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Thresholding in Edge Detection:
A Statistical Approach

Rishi R. Rakesh, Probal Chaudhuri, and C. A. Murthy

Abstract—Many edge detectors are available in image pro-
cessing literature where the choices of input parameters are to
be made by the user. Most of the time, such choices are made
on an ad-hoc basis. In this article, an edge detector is proposed
where thresholding is performed using statistical principles. Local
standardization of thresholds for each individual pixel (local
thresholding), which depends upon the statistical variability of the
gradient vector at that pixel, is done. Such a standardized statistic
based on the gradient vector at each pixel is used to determine
the eligibility of the pixel to be an edge pixel. The results obtained
from the proposed method are found to be comparable to those
from many well-known edge detectors. However, the values of
the input parameters providing the appreciable results in the
proposed detector are found to be more stable than other edge
detectors and possess statistical interpretation.

Index Terms—Fixed and adaptive choices for parameters,
local standardization for thresholding, nonmaxima suppression,
smoothing techniques, thresholding with hysteresis.

I. INTRODUCTION

AN EDGE IS characterized by an abrupt change in intensity
indicating the boundary between two regions in an image.

It is a local property of an individual pixel and is calculated from
the image function in a neighborhood of the pixel. Edge detec-
tion is a fundamental operation in computer vision and image
processing. It concerns the detection of significant variations of
a gray level image. The output of this operation is mainly used
in higher-level visual processing like three-dimensional (3-D)
reconstruction, stereo motion analysis, recognition, scene seg-
mentation, image compression, etc. Hence, it is important for a
detector to be efficient and reliable.

Edge detection has been an active research area for more than
35 years [31]. Several reviews of work on edge-detection are
available in literature [1], [13], [28], [38], [40]. Surface fitting
approach for edge detection is adopted by several authors [26],
[18], [34], [8]. Bergholm’s [2] edge detector applies a concept
of edge focusing to find significant edges. Detectors based on
some optimality criteria are developed in [4], [32], and [33]. Use
of statistical procedures are illustrated in [14], [11], and [30].
Other approaches on edge detection include the use of genetic
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algorithms [3], [5], neural networks [36], the Bayesian approach
[21], and residual analysis-based techniques [9], [35]. Some au-
thors have tried to study effect of noise in images on the perfor-
mance of edge detectors [39].

In spite of the aforementioned work, the need for general pur-
pose edge detector is still felt. Edge detectors based on zero
crossings of second order derivatives are generally simple but
suffer from phantom edges [12]. Moreover, the use of higher
order derivatives makes the detector susceptible to high fre-
quency noise and also results in poorer localization of edges.
Detectors based on optimality criteria are often derived in con-
tinuous one dimensional domain and are extended to two di-
mensional domains in a subjective way that lacks firm logical
justification [4], [23], [37]. Also, a problem very commonly
faced by detectors is the choice of threshold values, which are
often chosen on heuristic basis. Prewitt’s [17], Roberts’ [17],
and Sobel’s [17] operators and zero-crossing [25] edge detectors
use thresholds which are generally selected without any precise
objective guideline. In the Matlab version of Canny’s edge de-
tector—the most popular among all edge detectors—the default
value of upper threshold is suggested to be 75th percentile of
the gradient strength.

Several authors [19], [20] have done extensive study on the
performance of different edge detection algorithms by applying
them on large number of real life images.1 These authors have
observed that the performance of the well-known edge detec-
tors, like Canny, Nalwa Binford [26], [19], [20], Rothwell [19],
[20], Bergholm [2], [19], [20], Iverson [22], [19], [20], etc., de-
pend critically on the choice of the input parameters. They have
also reported striking improvement of the performance of some
of the edge detectors, especially Canny’s, when the choice of
the input parameters is done adaptively, instead of using some
fixed default values.

Whether a pixel is an edge pixel or not depends upon the gray
values of that pixel and its surrounding pixels. Smoothing is
necessary to remove the noise when it is present in the image
as well as to estimate the image surface in analogue domain.
Most of the well-known edge detectors, e.g., Canny’s (which
uses a Gaussian filter), use some smoothing filter for this pur-
pose. Further, the detectors based on gradient need a smooth
estimate of the image surface, and smoothing techniques have
been used in the literature for this [25], [4]. After estimating the
gradient vector, one should not use the magnitudes of the deriva-
tives alone for determining the eligibility of a pixel to be an edge
pixel, though it has been done in that way with many edge de-
tectors. The variations in the neighborhood of a pixel need to be

1http://marathon.csee.usf.edu/edge/edge_detection.html
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incorporated in this analysis. Several authors [24] have pointed
out this issue. Threshold values from image to image may vary
since the variations in the gray values in the neighborhoods of
pixels vary from image to image. In order to automatically find a
threshold, standardization of gradient magnitudes is to be done
relative to the surrounding pixels’ gradient magnitudes, and,
then, it is to be tested whether the obtained value is large or
not. A natural way of doing such standardization in any proce-
dure is to use appropriate statistical principles. A way of accom-
plishing the above objective is given in this paper. Our method of
standardizing the gradient strength at each pixel locally before
thresholding results in the removal of the ambiguity and inap-
propriateness in choosing global threshold values, and thereby
produces reliable, robust, and smooth edges. Local image sta-
tistics have been used earlier by Chow and Kaneko [10] to get
boundaries in images, and their algorithm was modified by Peli
and Lahav [27] for the purpose of detecting bright objects in
darker backgrounds.

II. DETAILS OF THE METHODOLOGY

In this section, we first estimate the image surface by a bi-
variate smoother. The specific smoother used is a bivariate ver-
sion of the well-known Priestly–Chao [29] kernel smoother.
Priestly–Chao kernel smoother is used for fitting curves when
the independent variable is equally spaced as in time-series anal-
ysis. Since, in image data, the pixels are equally spaced rowwise
and columnwise, this particular smoother is used here. More-
over, its use facilitates easy computation of partial derivatives of
the fitted surface in horizontal and vertical directions and con-
venient estimation of their statistical variations.

In the proposed procedure, the gradient vector at each pixel
of the fitted surface is calculated. The variation in the gradient
vector at each pixel position is estimated using its variance
covariance matrix based on standard statistical formulae. This
variance covariance matrix is used to standardize the gradient
vector at each pixel. This leads to a statistic, which is used to
extract regions in the image where the gradient magnitudes
are significantly large. Edge pixels are extracted from this
region using algorithms similar to nonmaxima suppression and
thresholding with hysteresis [4].

A. Formulae and Mathematical Details

Consider a digital gray level image of size . Let
be the gray level value at pixel of this image. Then, the
Priestly–Chao kernel smoother with smoothing parameter
at pixel is given by

(1)
where is some appropriate kernel function. Note that for
any given value of , the function is a representation of
the image surface in the analogue domain at a given scale of
smoothing [6], [7], [16]. Let us denote as
and by . Then, the partial derivatives of

in , directions, denoted as (or simply )
and (or ), respectively are calculated as follows:

(2)

and

(3)

where is the derivative of .
Note that is the gradient vector of the

smooth image function at the pixel position . The
estimate of data variability in the image is given by

(4)

For every pixel location , the variance-covariance matrix
of is given by , where

(5)

Here, the expressions for , , and can
easily be calculated from (2), (3), and (4), and they are given as
follows:

(6)

(7)

and

(8)

Define for every pixel location the statistic as

(9)

which, after simplification, becomes

(10)
denotes the standardized gradient magnitude at the

pixel . For each pixel, is calculated and if its value
is found to be sufficiently large, pixel is taken to be an
edge pixel.

It may be noted that the output obtained after implementing
the above procedure may contain thick edges. These thick edges
are explained by noticing the fact that the procedure has ex-
tracted a region around an edge pixel and has not exactly de-
tected an edge pixel as shown in Fig. 1.

As already mentioned, an edge pixel is that pixel for which the
rate of change of intensity is maximum. So, a way of detecting
an edge pixel from the region extracted is to use nonmaxima
suppression algorithm. In order to obtain smooth and continuous
edges, we suggest the use of two threshold values ( and ,

, say) for the statistic and implementing the idea of



RAKESH et al.: THRESHOLDING IN EDGE DETECTION 929

Fig. 1. Region containing edge point as extracted by the procedure.

thresholding with hysteresis. The exact algorithm is now given
in the next section.

III. ALGORITHM FOR THE PROPOSED METHODOLOGY

An algorithm for the proposed methodology is described as
follows.

1) Input the gray level image of size
. Also, input the two threshold values

of and and the smoothing parameter
.
2) Calculate the two matrices of size

, and , as in (2) and
(3). Here, and denote the two
partial derivatives in the directions of
and axes of the smoothed image function

at the pixel position , ,
.

3) Define matrices and , each of
size , with all elements equal to
zero.
4) For ,
for ,
apply nonmaxima suppression algorithm

using and . If the pixel
is not suppressed through nonmaxima sup-
pression, then
calculate the value of as in (10) for

the pixel .
If then , else if
then .

5) For ,
for ,
if then .

The subprogram declares a pixel with gra-
dient magnitude lying between upper and lower thresholds as
edge pixel by checking its connectivity with already declared
edge pixels. This forms a subpart of thresholding with hysteresis
module and results in a smooth and connected edge map. The
main steps of the algorithm for this is given as follows.

Fig. 2. Gradient magnitude at pixelA is checked for being maxima in a 3� 3
neighborhood during nonmaxima suppression phase. The arrow mark denotes
the direction perpendicular to the edge direction.

If , then
1) .
2) For ,
for ,
if and does not belong

to the set of considered pixels for
and , then .

Nonmaxima Suppression:
1) Interpolate the magnitude of gradients
at hypothetical pixels that lie along the
direction perpendicular to the edge direc-
tion at pixel in a 3 3 neighborhood
around it. The gradient vector at is
obtained using and as in (2)
and (3).
2) If the magnitude of the gradient at

is not maximum among the interpolated
magnitudes, then it is not an edge point.

In Fig. 2, the value at is interpolated between the values at
and and the value at between those at and .

IV. SOME EDGE MAPS

In all the experiments conducted for this paper, in this sec-
tion and for the next section, too, we have used the Gaussian
kernel for smoothing. This
section shows the edge maps obtained after implementing the
proposed algorithm on Lena image (Fig. 4) and an artificially
created image of smoothed concentric circles. The three regions
of the concentric circles are filled with three different gray level
values and is smoothed five times by applying mean filter over
a window of size 3 3 for each pixel.

Fig. 5 shows edges detected from Lena image (Fig. 4) and
superimposition of this edge map on the actual image. It can
be seen from the Fig. 5(a) that many of the edges visible to the
eye are detected by our algorithm and Fig. 5(b) suggests that the
edges detected are correctly localized. It is to be noted that the
values of the parameters are taken to be same for both the images
under consideration. It is seen from Fig. 6 that the algorithm is
able to provide edges in every direction. In the next section, the
choice of the values of the parameters is discussed extensively
with the help of several examples and the results are compared
with the most widely used edge detection method of Canny.
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Fig. 3. Flow chart of the algorithm.

Fig. 4. A 256� 256 Lena image.

V. COMPARATIVE EVALUATION OF THE

PROPOSED EDGE DETECTOR

We begin the evaluation by comparing the output of our algo-
rithm with those obtained using Canny’s algorithm 2 for three
images: X-ray image of hand3 (Fig. 7), dome image4 , and Lena
image corrupted with Gaussian noise. The reason for choosing
Canny’s methodology for comparison is that it is considered as

2Canny’s algorithm is taken from Matlab version 5.2.0.3084; package avail-
able on PCWIN.

3The hand image is downloaded from the site www.prip.tuwien.ac.at/
Teaching/SS/GdBA/LU/Images, Fig. hand.pgm.

4The dome image is downloaded from site www.cim.mcgill.ca/ wangfang/
canny/node25.html, fig.(4.1).

Fig. 5. (a) Edge detected using the proposed method from Lena image (Fig. 4)
for h = 1, S = 5, and S = 15. (b) Edge map (a) superimposed on the Lena
image (Fig. 4).

Fig. 6. (a) A 256� 256 image of smoothed concentric circles. (b) Edge
detected from circle image (a) using the proposed method for h = 1, S = 5,
and S = 15.
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Fig. 7. X-ray image of hand.

a standard method in edge detection and its usage is reinforced
after empirical evaluation done by Doughtry and Bowyer [15].
Heath et al. [19], [20] have demonstrated that, while the per-
formance of Canny’s algorithm often critically depends on the
choices of the input parameters, the quality of the edge map pro-
duced by this algorithm, run with appropriate adaptive choices
of input parameters, is extremely good for a wide range of real
life images.

The output of the proposed and Canny’s edge detectors for
the hand image (Fig. 7) is shown in Fig. 8. The values of input
parameters for the new algorithm are: level of smoothing ,
lower critical point and higher critical point

and for Canny’s algorithm, the values of the input param-
eters, chosen to get a visibly very good result, are ,

and .
The results obtained from the proposed algorithm and

Canny’s algorithm for different values of parameters are now
compared for the dome image (Fig. 9). Edge maps of the
dome image extracted by the proposed algorithm and Canny’s
algorithm at the same values of the parameters as used in hand
image (Figs. 7 and 8) are shown in Fig. 10. It is to be noted that
the output of Canny’s algorithm produced many spurious edges
[Fig. 10(b)] when parameter values used were the same as
those used in the hand image. On the other hand, our procedure
with the same set of parameter values, used in the case of hand
image, produced a much cleaner edge map [Fig. 10(a)] free
from many such spurious edges.

It may be noted that a visibly nicer edge map is obtained for
the dome image by Canny’s algorithm with appropriate choices
of parameters, as shown in Fig. 11(b). When some small
changes are made in the values of input parameters for our
procedure, it also produced slightly better results [Fig. 11(a)]
than the earlier edge map of Fig. 10(b).

For the case of Lena image (Fig. 4), none of the sets of param-
eter values at which best results were obtained using Canny’s
algorithm for previous images (Figs. 7 and 9) could produce
visibly clean edge maps—the edge maps produced were all full
of many spurious edges. This is evident from Fig. 12(a) and (b).
However, the new algorithm remained consistent by providing

Fig. 8. (a) Edge detected from hand image (Fig. 7) using the new method for
h = 1, S = 5, and S = 15. (b) Edge detected from the hand image (Fig. 7)
by Canny’s method for � = 1, lower thresh = 0:03, and upper thresh =

0:04.

Fig. 9. A 350� 250 image of dome.

visibly clean results at default values , , and
for the input parameters (Fig. 5).

We now try our algorithm on a noisy image to judge the extent
of stability of its input parameter values. For this purpose, the
Lena image added with Gaussian noise with standard deviation
20 [Fig. 13(a)] is considered. The output of the proposed algo-
rithm at the default set of values for the parameters is shown in
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Fig. 10. (a) Edge detected from dome image (Fig. 9) using the new method for
h = 1, S = 5, and S = 15. (b) Edge detected from the dome image (Fig. 9)
by Canny’s method for � = 1, lower thresh = 0:03, and upper thresh =

0:04.

Fig. 11. (a) Edge detected from dome image (Fig. 9) using the new method
for h = 0:75, S = 2, and S = 12. (b) Edge detected from the dome
image (Fig. 9) by Canny’s method for � = 0:75, lower thresh = 0:0438,
and upper thresh = 0:1094.

Fig. 13(b). It is clear from the figure that the proposed method
with default values produced an edge map containing many vis-

Fig. 12. Edges are detected from Lena image (Fig. 4) using Canny’s
method. Edge map (a) is obtained by taking � = 1, lower thresh = 0:03,
and upper thresh = 0:04, which was used to get visibly good result for
hand image [Fig. 8(b)]. Edge map (b) is obtained by taking � = 0:75,
lower thresh = 0:0438, and upper thresh = 0:1094, which was used to
get a visibly good result for dome image [Fig. 11(b)]. Edge map (c) is a very
good result obtained for the parameter values � = 1, lower thresh = 0:0563,
and upper thresh = 0:1406.

ibly important edges even for this noisy image, though the edge
positions are slightly distorted. Further, there are only a few spu-
rious edges in this edge map. However, at this juncture, we do
not intend to carry out a detailed study on the effect of noise on
the values of the input parameters of our method.

It may be noted that at each pixel location , the proposed
method involves calculation of statistic which itself requires
computation of variance-covariance matrix and its inverse; how-
ever, the matrix is only of size 2 2. The other calculations
like computation of gradient vector and those involved in non-
maxima suppression and thresholding with hysteresis in Canny
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Fig. 13. (a) Lena image added with Gaussian noise with standard deviation
20. (b) Edge detected from the corrupted Lena image (a) by the new method
using default parameter values h = 1, S = 5, and S = 15.

Fig. 14. Edges obtained on the shopping_cart image with the proposed method
using default parameter values.

and the proposed algorithms are of similar computational com-
plexities. It is observed that the computational time taken by the
proposed method is around four times more than that taken by
Canny’s method. Thus the robustness of the proposed algorithm
is achieved at the cost of computational complexity.

Fig. 15. Edges obtained on (a) picnic_basket and (b) coffee_maker images
with the proposed method using default parameter values.

A. Detailed Comparison With Some Standard Algorithms

In order to judge the performance of the proposed algo-
rithm vis a vis the other well-known algorithms, comparisons
are made on the same set of images with different choices
of input parameters. For this purpose, six images, namely
coffee_maker, trash_can, shopping_cart, banana, traffic_cone
and picnic_basket, are obtained from an internet website at the
University of South Florida. These are the images which have
been primarily discussed in great detail in [19], [20]. On the
same website, the best results obtained using different standard
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Fig. 16. Edges obtained on traffic_cone image with the proposed method using
default parameter values.

algorithms, namely Canny, Nalwa Binford, Iverson, Bergholm,
and Rothwell edge detectors, by changing the parameter values
are available for these images. These are described as best
adaptive results. The results obtained using the best fixed set
of parameters for the same five methods are available for the
same images. Obviously, the best adaptive results are at least
as good as, if not better than, the best fixed results. We shall
discuss the performance of our proposed algorithm for each
image for a default set of input parameters , ,
and . We have arrived at these parameter values after
extensive numerical experiments. Since the original images
as well as the results of the well-known standard algorithms
applied to them are available in the same website, we are not
reproducing them here in order to save space.

With fixed parameters, the other algorithms except that
of Canny’s produced too many spurious edges for the shop-
ping_cart image (Fig. 14). These spurious edges get eliminated
with the adaptive choices for parameters for these methods. Our
method with the default choice of parameter values produced
good edge map that is comparable with that obtained by
Canny’s method. For the three images, namely, picnic_basket,
coffee_maker, traffic_cone (Figs. 15 and 16), the proposed
method produces edge maps which are visibly at least as
good as, if not better than, those produced by other methods
with adaptive choice of parameters. On the other hand, for
the banana and trash_can images, many important edges are
missing in the edge maps produced by all the above-mentioned
algorithms, including our method (Fig. 17), with fixed choices
of parameter values. Those edges are regained with the adaptive
choices of parameter values for other algorithms, and for our

Fig. 17. Edges obtained on (a) banana and (b) trash_can images with the
proposed method using default parameter values.

algorithm, these edges are regained with parameter values
, , and (Fig. 18).

Though, in the case of trash_can and banana images, our
method with default parameter values produced edge maps
missing some of the important edges, the overall performance
of the method with the default parameter values was at least
as good as, if not better than, those obtained by best fixed
parameter values for the other algorithms stated above.

VI. CONCLUDING REMARKS AND DISCUSSION

The results of the proposed algorithm have been compared
with various methods in the preceding section. The comparison
is performed on 1) real life images without noise and 2) a real
life image with noise. It is to be noted that on all the real life im-
ages considered, the proposed algorithm with a fixed set of input
parameters produced fairly good results. This suggests that the
proposed methodology is robust over the choice of input param-
eters (especially the threshold values). This is of great advantage
because most of the real life images are of complex nature, and
we are generally ignorant about the edges present. Fiddling with
the input parameters will not serve the purpose because we may
never know whether the edges gained or lost are spurious or
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Fig. 18. Edges obtained on (a) banana and (b) trash_can images with the
proposed method using h = 1:5, S = 2, and S = 8.

the genuine ones. For this reason, one needs a reliable detector,
which, for the same set of input parameter values, would pro-
duce appreciable results.

Regarding defined in (10) of Section II, it may be
noted that one can use distribution with two degrees of
freedom as an approximate distribution for it. This approxima-
tion is justified if we assume that the s are a set of random
variables having some very general distributions. Note that,
since is formed using weighted sums of
the s, applying central limit theorem to it will be in order.
Thus, we have a Gaussian approximation for the distribution of

, and, as a consequence , approximation
for follows. Our threshold values can be viewed as
critical points , of an approximate distribution with
two degrees of freedom at two specified levels of significance.
Thus, the procedure also associates some confidence levels to
the edges extracted. Further, edge being a local property of a
pixel, the local standardization used in forming the statistic
is natural and meaningful in this context.

The statistical nature of the analysis conducted makes the
choice of input parameters robust for noisy images, too. The
methodology provides a way to estimate the variability in the
image data locally at each pixel. Then, it is used to get locally

standardized gradient magnitudes. This yields our statistic ,
which can efficiently handle random noise present in an image.
This explains the reason why the proposed algorithm produced
appreciable results for the two images Lena and noisy Lena for
the same set of values for input parameters.

It is evident from our extensive numerical investigations in-
volving a variety of real life images that the values ,

are generally producing results containing almost all
important edges at the right locations of the images. A central

distribution with two degrees of freedom is actually an ex-
ponential distribution with . and
correspond to approximately the upper 92nd percentile and the
upper 99.95th percentile, respectively, of that distribution. Here,
the 92nd percentile possibly implies that normally more than
8%–10% of the pixels in a small neighborhood in the image
cannot be appreciated as edge pixels by our vision system. On
the other hand, if the strength of the locally standardized gra-
dient of a pixel is more than the 99.95th percentile, one would
expect our vision system to surely detect it to be an edge pixel.
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