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Ahbstract

Two families of means (called Heinz means and Heron means) that interpolate between the
geometric and the arithmetic mean are considered. Comparison inequalities between them are
established. Operator versions of these inequalities are obtained. Failure of such extensions in
some cases is illustrated by asimple example.
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1. Introduction

The arthmetic—geometric mean inequality
i+ b
W ab = - (1)

for positive numbers a, b, has been generalised, extended and sirengthened in various
directions. A matrix version proved in [2] says that if A, B and X aren x n matrices
with A and B positive definite, then for every unitarily invadant norm ||| - |||

1
nMA2x e < SIIAX + X BI|. (2)

" Results presented in this paper formed a part of the author's talk at the International Linear Algehr
Society Conference held at Coimbra in July, 2004, The conference was dedicated to Richard Brualdi.
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There are several (parameterised families of) means that interpolate between the
geometric and the arthmetic mean. One such family, that we call the Heinz means
are defined as

a l—L'bu o ﬂubl—v

Hyla.b) = e (3

0= v = 1. For v =0, 1 this is equal to the arithmetic mean, and for v = 1/2 1o the
geometric mean. It is easy o see that as a function of v, H,(a, b) is convex and attains
its minimum at v = 172, Thus
d +b
sab =< Hyla, b) <
The matrix version pnwuj in [2] says that if A, B, X are matrdces with A, B =0
(ie. A, B are positive definite), then for every unitarily invariant norm the function
g = |1A"XB"™" + A7 X BY|]|
is convex on [0, 1] and attains its minimum at v = 1,/2. Thus we have for 0 < v < 1
20||AY2XBY2)|| < |I|A'- X B* + AY X B'V|| < |||AX + X B]||. (5)
iThe special case of (3) in which the norm is the operator bound nom is an old
inequality of Heinz [5], who used it to derive several inequalities in the perturbation
theory of operators. For this norm the inequality (2) was proved by Melntosh [16]
who derived from it the Heinz inequality. )
The inequality (2) aroused much interest and several altemate proofs were given.

0gvgl (4)

Of these the one germane 1o our discussion occurs in the papers of Horn [ 10] and
Mathias [ 15]. { Another interesting proof was given by Kittaneh [12].)

A familiar trick with 2 x 2 block matrices [1, p. 264 shows that inequalities like
(2) and (5) follow from their special case with A = B. In this case we may assume
{because of unitary invariance) that A is diagonal, A = diagid,. ..., Ayp). Then the
inequality (2) asserts that the norm of the matrix [\;’T}_j_ru] 15 not bigger than hall
the norm of the matrix [(&; + Ajdxil.

This can be interpreted in another way. Let X o ¥ be the entrywise product of two
matrces X and ¥ (also called the Schur product or the Hadamard product, this is the
matrix with entries xj; vi;). Then the inequality (2) says that for all positive numbers
A — Ay and for all X

|||['“M“‘)”} ||| < i (6)
L& +A; 1 |]]

Finding the “Schur multiplier norm™ of a matrix is, in general, a hard problem.
However, one special case iseasy. If ¥ = 0, then for all X
Y o X|Il < max y; [[1X]Il. (7
[l

See Theorems 5518 and 55,19 in [11]. It is not very difficult to see that the matrix

_ [ (8)
it A

is positive definite, and thus the inequality (6) follows from (7).
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It 15 natural to ask whether stronger inequalities Iike (5) might be proved using this
argument. This was a part of the motivation for our swudy [4]. The matrces whose
positive definiteness is now o be established are more complicated than (8). For
example, o prove the second mequality in (5) one needs 10 show that the matrix

l—vqp pol—p
¥ = )L‘.. )'.-"' +)L." )L" . (9)
A+ A

is positive definite for 0 < v = 1. The mainidea in [4] was to show that such matrices
are congruent 1o others whose positivity follows from the positive definiteness of
certain finctions. A well-developed theory exists for the latter. This technigue tumed
oul to be very useful and was applied to many examples in [4].

Independently, and a litle before the work in [4] was completed, Kosaki studied
similar questions in [ 13] and developed a general technique to solve them. The scope
of these methods has been explored in all kinds of directions in the subsequent work
by Hial and Kosaki [7.8] and expounded by them in a very mteresting monograph
[9].

One ofthe questions that arses from this work isthe following. Does every inequal-
ity between means of positive numbers lead to a corresponding ineguality for positive
matnces”? Mo precisely, let Mia, b) be a mean on positive numbers (see Secton 2
for a precise definition). If A is a positive definite matrix with eigenvalues by, ..., Ans
let M{A. A) be the matrix whose i f entry 1s M3 A7) Let M and L be two means
such that

Mia, b) = Lia, b) forall a, b. (100}
Then must we have for all positive matrices A and for all X
[IM{A, Ao X||| = |||L{A, A)o X (11}

for every unitarly invariant norm?

If the means M and L satisfy the condition (10) we say that M < L, and if they
satisfy (11 we say that M < L. Ourquestionis whether M = L implies that M < L.
There are many examples in [4,7,8,13] for which this is the case. However, Hiai and
Kosaki [8] show that this need not always be roe.

In this paperwe study a simple class of means not included in the studies mentioned
above. These means, that we call Hemn means, are defined as

b
E e e e (12)

2

0 = o = 1. This family is the linear interpolant between the geometric and the arith-
metic mean. Perhaps because of its naivete, it has received less attention than other
families of interpolating means. In our context it reveals some interesting phenomena.
Clearly, Fo < Fg whenever o < . However, we will see thal Fy < Fg only when
F 2= 12 This gives a simpler, and more dmmate, example than the one in [8]. We
prove other inequalities for this family, including comparisons with the Heinz means.
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2. Heron means

A mean M {a, b) isa positive continuous function on {0, o) x (0, oc) that satisfies
the following conditions:

(i) Mia, b) = Mib, a),

(1) Mioa.ab) =aMa, b)foralla = 0,
() Mia. ) 1s monotone increasing ina and b,
(iv) mmia. &) < Mia, b < maxia, b).

The geometric mean Gia, b), the arithmetic mean A(a, b), the Heinz means
Hyia, by and the Heron means Fyia, b) defined by (3) and (12), respectively, all
are examples of means.

The quantity

a—+ b+ JEA.’;

Fappla. b)) = s (13)

is usually called the Heronian mean, and occurs in the formula for the volume of a
frustum (a body obtained by slicing a pyramid, or a cone, by a plane parallel to its
base). I the frustum has beight A and its base and wp have areas a and b, respectively,
then its volume is

v:%h(a+b+vﬁ).

The quantity
a+b+2ab al’? 4 pl2y?
Frpaa, b) = = ( (14}
4 2
is one of the family of power means, or the binomial means defined as
a® + by /e
Byia.b) = s * . —00 R o £ oo (15)

Another mean of interest in geometry, statistics, and thermodynamics is the foga-
rithmic mean defined as

Lia. b) Al gy (16)
s —_— e I,
a loga —logh 0 “

The inequality
Gla, b = Lia, b)) = Ala, ) (17}

15 well-known.
The next few stalements give more comparsons between some of the means.
For() < v = 1 ket

a(v) =1 —4(v—17). (18)
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This is a convex function, its minimum value 15 o{1,/2) = 0, and its maximum value
i5a(l) =a(l) = 1.
Lemma 1. The Heinz and the Heron means satisfv the inequality
Hyla.b) £ Fypnla,b). (149
Jorall = v = 1.

Proof. The inequality (19), in expanded form, says

ﬂl—l'bl' +a ubl—v
2

ﬂ+b

< 4(v —Ha2p? 4 ( — At — v })

Puta = ¢* b =e¥. A small calculation reduces this ineguality 1o

msh({l—h}(?)) £4{v—vz}l+(l—4{v—v })Lmh( _1’)_

Now put § = 1 — 2v. The inequality to be proved is
cosh fix < (1 — ) + g7 coshx (20)
forall x and —1 = A = 1. The series expansion for cosh v reduces this o
piet goyb b 16
R e B D i
| P 4! &l
and this is plainly true. O
Whenv = OQorl, thena(v) = 1 and the two sides of ( 19) are equal to the arithme tic
mean of a and b, When v = 12, then o (v) = 0 and the two sides of (19) are equal
to the geometric mean of @ and b.

There is no inequality reverse 1o (19) in the following sense: we cannot have (for
all positive numbers a and &)

Fola.b) = Ha,b)

for any pairof indices 0 = o <= 1 and 0 = v = 1/2. Arguing as above the validity of
this inequality can be shown o be equivalent to that of the inequality

(1l —a) +acoshx = cosh{l — 2v)x.

Another step shows this 1o be equivalent Lo

o x2m L 2m

For () < v < 1/2, the coefficients {1 — 2v)™ decrease to 0. So this last inequality is
violated for some x, unless o = (.
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Lemma 2. The ineguality
Lla,. by = F la.b) (21)
is true for all a and b if and only if o = 1/3.
Proof. Again, asubstitution a = e*, b = ¢* shows that the inequality (21) is equiv-

alent 1o

sinh x

(]l —aw) 4+ wcoshx

and thence o

X R

N + = + (— BE I = g )
This is true for all x ifand only ife = 1/3. O

3. Norm inequalities

Let M oand L be two means on (0, 2¢) = (0, o). In Section 1 we observed that if
for all r and for all positive numbers &, .. ., Ay the matrices

_ MU‘-L-‘"‘-_,I'} ('})}
a LU‘-J’~)'-_,|'} o

are positive definite, then the inequality (11} is true for all positive matrices A and all
X, and thus M < L. Hial and Kosaki [8] have observed that the positivity of matrices
(22) is also g necessary condition for M < L. To see this observe that the matax ¥
in (22} is a Hermitian matrix with all its diagonal entries equal to 1. Let X be the
matrix all whose entries are 1. Then the trace nomm || X} = n. (By definition || X||
is the sum of all singular values of X.) For this X, the inequality (11} tells us that
[1¥]l1 = n. Since tr ¥ = n, this is possible only if all eigenvalues of ¥ are positive.
In other words, ¥ 1s positive.

In all the statements below, A, B and X are matrices of any order n with A and B
positive definite and ||| - ]| is any unitadly mvariant norm.

Theorem 3. LetD) <o < A < 1L IFH = 1/2, the inequality
( AX+XB ) I

AX+XE)

[11
|||{1—am”1x3“1+
fo-memeap(2g)

ix always true. This vestriction on fi s necessary.
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Prool. The assertion of the theorem is that F, < Fg under the given conditions. This
is equivalent to the statement that for all n and positive numbers by, ..., Aoy the matrix
¥ with entries
FaU‘-L)'-_,I'}'
vij =
Faldi, A;)
is positive definite. Put
2(1 — 2(1 —
T SO
o f
Note that w < f if and only if @ = b, A small caleulation shows that the statement Lo
be proved is equivalent to saying that for all & = b the matrix V' with entries

i (24)

a Tt + (i +4))
_—
YT b Ak 4 (k4 A

(a —h) W Aidj

B b.,..-"ll)'-u')'-_,l' + U‘-I + J"'-_,l'::'

is positive definite.
Making the substitution 4; = e, 4 ; = ¢*/ and arguing as in [4] one sees that such
matrices ¥V oare positive definite if and only if the function
i) s B g ) (25)
B4 2 coshx
is a positive definite function whenever a = b,

Cleady f is positive definite whenever g is. The converse is also troe. If § is
positive definite, then by Bochner’s Theorem there exists a finite positive measure
fooon the real ling such that f = g, the Fourier transform of p. (See [6] or [17].)
Separate out the part of g concentrated at {); ie., write yu as

[t = [ty +riy,
where dg 18 the Dirae measure at 0, r 15 a nonnegative real number and g 15 a positive
measure with zero mass at 0.

Since g = f — 1, we have g = v, where

v=p —dy = p + (r — Ddp.
Since g is arapidly decreasing O™ function, its Fourier transfornm measure v cannol
have a positive mass at 0. So v isequal to the positive measure (1. Henee, by Bochner's
Theorem, g is positive definite.

Thus the inequality (23) is always true if and only if the function g in (25) is
positive definite. This function has been studied in [4, p. 225], and from the analysis
there we conclude that g is positive definite if and only if b < 2. Using (24) this
condition ranslatesto # = 172, This proves the theorem. [
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In a recent paper [3] a proof simpler than the ones known before [4,14] is given

for the fact that the function g occurring in the proof above is positive definite if
—2<bh=s2

Corollary 4. §f' 1/2 < o = 1, then

1
f A'xB dr
[0 I

This restriction on o i5 RECESSATY.

2

5 AX + XB
< |||{1 —w)A'PXB'Y? 4o (—)|
I |

[ -
I

Proof. Hiaiand Kosaki [8, p. 924 have proved (26) fore = 1,/2. The inequality (23)
then shows that (26) is true for 1/2 < o < 1.
Further, we know that

[I|AX + X Bj||. (27)

It | —

Ul nl M
NAYV2x B < |||f A'XB'ar|| <
je I

See [4.7] If o = 1/2 the right-hand side of (26) does not always dominate
I1AY2 X BY2)||. So, in this case (26) is not always true. [

A few remarks are in order.

1. The inequality (26) is a strengthening of the second ineguality in (27).
. Compare Lemma 2 and Corollary 4. The firstsays L < F, forae = 1/3; the second
says L < Fyonlyifa = 1/2
3. Hiai and Kosaki [8, p. 924] have shown that L < Fyo < Faa.
4. If we use the first equality in (16) we can see, following the arguments of [ 8], that
the statement L < Fy if and only if o = 1,2 is equivalent to the statement that
the functon

I

f(x) = o JOE (28)

xi{cosh x + a)
is positive definite if and only if 0 < a < 1.
5. Hiai and Kosaki [8, p. 924] have compared the logarithmic mean L with the
binomial means B, defined in (135). They observe that L < 8, for all o = 1/3,
but the domination L < By 1 is false while L < B2 is true.

Al this stage it is natural 1o mise the question of strong domination between the
Heinz and the Heron means: do we have a good version of (19} with the order < in
place of <7 To answer this we have to compare the two sides of (20) and to decide
whether the function

cosh fx

'(x) = — 2
e LA (29)
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is positive definite. The referee of this paper has informed us that Kosaki has shown
that this function is positive definite only in the trivial cases § = O or+1. This shows
that H, < Fy, only in the tdvial cases v =0, 1/2, or 1.

This gives one more example of a situation where the two orders between means
are sirikingly different
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