTH -Thus hy; +hj; —hij —hji = =5 ETHH
g-inverse H of A, (2) holds and the proof is complete. O

It follows that for any

The hypotheses on A in Lemma 1 imply that the cofactors of A are all equal.
This can be seen as follows, In A(1[1), add all columns to the first column. This
operation leaves the determinant unchanged. Since the row sums of A are zem, the
resulting matnx 1s the same as A(12), in which the first column is replaced by its
negative. Thus we conclude det A(1]1) = —det A(1|2). By a similar argument we
can show that (—1)"F det A(i|j) = (— 1) det A(i|k) for any i, j, k. Again, since
the column sums of A are zero as well, we can show that {—lj"_-"' det A(i|j) =
{—1}1—.-" det A(k|f) for any £, f. & and the claim is proved. Since the mnk of A s
n —1, the cofactors of A ame in fact equal and nomeero. Thus the determinant
det A(fi) occuring in the statement of Lemma 1 does not depend on i,

The following notation will be used in the rest of the paper. Let T be a tree with
|ViT) =n + 1. Let X and X7 be partite setsof T with | X | = p1. | X2 = pro 1 +
P2 = n+ 1. Let G be a connected, directed graph with V(G = X; and |E(G )| =
m;, i = 1,2 We assume that the edges of T are directed as well and for convenience
wi Lake them o be onented from X to X2 We think of the graph T UG U G as
the tree T with attached graphs 4, Ga.

Let A be the (r + 1) x n incidence matrix of T and ket B; be the p % my inci-
dence matrix of Gy = 1, 2. We set

0

In the following discussion we assume certain well-known properties of the inci-
dence matnix of a tree. The columns of A are linearly independent. The column sums
of A are zero and therefore 1 is orthogonal 1o any vector in the column space of A.
Since the dimension of the column space of A 15 r, iLis evident that the columns of
A span the space of vectors in B! that are orthogonal to 1. Thus there is a unique
nox{mp 4+ m2) matrix (2 satisfying AQ = B. We call @, the incidence matrix and
L = @@, the Laplacian of T U G U Ga, viewed as a tree with attached graphs.

If any mow of A is deleted, then the resulting matnx s known as the reduced
incidence matrix of T and its determinant is £1. The matnx A is totally unimodular,
L., all s minors are either 0 or £1. It follows from the well-known properties of
linear systems with a totally unimodular coefficient matnx (see [23, Chapter 19])
that the entries of @ arein {0, 1, —1}.

There is a graphical interpretation of @ which s instructive. The rows and the
columns of @ are indexed by E(T) and E{(G) U E(G2) respectively. Let ¢ be an

Note that if pz = 1, then B = [B‘]_
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edge of Gy U Gz, Then T U {e} contains a unigue circuil. Consider the mcidence
vector of the circuil. It is a vector indexed by E(T'). It contains a zero comesponding
to any edge of T that does not feature in the circuit and otherwise the entries are —1
or 1 depending on whether the edge agrees with the orientation of ¢ or otherwise
respectively, as we raverse the circuit. The column of @ corresponding Lo e 15 given
precisely by this incidence vector. In particular, since the edges of T are all oriented
from X | to X3, the sum of the entries in any column of 15 zem.

Since Gy 15 connected, By has full column mnk, § = 1, 2 and hence B has full col-
umn rank as well; thus rink B =n — 1. Since AQ = B and since the rank of a prod-
uct cannot exceed that of either factor, we conclude that rank @ =n — 1. However
() has n — 1 columns and hence mnk @ =n — 1.

We also note some elementary properties of L. Clearly Lisn % n oand symmetric.
Since L = @€, it is positive semidefinite. The rank of L equals that of @, which
15 n — 1. The entries of L are integers, but in contrast to the Laplacian of a graph, it
does not necessarily have nonpositive of-diagonal entries.

We remark that T UG U Ga, being a graph in its own right, has an incidence
matnx and a Laplacian matnx defined in the usual way. However in the present paper
we will not be concerned with these matrices as far as T U Gy U (72 15 concerned.
We view T UG U Gz as atree with attached graphs and its incidence matrix @ and
Lapleian matrix L will be as defined in the preceding discussion.

3. Minors of () and L

We continue to work with the notation introduced in the previous section, the
salient features of which are eproduced here for convenience. Thus let T be a ree
with |V(T) =n 4+ 1. Let Xy and X7 be partite sets of T with [X| = p1. | X2] =
Pz 1+ pr=n+ 1. Let G be a connected, directed graph with V(G ;) = X; and
|E{G) =m;. 0= 1,2, We assume that the edges of T oare directed as well and
for convenience we take them to be oriented from X 1o X2, We think of the graph
T UG UGy as the tree T with attached graphs &, G2, Let @ and L be the inci-
dence matrix and the Laplacian matrix of T U Gy U G2 as defined in Section 2. In
the next result we desenbe the minors of the incidence matnx.

Lemma 2. Consider the submatrix () of @ formed by the rows indexed by F C
E(T) and the columns indexed by H C E(G U G3), |F| = |H| =r. Then (h is
nonsingwlar if and only if the graph indwced by (E(T) )\ F)U H is a tree, in which
case, det @ = 1.

Proofl. We assume, without loss of generality, that

e @2
Q_[QA 94]'
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where (2 15 r % r. Then
g 0 ]
A = |8 As|, (3
[Ql Ty [ J I] )
where By denotes the columns of B indexed by H and Az denotes the columns of
Andexed by E(T)\ F.Let Aln + 1, ) and [ By, A2]in 4 1,.) denote the matrices
obtained by deleting row n + 1 of A and of [ B, A;] respectively. It follows from (3)
thut

o] '
Alrn4+1,. [93 e [B| Al] (r+1,.). 4)
The three matrices in (4) are all n x n. Taking determinants,
detA(n +1,.)det @y =det[By  Az](n+1,.). (5)

Clearly, as remarked in Section 2, A{r 4 1, ), being the reduced incidence matrix,
is nonsingular and furthermore, det A{n + 1, .) = £1. Thus, in view of (3), O 18
nonsingular if and only if [B, A2](r + 1, ) is nonsingular Note that [B), A2] is the
incidence matnx of the graph with vertex set V(T) and edge set (E(T)\ F)U H.
It follows from well-known properties of incidence matrices (see, for example, [18,
Chapter 6]) that [ B, Az]has full column rank if and only if the corresponding graph
is a tree, in which case any minor of [B), A2] of order n — | is 1. Thus @ is
nonsingular if and only if the graph indueed by (E(T) % F) U H is 4 tree, in which
case, det[ By, Az2)(n + 1, .) = %1, and then, from (5), det Q = 1. That completes
the proof. O

According to Lemma 2, 2 is totally unimodular, This also follows from the obser-
vation that € 15 a petwork matrix in the sense of Tutte, see [23, p. 276].

Theorem 3. Consider the principal submatrix L af L formed by the wws and the
columns indexed by F C E(T). Then det L eguals the number of spanning trees aof
T UG U Gy whose edge set, intersected with EXT), equals E(T)\ F.

Proof. Since L = QQ', L is the product of the submatrix of @ formed by its rows
indexed by F, and the transpose of the same submatnix. The resualt follows by a
standard application of the Cauchy-Binet formula, vsing Lemma 2. The argument
parallels the vsual proof of the Matrix Tree theorem using Cauchy-Binet formula
(see, for example, [24]) and is omitted. O

Corollary 4. (i) Any cofactor of L eguals tyt2, where t; denotes the number of span-
ning treexin G, i = 1,2,

(i) Let e = ik and [ = € be edges aof G| and G, respectively, where i, j € X
andk, £ € Xa. Let aj; be the number of spanning forests af G | with wo compone nts
one containing | and the other containing j. Similarly, let fye be the number of span-
ning forests of G2 with two components, one conigining k and the other containing
€. Then det Lie, fle, f) =t Bee + taag;.
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Proof. It may be remarked that the notation ¢ = ik means that § and k are the end-
vertices of the edge e, and furthenmore, ¢ 15 onented from i to &, Assertions (1) and
(11} follow by applying Theorem 3 to the case of principal minors of L of ordern — 1
and n — 2 respectively, O

4. Adistance on T U Gy U G2

We continue to work under the setup introduced in Section 2 and restated at the
beginning of Section 3.

Theorem 5. Let di(-, -) denote the (resistance) distance in G;.i = 1,2, Lete =ik
and [ = jf be edges of T wherei, j € Xy and k, £ € X7. Then

det Lie, fle., f)

detLiele) DNtk . i

Proof. Let Ly and L be the Laplacians of &) and G2 respectively. By definition
(1)
det Ly(f, jli, § : det La(k, £]k, £
Gl Sy gy dstbali G, &l
det Li(iff) det La(klk)
Let #y.t2, a5 and Sy be defined as in Corollary 4. It is well-known [12,10,3] that
det Ly(i]i} = £ det Lalk|k) = 2. det L{{, jli, f) = oy; and det La(k, €]k, £) = fg.
Therefore, using (7)
il D) + dalhe, = T 4 Bt
i L}
_ byt hBe
iz
det Lie, fle. f)
det Lie|e)

where the last equality follows by Corollary 4. Thus (6) is proved. O

We introduce adistance function on the edges of E(T) as follows Ife, f e E(T),
then set
) det Lie, fle, f)
sy BT, )
det Liele)
As in Theorem 5, let d; (-, -) denote the distanee in &5, § = 1, 2. By Theorem 5, if
e=1Ik, f = jE, wherei, f € Xy and k. £ € X, thend(e, f) = d\(f, ) + d2lk, £).
We define the n % n matnx, with its rows and columns indexed by E(T), given
by I = [die, )] o be the (edge) distance marix of T UG U Ga
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If L™ = [EJ-]-[ 15 the Moome-Penmse inverse of L, then L7 18 symmetne and by
Lemma 1,
die, fl=€, + E;.f' - EE':J,. (&)}

Asnotedin Secton 2, L hasrank n — 1, and since 1 is in the null-space of L, L 4 %J’
15 nonsingular. Let X = (L 4 ﬁi}l_l. Then LT =X — %J’ and it follows from (9)
thut

die, f) =Xee + X5 — Doy, (1)

Note that X is a positive definite matrix and thus (10) implies that I} is a classical
distance matnx in the sense of Schoenberg (see [6, Chapter 4]) as well. In particular,
Dy s nonsingular and has exactly one positive eigenvalue.

Our next objective 15 to obtain a formula for the inverse of D and then denve an
expression for det D,

5. Inverse amnd determinant of D

Let X = diag(xyp, ..., Zyy ). the diagonal matax with xp .. .., Xy along the dia-
gonal.

Theorem 6. Let 7 = LX1 + 21. Then

i, A 1
e

i, 11
2 o' Dt ¢

Prool. By (10) we can wrile

D=XJ4+IX-2X. (12)
Then

LD =LXJ-2LX, (13)
since L1 =0. Now (L + 1J)X =T andhence LX = I — 1 JX. Since L + 1 J has
all row sums equal to 1, X has all row sums equal w0 1 as well. It follows from (13)

that

o l - 2
LD:LXJ—E(I——J’X) =LXJT -2+ -1
n n

Thus
s 2
LD4+2I=LXJ+=-J=r1l. 14
n

Note that 't = l’{Lfl + %l}l = 2 and hence from (14), (L D+ 21t = 21, There-
fore L Dr = (1 As remarked earlier, Dis nonsingular, and since v £ 0, then Dr £ 0
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as well. As the null-space of L is one-dimensional, it follows that Dr = el for some

o # 0. Then r'Dr = at’'l = 2o and henee o = TI?T ;
MNow
: + L) LD+ : ‘D
2 Dt ¥ a Dt i
l 1 "D
R 5 k) |
2 Dt 2

where the last equality follows by (14). That completes the proof. [

We remark that, as noted in (14), 71" = LD + 27 and hence 7 = diag{L D +
211 is another expression for T,

Theorem 7. det D = (—1y*~12t 3 Lt

=, whewe t; denotes the number of spanning
"z
treesin Gp, i =1, 2.

Proof. By (11), D! = —.IEL + T.]I.]T . Also, by Corollary 4, any cofactor of L
equals f7. It follows, using the multilinearity of the determinant, that

det D~ — pxr=l i oz
L[ — _E IIDI ZE ?.-] I_||
4

I

2
i n—1 fit 5
2 (_E) Dt JZ,II

Now the result follows since EJ- =2 0O

6. The case when G and (72 are trees

We now consider the case when (7 and (72 are trees. Thus the present setup
can be summaresed as follows, Let T be a tree with |ViT) = n 4+ 1, let X and X
be patite sets of T, [Xj|=m.i=1.2;pp+ pz=n+ 1 and ket T; be a directed
tree on X, f =1, 2. We assume that the edges of T are directed from X to X2, Let
matrices A, B and (2 be defined as before. Recall that the orders of these matnees are
n+1lyxn.(n4+1) ={n—1)andn x (n — 1) respectively. The rows and columns
of @ areindexed by E{T') and E({T] U T3) respectively.

The resistance distance reduces to the classical distance (length of a shortest path)
when the graph is a tree. Thus Dy = [dy (i, f)] and Dy = [da(i, j)] will now be the
usual (classical) distance matnees of T) and T3 respectively. Let D = [d;;] be the
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edge distance matrix of T U T} U T3, as defined in Section 4. The rows and columns
of D are indexed by E(T).Fori,j € E(T), dij 1s simply the sum of the distances
between the endvertices of i, § in X and the endvertices of i, f in X2,

Given the edge @ oand the vertex § oof 4 directed tree, we say that 7 ois directed
towards j if the distance of j from the head of i is less than its distance from the tail
of i. Otherwise we say that i s directed away from j.

In the next result we deseribe the structure of @D Note that the rows and col-
umns of G'D are indexed by E(T) U T3) and E(T) respectively.

Theorem 8. Ler i € E{Ty UTz), j € E(T). Then the (i, j)-entry of Q'D ix 1 if,
eitheri € E{T) and i is directed towards the endvertex of § in X\, or, i € E{T7)
and i is directed away from the endvertex of j in Xao. Otherwise the (i, j)-entry of
QD s —1.

Proof. Let i € E(T{UTa), j € E(T). First suppose i € E{T}),i = wv, j = xv,
where 1, v, x € X, v € X2. Let the unigue (i, v)-path in T be composed of the
edges ury, ..., wy in E{T). From the definition of ¢ it follows that the (i, j)-entry
of ') is given by

L

Z'ffh'dkj = du,j —Auyj + dunj— - —du,j,
k=1

which equals & (n, x) — dy (v, x) due to pairwise cancellations. Now observe that
diin,x)—div, x) equals 1if i is directed towards x and —1 if § is dirccted away
from x. Thus the resull is proved in this case. The case when € E(T2) 1s treated
similady. O

Theorem 9. DLD 4+ 2D ={n — 1)J.

Proof. The rows and columns of DLD are indexed by E(T). Leti. j € E(T). i =
wv, j=wzu,we X, v,z Xa. Since DLD=DQQO'D=(Q0'D)JD, the
(i, jlentry of DLD s given by the imner product of the ith and the jth columns
of @'D.

Let 3 and p2 denote the (w, w)-path in T and the (v, z)-path in T3 respectively,
and let £{y) and £{y2) be their respective lengths, We will make use of the struc-
ture of D developed in Theorem B Recall that the entries of D are +£1. If
k € E(T1), then by Theorem 8, the (i, k)-entry of (@'D) and the (&, j)-entry of
('D both have the same sign unless & 15 on y). Similady, if £ € E(T3). then the
(i k)-entry of (D) and the (k. f)-entry of D both have the same sign unless k
is on y2. Therefore the inner product of the ith and the jth columns of ¢'D isn —
1 — 21 ) + £iy2)). Observe that dii, j) = £y ) + £{y2). Thus the (i, j)-entry of
DLD +20isn— 1 forany i, § and the proof is complete. [
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Corollary 10. Let v be as defined in Thearem 6. Then

(1) Dt =in— 1)1
i) r'Dr=2n—1).

Proofl. By Theorem 9,

D(LD 421y = (n —1)J, (15
while by (14),
LD+2I =1l (16)

The proof of (1) 1s complete in view of (15) and (16). The second part follows from
(simcel'r =2. 0O

The expressions for the nverse and the determinant of D, obtained in Theorems
6 and 7, can be made more precise in the present situation, when the attached graphs
are trees, using Corollary 10, These are given in the next resull. The prool is casy
and is omitted.

Theorem 11

(i) D' = —3L + 5mper.
(il det D = (=112 — 1),

7. Special cases

Two special cases of the general setup considered m Sections 2-5 are of interest.
The first 1% the case when T is a star. Thus suppose [X2| = 1. Then there is a one-
to-one correspondence between the edges of T oand X = V(G ). Thus the edge
distance matrix of T U @ U G2 can indeed be regarded as the resistance matnx
of . Similarly, the Laplacian of T U ) U G2 coincides with the (classical) La-
placian of ). Theorem 3 and Corollary 4 are then seen as the classical Matnx
Tree theorem and the Matrix Tree theorem for principal minors of the Laplacian, see
[10,3.4,12,19]. For the special case of T being a star, Theorem 6 has been proved in
[2]. and Theorem 7 in [26]. Both these results in turn, are extensions of carier work
of Graham and Pollack [13] and Graham and Lovisz [14] on the determinant and the
inverse of the distance matrix of a tree.

The second special case of interest arises when G and Gy are paths. We first
introduce some notation. Consider 4 ransportation problem with a set of sources 5,
with %] = p, and a set of destinations, 29, with |2] = g. To any feasible solution
of the problem we may associae a bipartite graph. The partite sets of the graph
are 5 and 270 We assume that the elements of % and 29 are numbered 1, ..., P
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Tahle 1
A transportation tableau
THEI
NEE |
5|6 |
and 1,..., g mespectively. If i € % and § € %4, then there 15 an edge from i o §if

and only if a positive guantity is shipped from source § to destination 7. 1t is well-
known (see, for example, [15]) that such a biparite graph is a tee if and only if
the comesponding feasible solution is a basic feasible solution. From now onwards
wi assume that T s a tree corresponding o a basic feasible solution with % and
%7 as its partite sets. There is a natural distance on the edges of 7. If ¢ = ik and
F=jf are edges of T with i, j € % and k. £ € %7, then the distance between e
and fis [i — j| 4+ |k — £|. This distance is also known as the Manhattan distance
or the taxicab distance. The {(p+g — 1) = {(p +g — 1) distance matrix afforded by
this distance has been considered in the hiterature in the context of some problems in
numencal analysis [21.22]. The determinant of the matnix was obtained in [5].

If P and Po denote paths with vertex sets % and 2 espectively then TU P U P
15 a tree with attached graphs, The edge distance matnx of this tee as imtmoduced in
Section 4 1s the same as the distance matnx considered in the previous pamgraph.
Thus we can write a formula for the inverse and the determinant of the edge distance
matrix using Theorem 11,

We conclude with an example. Consider a transportation problem with three
sources and four destinations. A tableau corresponding to a basic feasible solution
and the associated tree with attached graphs (which are paths) are shown in Table 1
and Fig. 1 respectively.

The matnees A, B, @, D for T U Py U Ps, as intmoduced in Sections 2 and 4, are
given by

Big.1. TUP UM
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1 1 0O 0 0 07
0 0 1 1 0 0
0O 0 0 0 1 1
A=|-1 0 0 0 0 0
0O 0 0 0 =1 0
0 =1 =1 ‘0 0 ==I
0O 0 0 -1 0 0

1 0O 0 0 07
-1 ¥ 46 0 b
0O -1 0 0 0
B=10 0 1 0 0O
0O 0 -1 1 0
0 @ 0 =1 1
0O o 0 0 -1

fo o -1 0 07 (o0 2 3 4 3 4

1 0 1 0 0 % off Y g g 0

wf 7§ 0o 0 -l 3 10 1 2 1
@=1y 0o o 0 1 b=14 2 1 0 3 2
0 0 1. =3 10 1 3 23 0 A

0 -1 -1 1 0 | 4 2 1 2 1 0f

Weeompute t=[1 0 -1 1 0 1],7'Dr =10,detD = 80. The for-
mula for D~! asserted in Theorem 11 is easily verified, though we omilt the details.
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