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Abstract: Fractional factorial plans for asymmetric factorial experiments are ob-

tained. These are shown to be universally optimal within the class of all plans

involving the same number of runs under a model that includes the mean, all main

effects and a specified set of two-factor interactions. Finite projective geometry is

used to obtain such plans for experiments wherein the number of levels of each of

the factors and the number of runs is a power of m, a prime or a prime power.

Methods of construction of optimal plans under the same model are also discussed

for the case where the number of levels as well as the number of runs are not

necessarily powers of a prime number.
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1. Introduction

The study of optimal fractional factorial plans has received considerable at-

tention in the recent past, mainly because of the increased use of such plans in

industrial experiments and quality control work. For a review of optimal frac-

tional factorial plans, see Dey and Mukerjee (1999a, Chs. 2, 6, 7). Much of the

work on optimal fractional factorial plans relates to situations where all factorial

effects involving the same number of factors are considered equally important

and, as such, the underlying model involves the general mean and all factorial

effects involving up to a specified number of factors. In practice however, all fac-

torial effects involving the same number of factors may not be equally important,

and an experimenter may be interested in estimating the general mean, all main

effects and only a specified set of two-factor interactions, all other interactions

being assumed negligible. The issue of estimability and optimality in situations

of this kind has been addressed by Hedayat and Pesotan (1992, 1997), Wu and

Chen (1992) and Chiu and John (1998) in the context of two-level factorials, and

by Dey and Mukerjee (1999b) and Chatterjee, Das and Dey (2002) for arbitrary

factorials including the asymmetric or, mixed level factorials. Using finite projec-

tive geometry, Dey and Suen (2002) recently obtained several families of optimal
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plans under the stated model for symmetric factorials of the type mn, where m
is a prime or a prime power.

Continuing with this line of research, we obtain optimal fractional factorial
plans for asymmetric factorials under a model that includes the mean, all main

effects and a specified set of two-factor interactions, all other interactions be-

ing assumed negligible. Throughout, the optimality criterion considered is the
universal optimality of Kiefer (1975); see also Sinha and Mukerjee (1982). In Sec-

tion 2, concepts and results from a finite projective geometry are used to obtain
optimal plans for asymmetric factorials, where the levels of the factors and the

number of runs are powers of the same prime. These results generalize the ones
obtained by Dey and Suen (2002) in the context of prime-powered symmetric

factorials. In Section 3, we obtain some optimal plans for asymmetric experi-
ments where the levels of the factors and the number of runs are not necessarily

powers of a prime number.
The plans reported here are optimal under a model that includes the mean,

all main effects and a specified set of two-factor interactions, other effects being
assumed negligible. If effect(s) not included in the model are not negligible, they

will bias the estimates of the factorial effects included in the model. For this
reason, a more practical strategy is to look for optimal plans that allow greater

flexibility in the model. Though a solution to this problem in its entire generality
has yet to be found, optimal plans that exhibit a kind of model robustness under

different optimality criteria have been considered e.g., by Chatterjee, Das and
Dey (2002) and Ke and Tang (2003).

2. Optimal Plans Based on Finite Projective Geometry

We make use of a result of Dey and Mukerjee (1999b), giving a combinatorial
characterization for a fractional factorial plan to be universally optimal. For

completeness, we state this result in the form that we need.

Theorem 2.1. Let D be the class of all N -run fractional factorial plans for

an arbitrary factorial experiment involving n factors, F1, . . . , Fn, such that each

member of D allows the estimability of the mean, the main effects F1, . . . , Fn

and the k two-factor interactions Fi1Fj1 , . . . , FikFjk
, where 1 ≤ iu, ju ≤ n for all

u = 1, . . . , k. A plan d ∈ D is universally optimal over D if all level combinations

of the following sets of factors appear equally often in d:

(a) {Fu, Fv}, 1 ≤ u < v ≤ n;
(b) {Fu, Fiv , Fjv}, 1 ≤ u ≤ n, 1 ≤ v ≤ k;

(c) {Fiu , Fju , Fiv , Fjv}, 1 ≤ u < v ≤ k,
where a factor is counted only once if it is repeated in (b) or (c).

Consider now a factorial experiment involving n factors F1, . . . , Fn, where

for i = 1, . . . , n, the factor Fi has mti levels, m is a prime or a prime power and
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ti is a positive integer. We use an (r − 1)-dimensional finite projective geometry

PG(r − 1,m) over the finite or, Galois field, GF (m) to construct mr-run plans,

r being an integer. Recall that in a PG(r − 1,m), a point is represented by

an ordered r-tuple (x0, . . . , xr−1) where, for 0 ≤ i ≤ r − 1, xi ∈ GF (m). Two

r-tuples represent the same point in PG(r − 1,m) if one is a multiple of the

other. A t-flat consists of points whose coordinates can be written as a linear

combination of t + 1 independent points. Thus, there are (mt+1 − 1)/(m − 1)

distinct points in a t-flat. A 1-flat, consisting of m + 1 points is referred to as a

line in a finite projective geometry, and a 2-flat consisting of m2 + m + 1 points

and m2 + m + 1 lines is also called a plane. Given integers s, t, s ≤ t, there are

(mr−s−1 − 1)(mr−s−2 − 1) · · · (mt−s+1 − 1)

(mr−t−1 − 1)(mr−t−2 − 1) · · · (m − 1)

t-flats passing through an s-flat in PG(r−1,m). Hence there are (mr−1−1)/(m−

1) lines through a point and (mr−2 − 1)/(m− 1) planes through a line. For more

details on finite projective geometry, see Hirschfeld (1979).

We assign the factor Fi to a (ti − 1)-flat in PG(r − 1,m), these flats being

disjoint for Fi, Fj , i 6= j. The two-factor interaction FiFj is assigned to the

(mti − 1)(mtj − 1)/(m− 1) points in the (ti + tj − 1)-flat through the (ti − 1)-flat

Fi and the (tj − 1)-flat Fj but not in Fi and Fj . Making an appeal to Theorem

2.1, one can prove the following result.

Theorem 2.2. Let F1, . . . , Fn be n factors of a factorial experiment, where for

u = 1, . . . , n, the factor Fu has mtu levels, m is a prime or a prime power and

tu is a positive integer. Assign the n main effects F1, . . . , Fn and the k two-

factor interactions Fi1Fj1 , . . . , FikFjk
to points in PG(r − 1,m) as described in

the previous paragraph. If the
∑n

u=1(m
tu − 1)/(m − 1) +

∑k
u=1(m

tiu − 1)(mtju −

1)/(m− 1) points corresponding to F1, . . . , Fn, Fi1Fj1 , . . . , FikFjk
are all distinct,

then we can obtain a universally optimal plan for estimating the main effects

F1, . . . , Fn and two-factor interations Fi1Fj1 , . . . , FikFjk
involving mr runs.

Proof. Let Au be an r × tu matrix with the tu column vectors corresponding to

tu independent points in the (tu − 1)-flat Fu. Then the plan can be generated by

the row space of the r ×
∑n

u=1 tu matrix A = [A1
... · · ·

...An], where the tu columns

of Au represent the levels of the factor Fu and each element of the row space of

A represents a run in the plan. To prove that the plan is universally optimal, it

suffices to show, as in Dey and Suen (2002), that the following matrices have full

column rank:

(i) [Au
...Av], 1 ≤ u < v ≤ n;

(ii) [Au
...Aiv

...Ajv ], 1 ≤ u ≤ n, 1 ≤ v ≤ k;
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(iii) [Aiu

...Aju

...Aiv

...Ajv ], 1 ≤ u < v ≤ k,

where a matrix Au(1 ≤ u ≤ n) appears only once if it is repeated in (ii) or (iii).

Case (i) : The columns of Au and Av are independent since the (tu − 1)-flat Fu

and the (tv − 1)-flat Fv are disjoint.

Case (ii) (a) : If u = iv or jv, then the matrix reduces to [Aiv

...Ajv ] which has full

column rank as in Case (i).

Case (ii) (b) : If u, iv , jv are distinct, then the (tu−1)-flat Fu and the (tiv +tjv−1)-

flat, consisting of points in Fiv , Fjv , and FivFjv , are disjoint. Hence the columns

of Au are independent of columns of [Aiv

...Ajv ], and the matrix [Au
...Aiv

...Ajv ] has

full column rank.

Case (iii) (a) : If iu = iv or jv , then the matrix reduces to [Aju

...Aiv

...Ajv ] which

has full column rank as in Case (ii) (b).

Case (iii) (b) : If iu, ju, iv, jv are distinct, then the (tiu + tju − 1)-flat, consisting

of points in Fiu , Fju , and FiuFju , and the (tiv+tjv−1)-flat, consisting of points in

Fiv , Fjv , and FivFjv , are disjoint. Hence the columns of [Aiu

...Aju ] are independent

of columns of [Aiv

...Ajv ], and the matrix [Aiu

...Aju

...Aiv

...Ajv ] has full column rank.

This completes the proof.

Based on Theorem 2.2, we now construct specific families of optimal plans,

under a model that includes the mean, all main effects and a specified set of

two-factor interactions. These families of plans are constructed by a suitable

choice of points in PG(r − 1,m) satisfying the conditions of Theorem 2.2. Most

of the plans reported in this section are saturated. In the following, µ denotes the

mean, Fi, the main effect of the the ith factor and FiFj , the interaction between

Fi and Fj :

M1 : (µ, F1, . . . , F2u, F1F2, F3F4, . . . , F2u−1F2u);

M2 : (µ, F1, . . . , Fu+v, FiFj ; 1 ≤ i ≤ u, u + 1 ≤ j ≤ v);

M3 : (µ, F1, . . . , Fu, F1F2, F2F3, . . . , Fu−1Fu, FuF1).

All effects not included in the model are assumed negligible.

A plan d that is universally optimal under the above models will be denoted

respectively by d ≡ (F1, F2;F3, F4; . . . ;F2u−1, F2u)1, d ≡ (F1, . . . , Fu;Fu+1, . . .,

Fu+v)2 and d ≡ (F1, . . . , Fu)3.

Note that the optimal plans of the three types are the ones that seem to

be of use in practice, and are in no way exhaustive. In principle however, it is

possible to obtain optimal plans under any other model that includes specified

two-factor interactions, along with the mean and all main effects, via Theorem

2.2. Throughout this section, the m2-level factors are denoted by F0, F1, F2, etc.,

and the m-level factors by G0, G1, G2, etc. We now have the following results.
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Theorem 2.3. For any prime or prime power m, we can construct a universally

optimal plan

(a) d1 for an (m2)2 × mm2

experiment involving m5 runs where

d1 ≡ (F0;F1, G1, . . . , Gm2)2;

(b) d2 for an (m2) × m3m2

experiment involving m5 runs where

d2 ≡ {(F0;G1, . . . , Gm2)2, (G1,1, G2,1;G1,2, G2,2; . . . ;G1,m2 , G2,m2)1}.

Both d1 and d2 are saturated.

Proof. (a) Let F0 be a line disjoint from the plane K in PG(4,m). Choose F1

to be a line on the plane K and G1, . . . , Gm2 to be the m2 points on the plane

K but not on the line F1.

(b) Let H be the 3-flat containing lines F0 and F1 as defined in (a), and let

F0, L1, . . . , Lm2 be m2 +1 lines which partition H. For i = 1, . . . ,m2, choose G1,i

and G2,i to be two distinct points on the line Li.

Theorem 2.4. For any prime or prime power m, we can construct a universally

optimal saturated plan d for an (m2)m
2+1×m experiment involving m5 runs where

d ≡ (G;F1, . . . , Fm2+1)2.

Proof. Let H be a 3-flat in PG(4,m), and let F1, . . . , Fm2+1 be m2 + 1 lines

which partition H. Choose G to be a point of PG(4,m) not in H.

Theorem 2.5. Let F be an m2-level factor and G be an m-level factor of a

universally optimal plan d constructed according to the method of Theorem 2.2.

If the effects F , G and FG can be estimated via d and F has no interaction with

any other factor except G, then instead of estimating F and FG via d, we can

optimally estimate the following effects:

(a) {G1, . . . , Gm+1, GGj , 1 ≤ j ≤ m + 1};

(b) {G0, G1, . . . , Gm, G0G,G0Gi, 1 ≤ i ≤ m};

(c) {G1, G2, G1G2, G2G,GG1} and the main effects of G3, . . . , Gm2
−2m+3;

(d) {G1, G2, G3, G1G2, G2G3, G3G1} and if m > 2, the main effects of G4, . . .,

Gm2
−2m+3.

Proof. Let K be the plane containing the point G and the line F .

(a) Let L be a line on the plane K which does not pass through the point G.

Choose G1, . . . , Gm+1 to be the m + 1 points on the line L.

(b) Let L be a line through the point G on the plane K, and let G,G1, . . . , Gm

be the m + 1 points on the line L. Choose G0 to be a point on the plane K

but not on the line L.
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(c) Let G1 and G2 be points on the plane K such that G,G1 and G2 are not

collinear. Choose G3, . . . , Gm2−2m+3 to be the (m−1)2 points on the plane K

which are not on the three lines joining the pairs of points (G,G1), (G,G2),

(G1, G2).

(d) Choose points G1, G2 and G3 such that no three of the four points G,G1, G2

and G3 are collinear. Now choose G,G4, . . . , Gm2
−2m+3 to be the (m − 1)2

points on the plane K which are not on the three lines joining the pairs of

points (G1, G2), (G2, G3), (G3, G1).

We now consider an example. To save space, only examples for m = 2 are

given in this section. In the following, as well as in subsequent examples in

this section, we use the numbers 1, . . . , 2r − 1 to represent the 2r − 1 points in

PG(r − 1, 2). A number α represents a point in PG(r − 1, 2) with coordinates

(x0, . . . , xr−1) such that
∑r−1

i=0 xi2
i = α. For example, the number 19 represents

the point (1, 1, 0, 0, 1) in PG(4, 2), and it represents the point (1, 1, 0, 0, 1, 0) in

PG(5, 2). A line in PG(r − 1, 2) is denoted by two numbers which represent

two points on this line. Linear graphs are used to demonstrate the plans, where

vertices represent the main effects and an edge joining two vertices represents the

interaction of the two factors representing the two vertices. A 2-level factor is

denoted by a closed circle • in the graph, and a 4-level factor, which is represented

by a line in the finite projective geometry, is denoted by an open circle ◦. Finally,

we use the symbols G(12), F (1, 2) etc. to mean that the coordinates of the point

G are given by the binary represenation of 12 in an appropriate finite projective

geometry and, similarly, F (1, 2) denotes a line joining the points given by the

binary representations of 1 and 2.

Example 2.1. With m = 2 in Theorem 2.4, we can construct a universally

optimal plan d for a 45 × 2 experiment involving 32 runs where

d ≡ (G;F1, F2, F3, F4, F5)2

and G(16), F1(1, 2), F2(4, 8), F3(5, 10), F4(6, 11), F5(7, 9). Many universally opti-

mal plans can be obtained by applying Theorem 2.5. For example, by replacing

the effects (F2, GF2), (F3, GF3), (F4, GF4),(F5, GF5) by (a), (b), (c) and (d),

respectively, of Theorem 2.5, we obtain a universally optimal plan for a 4 × 213

experiment involving 32 runs, whose linear graph is shown below:
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where G1(4), G2(8), G3(12), G4(31), G5(5), G6(10), G7(6), G8(11), G9(29),

G10(7), G11(9), G12(30).

Theorem 2.6. For any prime or prime power m, we can construct a universally

optimal saturated plan

(i) d1 for an (m2) × mm3+m2+m experiment involving m5 runs where

d1 ≡ {(F1;G1, . . . , Gm)2, (G0,1;G1,1, . . . , Gm,1)2, . . . , (G0,m2 ;G1,m2 , . . . ,

Gm,m2)2}.

(ii) d2 for an (m2) × mm3+2m2
−m+1 experiment involving m5 runs where

d2 ≡ {(G0,0;F2, G1,0, . . . , Gm2
−m,0)2, (G0,1;G1,1, . . . , Gm,1)2, . . . ,

(G0,m2 ;G1,m2 , . . . , Gm,m2)2}.

Proof. Let G0,0 be a point on a line F1 which is on a plane K in PG(4,m). Let

L1, . . . , Lm, F1 be the m + 1 lines through the point G0,0 on the plane K. For

i = 1, . . . ,m, let G0,0, G0,(i−1)m+1, . . . , G0,im be the m + 1 points on the line Li.

There are m + 1 3-flats through the plane K, say H0, . . . ,Hm. For i = 1, . . . ,m,

let K,K1,i, . . . ,Km,i be the m+1 planes through the line Li in the 3-flat Hi. For

each i = 1, . . . ,m and j = 1, . . . ,m, choose a line Lj,i on the plane Kj,i which does

not pass through the point G0,(i−1)m+j . Choose G1,(i−1)m+j , . . . , Gm,(i−1)m+j to

be the m points on the line Lj,i but not on Li. For plan (i), let L0 be a line in

the 3-flat H0 but not on the plane K. Choose G1, . . . , Gm to be the m points on

the line L0 but not on the plane K.

For plan (ii), let K0 be a plane in the 3-flat H0 which does not pass through

the G0,0. Then the line F1 intersects K0 at a point P0. Choose F2 to be a line

through a point P0 on the plane K0, and choose G1,0, . . . , Gm2
−m,0 to be the

m2 − m points on the plane K0 which are not on the line F2 or the plane K.

Example 2.2. With m = 2 in Theorem 2.6, choose the point G0,0(1) and the

line F1(1, 2). Let K be the plane through the line F1 and the point G0,1(12).

Let L0 be the line consisting of points G1(4), G2(8) and G0,1. Let L1 be the line

consisting of points G0,0, G0,1 and G0,2(13), and let L2 be the line consisting of

points G0,0, G0,3(14) and G0,4(15). Let H1 be the 3-flat through the plane K

and the point G1,1(16), and let H2 be the 3-flat through the plane K and the

point G1,3(20). Following the procedure of Theorem 2.6 (i), we can choose the

points G2,1(17), G1,2(18), G2,2(19), G2,3(21), G1,4(22), and G2,4(23) to construct

the following universally optimal plan for a 4×214 experiment involving 32 runs:
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For plan (ii), we can choose F2(2, 4), G1,0(8), and G2,0(10) to obtain the

following universally optimal plan for a 4 × 215 experiment involving 32 runs.

The linear graph is the same as above except that the first component is changed

to

t t t

d(2,4)

8 101

Theorem 2.7. For any prime or prime power m and integers j, k satisfying

j + k = m + 1, we can construct a universally optimal saturated plan d for an

(m2) × mkm2+jm+1 experiment involving m5 runs where

d ≡ {(F0;G0, G1,1, . . . , Gjm,1)2, (G0;G1,2, . . . , Gkm2, 2)2}.

Proof. Let K be a plane in PG(4,m), and let G0 and F0 be a point and a

line on the plane K such that G0 is not on F0. Let H1, . . . ,Hm+1 be the m + 1

3-flats through the plane K. For i = 1, . . . , j, let Li be a line in the 3-flat Hi

which does not intersect the line F0. Choose G(i−1)m+1,1, . . . , Gim,1 to be the m

points on the line Li which are not on the plane K. For i = 1, . . . , k, let Ki be

a plane in the 3-flat Hj+i which does not pass through the point G0. Choose

G(i−1)m2+1,1, . . . , Gim2 ,1 to be the m2 points on the plane Ki but not on the plane

K.

Example 2.3. With m = 2, j = 2, k = 1 in Theorem 2.7, choose the point G0(4)

and the line F0(1, 2). Then K is the plane through the line F0 and the point

G0. Let H1,H2 and H3 be the three 3-flats through the plane K and the points

G1,1(8), G3,1(16) and G1,2(24) respectively. Let L1 be the line through the points

G1,1 and G2,1(12), and let L2 be the line through points G3,1 and G4,1(20). Let

K1 be the plane through the line F and the point G1,2. Then K1 has 4 points

G2,2(25), G3,2(26), G4,2(27) and G(1, 2) which are not on the plane K. We have

thus constructed the following universally optimal plan for a 4 × 29 experiment

involving 32 runs:
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Theorem 2.8. For any prime or prime power m and integers j, k satisfying

j + k = m, we can construct a universally optimal saturated plan

(i) d1 for an (m2)j × mm3+km+k+1 experiment involving m5 runs where

d1 ≡ {(G0,0;G0,1, G1, . . . , Gk, G1,0, . . . , Gj(m2
−m),0, F1, . . . , Fj)2,

(G0,1;G1,1, . . . , G(k+1)m2 ,1)2}.

(ii) d2 for an (m2)j × mm3+(k+1)m+k experiment involving m5 runs where

d2 ≡ {(G0,0;G1, . . . , Gk, G1,0, . . . , Gj(m2
−m),0, F1, . . . , Fj)2,

(G0,1;G
′

1,1, . . . , G
′

(k+1)m,1)2, . . . , (G0,m;G′

1,m, . . . , G′

(k+1)m,m)2}.

Proof. Let G1, . . . , Gm and G0,1 be the m + 1 points on a line L in PG(4,m),

and let G0,0 be a point not on the line L. Let K be the plane through the line L

and the point G0,0. There are m + 1 3-flats through the plane K in PG(4,m),

say H1, . . . ,Hm+1. For i = 1, . . . , j, let Fi be a line in the 3-flat Hi which passes

through the point Gk+i but is not on the plane K. Let Ki be the plane through

the lines L and Fi, and choose G(i−1)(m2
−m)+1,0, . . . , Gi(m2

−m),0 to be the m2−m

points on the plane Ki which are not on the lines L and Fi. To obtain plan (i),

for i = 1, . . . , k + 1, let Kj+i be a plane in the 3-flat Hj+i which does not pass

through the point G0,1. Choose G(i−1)m2+1,1, . . . , Gim2 ,1 to be the m2 points on

the plane Ki but not on the plane K.

To obtain plan (ii), let L0 be the line through the points G0,0 and G0,1, and

let G0,2, . . . , G0,m be the m − 1 other points on L0. For i = 1, . . . , k + 1, let

K1,j+i, . . . ,Km,j+i and K be the m + 1 planes through the line L0 in the 3-flats

Hj+i. For u = 1, . . . ,m, let Lu,j+i be a line on the plane Ku,j+i which does not

pass through the point G0,u. Now choose G′

(i−1)m+1,u, . . . , G′

im,u to be the m

points on the line Lu,j+i but not on the line L0.

Example 2.4. With m = 2, j = 2, k = 0 in Theorem 2.8, choose the point

G0,0(1) and the line L consisting of points G1(4), G2(6), and G0,1(2). Then K

is the plane through the line L and the point G0,0. Choose lines F1(4, 8) and

F2(6, 16). Let K1 be the plane through the lines F1 and L. Then K1 has 2 points

G1,1(10) and G2,1(14) which are not on the lines F1 and L. Let K2 be the plane

through the lines F2 and L. Then K2 has 2 points G3,1(18) and G4,1(20) which

are not on the lines F2 and L. For plan (i), let K3 be the plane through the
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points G1, G0,0, and G1,2(24). Then K3 has 4 points G1,2, G2,2(25), G3,2(28) and

G4,2(29) which are not on the plane K. We have thus constructed the following

universally optimal plan for a 42×210 experiment involving 32 runs, whose linear

graph is shown below:

@
@@

�
��

�
��

�
��

@
@@

@
@@

t t

t t t t

t t t t

d

d

1 2

(4,8) 10 14 24 25

(6,16) 18 20 29 28

For plan (ii), let L0 be the line consisting of the points G0,0, G0,1 and G0,2(3).

Choose L1,3 to be the line through the points G′

1,1(24) and G′

2,1(25) and choose

L2,3 to be the line through the points G′

1,2(28) and G′

2,2(29). We have thus

constructed the following universally optimal plan for a 42 × 211 experiment

involving 32 runs:

@
@

@
@

@ �
�

�
�

�

t t

t t t t

t t t t

d

d

t1 2

(4,8) 10 14 24 28

(6,16) 18 20 25 29

3

Theorem 2.9. For any prime or prime power m and an integer j, 0 ≤ j ≤ m+1,

we can construct a universally optimal saturated plan

(i) d1 for an (m2)j × mm3+3m2
−2j+2 experiment involving m6 runs where

d1 ≡ {(F1;G1,1, . . . , Gu1m2,1)2, . . . , (Fj ;G1,j , . . . , Gujm2,j)2,

(G1, G2; . . . ;G2m2−2j+1, G2m2−2j+2)1}, and
j∑

i=1

ui = m + 1.

(ii) d2 for an (m2)2 × mm3+m2

experiment involving m6 runs where

d2 ≡ {(F1;F2, G
′

1,1, . . . , G
′

jm2 ,1)2, (F2;G
′

1,2, . . . , G
′

(m+1−j)m2 ,2)2}.

Proof. Let F1, . . . , Fm2+1 be m2+1 lines which partition a 3-flat H in PG(5,m).

There are m + 1 4-flats through the 3-flat H in PG(5,m), say M1, . . . ,Mm+1.

To obtain plan (i), for i = 1, . . . , j and v = 1, . . . , ui, let K(v−1)m2
−1,i, . . . ,Kvm2 ,i
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be the m2 planes in the 4-flat Mi which pass through the line Fi but are not in

the 3-flat H. For t = 1, . . . ,m2, choose G(v−1)m2+t,i to be a point on the plane

K(v−1)m2+t,i but not on the line Fi. For i = 1, . . . ,m2 − j + 1, choose G2i−1 and

G2i to be two distinct points on the line Fj+i.

To obtain plan (ii), for i = 1, . . . , j, let K ′

(i−1)m2+1,1, . . . ,K
′

im2,1 be the m2

planes in the 4-flat Mi which pass through the line F1 but are not in the 3-flat H.

For t = 1, . . . ,m2, choose G′

(i−1)m2+t,1 to be a point on the plane K ′

(1−1)m2+t,1

but not on the line F1. For i = 1, . . . ,m + 1 − j, let K ′

(i−1)m2+1,2, . . . ,K
′

im2 ,2 be

the m2 planes in the 4-flat Mj+i which pass through the line F2 but are not in

the 3-flat H. For t = 1, . . . ,m2, choose G′

(i−1)m2+t,2 to be a point on the plane

K ′

(1−1)m2+t,2 but not on the line F2.

Example 2.5. (i) With m = 2, j = 3 and u1 = u2 = u3 = 1 in Theorem 2.9

(i), we obtain the following universally optimal plan for a 43 × 216 experiment

involving 64 runs:
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@@
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��t t tt t t

t t tt t t

t t

t t

d d d
16

20 24

28

(1,2)

32

33 34

35

(4,8)

48

49 50

51

(5,10)

7

6 15

9

(ii) With m = 2, j = 1 in Theorem 2.9 (ii), we obtain the following universally

optimal plan for a 42 × 212 experiment involving 64 runs:

@
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t

t

d d

24

20

(1,2)

16

28

32

51

33

50

34

49

35

48
(4,8)

Theorem 2.10. For any prime or prime power m, we can construct a universally

optimal saturated plan d for an (m2)m
2+m × mm4

−m2+m+1 experiment involving

m6 runs where

d ≡ {(G0,1;F1,1, . . . , Fm,1, G1,1, . . . , Gm3
−m2,1)2, . . . ,

(G0,m+1;F1,m+1, . . . , Fm,m+1, G1,m+1, . . . , Gm3
−m2,m+1)2}.

Proof. Let L be a line in a 3-flat H in PG(5,m), and let G0,1, . . . , G0,m+1 be

the m+1 points on L. There are m+1 planes through the line L in the 3-flat H,

say K1, . . . ,Km+1. For i = 1, . . . ,m + 1, let Li be a line on the plane Ki which

does not pass through the point G0,1, and let P1,i, . . . , Pm,i be the m points on
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Li but not on L. Let M1, . . . ,Mm+1 be the m + 1 4-flats through the 3-flat H.

For i = 1, . . . ,m + 1, let H1,i, . . . ,Hm,i, and H be the m + 1 3-flats through the

plane Ki in the 4-flat Mi. For j = 1, . . . ,m, choose Fj,i to be a line through

the point Pj,i but not on the plane Ki in the 3-flat Hj,i. Let Kj,i be the plane

through the lines Fj,i and Li. Choose G(j−1)(m2−m)+1,i, . . . , Gj(m2−m),i to be the

m2 − m points on the plane Kj,i but not on the lines Fj,i and Li.

Example 2.6. With m = 2 in Theorem 2.10, we obtain the following universally

optimal plan for a 46 × 215 experiment involving 64 runs:

Q
Q

Q

Q
Q

Q

Q
Q

Q

�
�

�

�
�

�

�
�

�

B
B
B

B
B
B

B
B
B

�
�
�

�
�
�

�
�
�t t tt t t

t t t t t t t t t

d d dd d d

1

22

18
(4,16) (6,24)

26

28

2

41

33
(8,32) (9,36)

37

44

3

61

49
(12,48) (13,52)

53

56

Theorem 2.11. For any prime or prime power m and integer j, 1 ≤ j ≤ m, we

can construct a universally optimal saturated plan d for an (m2)m
2+1 × mm3+1

experiment involving m6 runs where

d ≡ {(G0;F1, . . . , Fm2+1)2, (F1;G1,1, . . . , Gu1m2,1)2, . . . ,

(Fj ;G1,j , . . . , Gujm2,j)2}, and
j∑

i=1

ui = m.

Proof. Let F1, . . . , Fm2+1 be m2+1 lines which partition a 3-flat H in PG(5,m).

There are m + 1 4-flats through the 3-flat H in PG(5,m), say M0, . . . ,Mm.

Choose G0 to be a point in the 4-flat M0 but not in the 3-flat H. For i = 1, . . . , j

and v = 1, . . . , ui, let K(v−1)m2+1,i, . . . ,Kvm2 ,i be the m2 planes in the 4-flat

Mu1+···+ui−1+v through the line Fi but not in the 3-flat H. For t = 1, . . . ,m2,

choose G(v−1)m2+t,i to be a point on the plane K(v−1)m2+t,i but not on the line

Fi.

Example 2.7. With m = j = 2, u1 = u2 = 1 in Theorem 2.11, we obtain the

following universally optimal plan for a 45 × 29 experiment involving 64 runs:

�
��

@
@@@

@@

@
@@

�
��

�
��t t t

t t
t t

t t

d d

d d
d

(1,2)

32

36 40 44

(4,8)

51

48 49 50

16

(6,11)(5,10) (7,9)

Remark. The plans constructed in this section have some factors at m2 levels

and the others at m levels, where m is a prime or a prime power. In principle, the
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methods described so far can be extended to obtain optimal plans for experiments

of the type (mn1) × · · · × (mnu) in mr runs where the {ni} and r are integers.

However, such plans generally have too many levels and runs to be attractive to

the experimenters and we do not report them.

3. Some More Optimal Plans for Asymmetric Experiments

The plans obtained in the previous section are such that the number of levels

for each of the factors and the number of runs is a power of m, which itself is a

prime or a prime power. Such plans are restrictive in nature in the sense that (i)

except for m = 2, the number of levels and the number of runs generally become

too large to be attractive to experimenters, and (ii) the methods cannot be

used for obtaining optimal plans for experiments in which the number of levels

of the factors and the number of runs are not powers of the same prime; for

example, the methods described in the previous section cannot produce optimal

plans for the practically important experiments of the type 3n1 × 2n2 . In this

section, we propose two methods of construction of optimal plans for asymmetric

experiments where the number of levels of different factors and the number of

runs are not necessarily powers of the same prime. We make use of orthogonal

arrays.

Recall that an orthogonal array OA(N,n,m1 × · · · ×mn, g), having N rows,

n columns, m1, . . . ,mn(≥ 2) symbols and strength g(< n), is an N × n matrix

with elements in the ith column from a set of mi distinct symbols (1 ≤ i ≤ n), in

which all possible combinations of symbols appear equally often as rows in every

N × g submatrix. If m1 = · · · = mn = m, then we have a symmetric orthogonal

array, which will be denoted by OA(N,n,m, g).

Consider an orthogonal array OA(N,n,m1×· · ·×mn, 2) of strength two, say

A, and suppose for 1 ≤ j ≤ n, mj = tj1tj2 . . . tjkj
, where tji ≥ 2, 1 ≤ i ≤ kj are

integers. Replace the mj-symbol column in A by kj columns, say Fj1, . . . , Fjkj
,

having tj1, . . . , tjkj
symbols respectively, and call the derived array B. It is not

hard to see that B is an OA(N,
∑n

j=1 kj,
∏n

j=1

∏kj

u=1 tju, 2). We then have the

following result whose proof is straight forward.

Theorem 3.1. The fractional factorial plan d represented by the orthogonal

array B is universally optimal in the class of all N -run plans under a model that

includes the mean, all main effects and the two-factor interactions FjiFji′ , 1 ≤

i < i′ ≤ kj , 1 ≤ j ≤ n.

We next discuss another class of plans. Suppose there exists a plan d∗ for

an m1 × · · · × mn factorial in N/t runs, where N, t ≥ 2 are integers such that

d∗ satisfies the conditions of Theorem 2.1. Thus d∗ is universally optimal in

a relevant class of competing designs for the estimation of the mean, all main
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effects and the two-factor interactions Gi1Gj1 , . . . , GikGjk
, where 1 ≤ iu, ju ≤ n

for all u = 1, . . . , k. Here, for 1 ≤ u ≤ n, the factor Gu is at mu levels. Let the

treatment combinations of d∗ be represented by an (N/t)×n matrix A. Let B be

an orthogonal array OA(t, p, s1 × · · · × sp, 2) of strength two. Form N treatment

combinations of an s1×· · ·×sp×m1×· · ·×mn factorial as [B⊗1N/t

...1t⊗A], where

for a pair of matrices E,F , E ⊗F denotes their Kronecker (tensor) product. Let

d be the plan represented by these N treatment combinations. Furthermore, for

1 ≤ i ≤ p, let Fi denote the factor at si levels. Then, one can prove the following

result.

Theorem 3.2. The N treatment combinations forming the fractional factorial

plan d is universally optimal for estimating the mean, all main effects and the

interactions FiGj ; 1 ≤ i ≤ p, 1 ≤ j ≤ n and GiuGju , 1 ≤ u ≤ k.
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