ASYMMETRIC FRACTIONAL FACTORIAL PLANS OPTIMAL FOR MAIN EFFECTS AND SPECIFIED TWO-FACTOR INTERACTIONS

Aloke Dey ${ }^{1}$, Chung-yi Suen ${ }^{2}$ and Ashish Das ${ }^{1}$
${ }^{1}$ Indian Statistical Institute, New Delhi and ${ }^{2}$ Cleveland State University

Abstract

Fractional factorial plans for asymmetric factorial experiments are obtained. These are shown to be universally optimal within the class of all plans involving the same number of runs under a model that includes the mean, all main effects and a specified set of two-factor interactions. Finite projective geometry is used to obtain such plans for experiments wherein the number of levels of each of the factors and the number of runs is a power of m, a prime or a prime power. Methods of construction of optimal plans under the same model are also discussed for the case where the number of levels as well as the number of runs are not necessarily powers of a prime number.

Key words and phrases: Finite projective geometry, Galois field, saturated plans, universal optimality.

1. Introduction

The study of optimal fractional factorial plans has received considerable attention in the recent past, mainly because of the increased use of such plans in industrial experiments and quality control work. For a review of optimal fractional factorial plans, see Dey and Mukerjee (1999a, Chs. 2, 6, 7). Much of the work on optimal fractional factorial plans relates to situations where all factorial effects involving the same number of factors are considered equally important and, as such, the underlying model involves the general mean and all factorial effects involving up to a specified number of factors. In practice however, all factorial effects involving the same number of factors may not be equally important, and an experimenter may be interested in estimating the general mean, all main effects and only a specified set of two-factor interactions, all other interactions being assumed negligible. The issue of estimability and optimality in situations of this kind has been addressed by Hedayat and Pesotan (1992, 1997), Wu and Chen (1992) and Chiu and John (1998) in the context of two-level factorials, and by Dey and Mukerjee (1999b) and Chatterjee, Das and Dey (2002) for arbitrary factorials including the asymmetric or, mixed level factorials. Using finite projective geometry, Dey and Suen (2002) recently obtained several families of optimal
plans under the stated model for symmetric factorials of the type m^{n}, where m is a prime or a prime power.

Continuing with this line of research, we obtain optimal fractional factorial plans for asymmetric factorials under a model that includes the mean, all main effects and a specified set of two-factor interactions, all other interactions being assumed negligible. Throughout, the optimality criterion considered is the universal optimality of Kiefer (1975); see also Sinha and Mukerjee (1982). In Section 2 , concepts and results from a finite projective geometry are used to obtain optimal plans for asymmetric factorials, where the levels of the factors and the number of runs are powers of the same prime. These results generalize the ones obtained by Dey and Suen (2002) in the context of prime-powered symmetric factorials. In Section 3, we obtain some optimal plans for asymmetric experiments where the levels of the factors and the number of runs are not necessarily powers of a prime number.

The plans reported here are optimal under a model that includes the mean, all main effects and a specified set of two-factor interactions, other effects being assumed negligible. If effect(s) not included in the model are not negligible, they will bias the estimates of the factorial effects included in the model. For this reason, a more practical strategy is to look for optimal plans that allow greater flexibility in the model. Though a solution to this problem in its entire generality has yet to be found, optimal plans that exhibit a kind of model robustness under different optimality criteria have been considered e.g., by Chatterjee, Das and Dey (2002) and Ke and Tang (2003).

2. Optimal Plans Based on Finite Projective Geometry

We make use of a result of Dey and Mukerjee (1999b), giving a combinatorial characterization for a fractional factorial plan to be universally optimal. For completeness, we state this result in the form that we need.

Theorem 2.1. Let \mathcal{D} be the class of all N-run fractional factorial plans for an arbitrary factorial experiment involving n factors, F_{1}, \ldots, F_{n}, such that each member of \mathcal{D} allows the estimability of the mean, the main effects F_{1}, \ldots, F_{n} and the k two-factor interactions $F_{i_{1}} F_{j_{1}}, \ldots, F_{i_{k}} F_{j_{k}}$, where $1 \leq i_{u}, j_{u} \leq n$ for all $u=1, \ldots, k$. A plan $d \in \mathcal{D}$ is universally optimal over \mathcal{D} if all level combinations of the following sets of factors appear equally often in d :
(a) $\left\{F_{u}, F_{v}\right\}, 1 \leq u<v \leq n$;
(b) $\left\{F_{u}, F_{i_{v}}, F_{j_{v}}\right\}, 1 \leq u \leq n, 1 \leq v \leq k$;
(c) $\left\{F_{i_{u}}, F_{j_{u}}, F_{i_{v}}, F_{j_{v}}\right\}, 1 \leq u<v \leq k$,
where a factor is counted only once if it is repeated in (b) or (c).
Consider now a factorial experiment involving n factors F_{1}, \ldots, F_{n}, where for $i=1, \ldots, n$, the factor F_{i} has $m^{t_{i}}$ levels, m is a prime or a prime power and
t_{i} is a positive integer. We use an $(r-1)$-dimensional finite projective geometry $P G(r-1, m)$ over the finite or, Galois field, $G F(m)$ to construct m^{r}-run plans, r being an integer. Recall that in a $P G(r-1, m)$, a point is represented by an ordered r-tuple (x_{0}, \ldots, x_{r-1}) where, for $0 \leq i \leq r-1, x_{i} \in G F(m)$. Two r-tuples represent the same point in $P G(r-1, m)$ if one is a multiple of the other. A t-flat consists of points whose coordinates can be written as a linear combination of $t+1$ independent points. Thus, there are $\left(m^{t+1}-1\right) /(m-1)$ distinct points in a t-flat. A 1 -flat, consisting of $m+1$ points is referred to as a line in a finite projective geometry, and a 2-flat consisting of $m^{2}+m+1$ points and $m^{2}+m+1$ lines is also called a plane. Given integers $s, t, s \leq t$, there are

$$
\frac{\left(m^{r-s-1}-1\right)\left(m^{r-s-2}-1\right) \cdots\left(m^{t-s+1}-1\right)}{\left(m^{r-t-1}-1\right)\left(m^{r-t-2}-1\right) \cdots(m-1)}
$$

t-flats passing through an s-flat in $P G(r-1, m)$. Hence there are $\left(m^{r-1}-1\right) /(m-$ 1) lines through a point and $\left(m^{r-2}-1\right) /(m-1)$ planes through a line. For more details on finite projective geometry, see Hirschfeld (1979).

We assign the factor F_{i} to a $\left(t_{i}-1\right)$-flat in $\operatorname{PG}(r-1, m)$, these flats being disjoint for $F_{i}, F_{j}, i \neq j$. The two-factor interaction $F_{i} F_{j}$ is assigned to the $\left(m^{t_{i}}-1\right)\left(m^{t_{j}}-1\right) /(m-1)$ points in the $\left(t_{i}+t_{j}-1\right)$-flat through the $\left(t_{i}-1\right)$-flat F_{i} and the $\left(t_{j}-1\right)$-flat F_{j} but not in F_{i} and F_{j}. Making an appeal to Theorem 2.1, one can prove the following result.

Theorem 2.2. Let F_{1}, \ldots, F_{n} be n factors of a factorial experiment, where for $u=1, \ldots, n$, the factor F_{u} has $m^{t_{u}}$ levels, m is a prime or a prime power and t_{u} is a positive integer. Assign the n main effects F_{1}, \ldots, F_{n} and the k twofactor interactions $F_{i_{1}} F_{j_{1}}, \ldots, F_{i_{k}} F_{j_{k}}$ to points in $P G(r-1, m)$ as described in the previous paragraph. If the $\sum_{u=1}^{n}\left(m^{t_{u}}-1\right) /(m-1)+\sum_{u=1}^{k}\left(m^{t_{i u}}-1\right)\left(m^{t_{j u}}-\right.$ 1)/($m-1$) points corresponding to $F_{1}, \ldots, F_{n}, F_{i_{1}} F_{j_{1}}, \ldots, F_{i_{k}} F_{j_{k}}$ are all distinct, then we can obtain a universally optimal plan for estimating the main effects F_{1}, \ldots, F_{n} and two-factor interations $F_{i_{1}} F_{j_{1}}, \ldots, F_{i_{k}} F_{j_{k}}$ involving m^{r} runs.
Proof. Let A_{u} be an $r \times t_{u}$ matrix with the t_{u} column vectors corresponding to t_{u} independent points in the $\left(t_{u}-1\right)$-flat F_{u}. Then the plan can be generated by the row space of the $r \times \sum_{u=1}^{n} t_{u}$ matrix $A=\left[A_{1} \vdots \cdots \vdots A_{n}\right]$, where the t_{u} columns of A_{u} represent the levels of the factor F_{u} and each element of the row space of A represents a run in the plan. To prove that the plan is universally optimal, it suffices to show, as in Dey and Suen (2002), that the following matrices have full column rank:
(i) $\left[A_{u} \vdots A_{v}\right], 1 \leq u<v \leq n$;
(ii) $\left[A_{u}: A_{i_{v}}: A_{j_{v}}\right], 1 \leq u \leq n, 1 \leq v \leq k$;
(iii) $\left[A_{i_{u}} \vdots A_{j_{u}} \vdots A_{i_{v}} \vdots A_{j_{v}}\right], 1 \leq u<v \leq k$,
where a matrix $A_{u}(1 \leq u \leq n)$ appears only once if it is repeated in (ii) or (iii). Case (i) : The columns of A_{u} and A_{v} are independent since the ($t_{u}-1$)-flat F_{u} and the $\left(t_{v}-1\right)$-flat F_{v} are disjoint.
Case (ii) (a) : If $u=i_{v}$ or j_{v}, then the matrix reduces to $\left[A_{i_{v}} ; A_{j_{v}}\right]$ which has full column rank as in Case (i).
Case (ii) (b) : If u, i_{v}, j_{v} are distinct, then the $\left(t_{u}-1\right)$-flat F_{u} and the $\left(t_{i_{v}}+t_{j_{v}}-1\right)$ flat, consisting of points in $F_{i_{v}}, F_{j_{v}}$, and $F_{i_{v}} F_{j_{v}}$, are disjoint. Hence the columns of A_{u} are independent of columns of $\left[A_{i_{v}} \vdots A_{j_{v}}\right.$], and the matrix $\left[A_{u} \vdots A_{i_{v}} \vdots A_{j_{v}}\right]$ has full column rank.
Case (iii) (a) : If $i_{u}=i_{v}$ or j_{v}, then the matrix reduces to $\left[A_{j_{u}}: A_{i_{v}}: A_{j_{v}}\right]$ which has full column rank as in Case (ii) (b).
Case (iii) (b) : If $i_{u}, j_{u}, i_{v}, j_{v}$ are distinct, then the $\left(t_{i_{u}}+t_{j_{u}}-1\right)$-flat, consisting of points in $F_{i_{u}}, F_{j_{u}}$, and $F_{i_{u}} F_{j_{u}}$, and the $\left(t_{i_{v}}+t_{j_{v}}-1\right)$-flat, consisting of points in $F_{i_{v}}, F_{j_{v}}$, and $F_{i_{v}} F_{j_{v}}$, are disjoint. Hence the columns of $\left[A_{i_{u}} \vdots A_{j_{u}}\right]$ are independent of columns of $\left[A_{i_{v}} \vdots A_{j_{v}}\right]$, and the matrix $\left[A_{i_{u}} \vdots A_{j_{u}} \vdots A_{i_{v}} \vdots A_{j_{v}}\right]$ has full column rank. This completes the proof.

Based on Theorem 2.2, we now construct specific families of optimal plans, under a model that includes the mean, all main effects and a specified set of two-factor interactions. These families of plans are constructed by a suitable choice of points in $P G(r-1, m)$ satisfying the conditions of Theorem 2.2. Most of the plans reported in this section are saturated. In the following, μ denotes the mean, F_{i}, the main effect of the the i th factor and $F_{i} F_{j}$, the interaction between F_{i} and F_{j} :

$$
\begin{aligned}
& \mathcal{M}_{1}:\left(\mu, F_{1}, \ldots, F_{2 u}, F_{1} F_{2}, F_{3} F_{4}, \ldots, F_{2 u-1} F_{2 u}\right) ; \\
& \mathcal{M}_{2}:\left(\mu, F_{1}, \ldots, F_{u+v}, F_{i} F_{j} ; 1 \leq i \leq u, u+1 \leq j \leq v\right) ; \\
& \mathcal{M}_{3}:\left(\mu, F_{1}, \ldots, F_{u}, F_{1} F_{2}, F_{2} F_{3}, \ldots, F_{u-1} F_{u}, F_{u} F_{1}\right) .
\end{aligned}
$$

All effects not included in the model are assumed negligible.
A plan d that is universally optimal under the above models will be denoted respectively by $d \equiv\left(F_{1}, F_{2} ; F_{3}, F_{4} ; \ldots ; F_{2 u-1}, F_{2 u}\right)_{1}, d \equiv\left(F_{1}, \ldots, F_{u} ; F_{u+1}, \ldots\right.$, $\left.F_{u+v}\right)_{2}$ and $d \equiv\left(F_{1}, \ldots, F_{u}\right)_{3}$.

Note that the optimal plans of the three types are the ones that seem to be of use in practice, and are in no way exhaustive. In principle however, it is possible to obtain optimal plans under any other model that includes specified two-factor interactions, along with the mean and all main effects, via Theorem 2.2. Throughout this section, the m^{2}-level factors are denoted by F_{0}, F_{1}, F_{2}, etc., and the m-level factors by G_{0}, G_{1}, G_{2}, etc. We now have the following results.

Theorem 2.3. For any prime or prime power m, we can construct a universally optimal plan
(a) d_{1} for an $\left(m^{2}\right)^{2} \times m^{m^{2}}$ experiment involving m^{5} runs where

$$
d_{1} \equiv\left(F_{0} ; F_{1}, G_{1}, \ldots, G_{m^{2}}\right)_{2}
$$

(b) d_{2} for an $\left(m^{2}\right) \times m^{3 m^{2}}$ experiment involving m^{5} runs where

$$
d_{2} \equiv\left\{\left(F_{0} ; G_{1}, \ldots, G_{m^{2}}\right)_{2},\left(G_{1,1}, G_{2,1} ; G_{1,2}, G_{2,2} ; \ldots ; G_{1, m^{2}}, G_{2, m^{2}}\right)_{1}\right\}
$$

Both d_{1} and d_{2} are saturated.
Proof. (a) Let F_{0} be a line disjoint from the plane K in $P G(4, m)$. Choose F_{1} to be a line on the plane K and $G_{1}, \ldots, G_{m^{2}}$ to be the m^{2} points on the plane K but not on the line F_{1}.
(b) Let H be the 3-flat containing lines F_{0} and F_{1} as defined in (a), and let $F_{0}, L_{1}, \ldots, L_{m^{2}}$ be $m^{2}+1$ lines which partition H. For $i=1, \ldots, m^{2}$, choose $G_{1, i}$ and $G_{2, i}$ to be two distinct points on the line L_{i}.

Theorem 2.4. For any prime or prime power m, we can construct a universally optimal saturated pland for an $\left(m^{2}\right)^{m^{2}+1} \times m$ experiment involving m^{5} runs where

$$
d \equiv\left(G ; F_{1}, \ldots, F_{m^{2}+1}\right)_{2}
$$

Proof. Let H be a 3-flat in $P G(4, m)$, and let $F_{1}, \ldots, F_{m^{2}+1}$ be $m^{2}+1$ lines which partition H. Choose G to be a point of $P G(4, m)$ not in H.
Theorem 2.5. Let F be an m^{2}-level factor and G be an m-level factor of a universally optimal plan d constructed according to the method of Theorem 2.2. If the effects F, G and $F G$ can be estimated via d and F has no interaction with any other factor except G, then instead of estimating F and $F G$ via d, we can optimally estimate the following effects:
(a) $\left\{G_{1}, \ldots, G_{m+1}, G G_{j}, 1 \leq j \leq m+1\right\}$;
(b) $\left\{G_{0}, G_{1}, \ldots, G_{m}, G_{0} G, G_{0} G_{i}, 1 \leq i \leq m\right\}$;
(c) $\left\{G_{1}, G_{2}, G_{1} G_{2}, G_{2} G, G G_{1}\right\}$ and the main effects of $G_{3}, \ldots, G_{m^{2}-2 m+3}$;
(d) $\left\{G_{1}, G_{2}, G_{3}, G_{1} G_{2}, G_{2} G_{3}, G_{3} G_{1}\right\}$ and if $m>2$, the main effects of G_{4}, \ldots, $G_{m^{2}-2 m+3}$.
Proof. Let K be the plane containing the point G and the line F.
(a) Let L be a line on the plane K which does not pass through the point G. Choose G_{1}, \ldots, G_{m+1} to be the $m+1$ points on the line L.
(b) Let L be a line through the point G on the plane K, and let G, G_{1}, \ldots, G_{m} be the $m+1$ points on the line L. Choose G_{0} to be a point on the plane K but not on the line L.
(c) Let G_{1} and G_{2} be points on the plane K such that G, G_{1} and G_{2} are not collinear. Choose $G_{3}, \ldots, G_{m^{2}-2 m+3}$ to be the $(m-1)^{2}$ points on the plane K which are not on the three lines joining the pairs of points $\left(G, G_{1}\right),\left(G, G_{2}\right)$, $\left(G_{1}, G_{2}\right)$.
(d) Choose points G_{1}, G_{2} and G_{3} such that no three of the four points G, G_{1}, G_{2} and G_{3} are collinear. Now choose $G, G_{4}, \ldots, G_{m^{2}-2 m+3}$ to be the $(m-1)^{2}$ points on the plane K which are not on the three lines joining the pairs of points $\left(G_{1}, G_{2}\right),\left(G_{2}, G_{3}\right),\left(G_{3}, G_{1}\right)$.

We now consider an example. To save space, only examples for $m=2$ are given in this section. In the following, as well as in subsequent examples in this section, we use the numbers $1, \ldots, 2^{r}-1$ to represent the $2^{r}-1$ points in $P G(r-1,2)$. A number α represents a point in $P G(r-1,2)$ with coordinates $\left(x_{0}, \ldots, x_{r-1}\right)$ such that $\sum_{i=0}^{r-1} x_{i} 2^{i}=\alpha$. For example, the number 19 represents the point $(1,1,0,0,1)$ in $P G(4,2)$, and it represents the point $(1,1,0,0,1,0)$ in $P G(5,2)$. A line in $P G(r-1,2)$ is denoted by two numbers which represent two points on this line. Linear graphs are used to demonstrate the plans, where vertices represent the main effects and an edge joining two vertices represents the interaction of the two factors representing the two vertices. A 2-level factor is denoted by a closed circle \bullet in the graph, and a 4 -level factor, which is represented by a line in the finite projective geometry, is denoted by an open circle o. Finally, we use the symbols $G(12), F(1,2)$ etc. to mean that the coordinates of the point G are given by the binary represenation of 12 in an appropriate finite projective geometry and, similarly, $F(1,2)$ denotes a line joining the points given by the binary representations of 1 and 2 .

Example 2.1. With $m=2$ in Theorem 2.4, we can construct a universally optimal plan d for a $4^{5} \times 2$ experiment involving 32 runs where

$$
d \equiv\left(G ; F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right)_{2}
$$

and $G(16), F_{1}(1,2), F_{2}(4,8), F_{3}(5,10), F_{4}(6,11), F_{5}(7,9)$. Many universally optimal plans can be obtained by applying Theorem 2.5. For example, by replacing the effects $\left(F_{2}, G F_{2}\right),\left(F_{3}, G F_{3}\right),\left(F_{4}, G F_{4}\right),\left(F_{5}, G F_{5}\right)$ by (a), (b), (c) and (d), respectively, of Theorem 2.5, we obtain a universally optimal plan for a 4×2^{13} experiment involving 32 runs, whose linear graph is shown below:

where $G_{1}(4), G_{2}(8), G_{3}(12), G_{4}(31), G_{5}(5), G_{6}(10), G_{7}(6), G_{8}(11), G_{9}(29)$, $G_{10}(7), G_{11}(9), G_{12}(30)$.

Theorem 2.6. For any prime or prime power m, we can construct a universally optimal saturated plan
(i) d_{1} for an $\left(m^{2}\right) \times m^{m^{3}+m^{2}+m}$ experiment involving m^{5} runs where

$$
\begin{aligned}
d_{1} \equiv\{ & \left(F_{1} ; G_{1}, \ldots, G_{m}\right)_{2},\left(G_{0,1} ; G_{1,1}, \ldots, G_{m, 1}\right)_{2}, \ldots,\left(G_{0, m^{2}} ; G_{1, m^{2}}, \ldots,\right. \\
& \left.\left.G_{m, m^{2}}\right)_{2}\right\} .
\end{aligned}
$$

(ii) d_{2} for an $\left(m^{2}\right) \times m^{m^{3}+2 m^{2}-m+1}$ experiment involving m^{5} runs where

$$
\begin{aligned}
d_{2} \equiv & \left\{\left(G_{0,0} ; F_{2}, G_{1,0}, \ldots, G_{m^{2}-m, 0}\right)_{2},\left(G_{0,1} ; G_{1,1}, \ldots, G_{m, 1}\right)_{2}, \ldots,\right. \\
& \left.\left(G_{0, m^{2}} ; G_{1, m^{2}}, \ldots, G_{m, m^{2}}\right)\right\} .
\end{aligned}
$$

Proof. Let $G_{0,0}$ be a point on a line F_{1} which is on a plane K in $P G(4, m)$. Let $L_{1}, \ldots, L_{m}, F_{1}$ be the $m+1$ lines through the point $G_{0,0}$ on the plane K. For $i=1, \ldots, m$, let $G_{0,0}, G_{0,(i-1) m+1}, \ldots, G_{0, i m}$ be the $m+1$ points on the line L_{i}. There are $m+13$-flats through the plane K, say H_{0}, \ldots, H_{m}. For $i=1, \ldots, m$, let $K, K_{1, i}, \ldots, K_{m, i}$ be the $m+1$ planes through the line L_{i} in the 3 -flat H_{i}. For each $i=1, \ldots, m$ and $j=1, \ldots, m$, choose a line $L_{j, i}$ on the plane $K_{j, i}$ which does not pass through the point $G_{0,(i-1) m+j}$. Choose $G_{1,(i-1) m+j}, \ldots, G_{m,(i-1) m+j}$ to be the m points on the line $L_{j, i}$ but not on L_{i}. For plan (i), let L_{0} be a line in the 3 -flat H_{0} but not on the plane K. Choose G_{1}, \ldots, G_{m} to be the m points on the line L_{0} but not on the plane K.

For plan (ii), let K_{0} be a plane in the 3 -flat H_{0} which does not pass through the $G_{0,0}$. Then the line F_{1} intersects K_{0} at a point P_{0}. Choose F_{2} to be a line through a point P_{0} on the plane K_{0}, and choose $G_{1,0}, \ldots, G_{m^{2}-m, 0}$ to be the $m^{2}-m$ points on the plane K_{0} which are not on the line F_{2} or the plane K.

Example 2.2. With $m=2$ in Theorem 2.6, choose the point $G_{0,0}(1)$ and the line $F_{1}(1,2)$. Let K be the plane through the line F_{1} and the point $G_{0,1}(12)$. Let L_{0} be the line consisting of points $G_{1}(4), G_{2}(8)$ and $G_{0,1}$. Let L_{1} be the line consisting of points $G_{0,0}, G_{0,1}$ and $G_{0,2}(13)$, and let L_{2} be the line consisting of points $G_{0,0}, G_{0,3}(14)$ and $G_{0,4}(15)$. Let H_{1} be the 3 -flat through the plane K and the point $G_{1,1}(16)$, and let H_{2} be the 3 -flat through the plane K and the point $G_{1,3}(20)$. Following the procedure of Theorem 2.6 (i), we can choose the points $G_{2,1}(17), G_{1,2}(18), G_{2,2}(19), G_{2,3}(21), G_{1,4}(22)$, and $G_{2,4}(23)$ to construct the following universally optimal plan for a 4×2^{14} experiment involving 32 runs:

For plan (ii), we can choose $F_{2}(2,4), G_{1,0}(8)$, and $G_{2,0}(10)$ to obtain the following universally optimal plan for a 4×2^{15} experiment involving 32 runs. The linear graph is the same as above except that the first component is changed to

Theorem 2.7. For any prime or prime power m and integers j, k satisfying $j+k=m+1$, we can construct a universally optimal saturated plan d for an $\left(m^{2}\right) \times m^{k m^{2}+j m+1}$ experiment involving m^{5} runs where

$$
d \equiv\left\{\left(F_{0} ; G_{0}, G_{1,1}, \ldots, G_{j m, 1}\right)_{2},\left(G_{0} ; G_{1,2}, \ldots, G_{k m^{2}, 2}\right)_{2}\right\}
$$

Proof. Let K be a plane in $P G(4, m)$, and let G_{0} and F_{0} be a point and a line on the plane K such that G_{0} is not on F_{0}. Let H_{1}, \ldots, H_{m+1} be the $m+1$ 3-flats through the plane K. For $i=1, \ldots, j$, let L_{i} be a line in the 3-flat H_{i} which does not intersect the line F_{0}. Choose $G_{(i-1) m+1,1}, \ldots, G_{i m, 1}$ to be the m points on the line L_{i} which are not on the plane K. For $i=1, \ldots, k$, let K_{i} be a plane in the 3 -flat H_{j+i} which does not pass through the point G_{0}. Choose $G_{(i-1) m^{2}+1,1}, \ldots, G_{i m^{2}, 1}$ to be the m^{2} points on the plane K_{i} but not on the plane K.

Example 2.3. With $m=2, j=2, k=1$ in Theorem 2.7, choose the point $G_{0}(4)$ and the line $F_{0}(1,2)$. Then K is the plane through the line F_{0} and the point G_{0}. Let H_{1}, H_{2} and H_{3} be the three 3-flats through the plane K and the points $G_{1,1}(8), G_{3,1}(16)$ and $G_{1,2}(24)$ respectively. Let L_{1} be the line through the points $G_{1,1}$ and $G_{2,1}(12)$, and let L_{2} be the line through points $G_{3,1}$ and $G_{4,1}(20)$. Let K_{1} be the plane through the line F and the point $G_{1,2}$. Then K_{1} has 4 points $G_{2,2}(25), G_{3,2}(26), G_{4,2}(27)$ and $G(1,2)$ which are not on the plane K. We have thus constructed the following universally optimal plan for a 4×2^{9} experiment involving 32 runs:

Theorem 2.8. For any prime or prime power m and integers j, k satisfying $j+k=m$, we can construct a universally optimal saturated plan
(i) d_{1} for an $\left(m^{2}\right)^{j} \times m^{m^{3}+k m+k+1}$ experiment involving m^{5} runs where

$$
\begin{aligned}
d_{1} \equiv & \left\{\left(G_{0,0} ; G_{0,1}, G_{1}, \ldots, G_{k}, G_{1,0}, \ldots, G_{j\left(m^{2}-m\right), 0}, F_{1}, \ldots, F_{j}\right)_{2},\right. \\
& \left.\left(G_{0,1} ; G_{1,1}, \ldots, G_{(k+1) m^{2}, 1}\right)_{2}\right\} .
\end{aligned}
$$

(ii) d_{2} for an $\left(m^{2}\right)^{j} \times m^{m^{3}+(k+1) m+k}$ experiment involving m^{5} runs where

$$
\begin{aligned}
d_{2} \equiv & \left\{\left(G_{0,0} ; G_{1}, \ldots, G_{k}, G_{1,0}, \ldots, G_{j\left(m^{2}-m\right), 0}, F_{1}, \ldots, F_{j}\right)_{2}\right. \\
& \left.\left(G_{0,1} ; G_{1,1}^{\prime}, \ldots, G_{(k+1) m, 1}^{\prime}\right)_{2}, \ldots,\left(G_{0, m} ; G_{1, m}^{\prime}, \ldots, G_{(k+1) m, m}^{\prime}\right)_{2}\right\}
\end{aligned}
$$

Proof. Let G_{1}, \ldots, G_{m} and $G_{0,1}$ be the $m+1$ points on a line L in $P G(4, m)$, and let $G_{0,0}$ be a point not on the line L. Let K be the plane through the line L and the point $G_{0,0}$. There are $m+1$ 3-flats through the plane K in $P G(4, m)$, say H_{1}, \ldots, H_{m+1}. For $i=1, \ldots, j$, let F_{i} be a line in the 3 -flat H_{i} which passes through the point G_{k+i} but is not on the plane K. Let K_{i} be the plane through the lines L and F_{i}, and choose $G_{(i-1)\left(m^{2}-m\right)+1,0}, \ldots, G_{i\left(m^{2}-m\right), 0}$ to be the $m^{2}-m$ points on the plane K_{i} which are not on the lines L and F_{i}. To obtain plan (i), for $i=1, \ldots, k+1$, let K_{j+i} be a plane in the 3 -flat H_{j+i} which does not pass through the point $G_{0,1}$. Choose $G_{(i-1) m^{2}+1,1}, \ldots, G_{i m^{2}, 1}$ to be the m^{2} points on the plane K_{i} but not on the plane K.

To obtain plan (ii), let L_{0} be the line through the points $G_{0,0}$ and $G_{0,1}$, and let $G_{0,2}, \ldots, G_{0, m}$ be the $m-1$ other points on L_{0}. For $i=1, \ldots, k+1$, let $K_{1, j+i}, \ldots, K_{m, j+i}$ and K be the $m+1$ planes through the line L_{0} in the 3 -flats H_{j+i}. For $u=1, \ldots, m$, let $L_{u, j+i}$ be a line on the plane $K_{u, j+i}$ which does not pass through the point $G_{0, u}$. Now choose $G_{(i-1) m+1, u}^{\prime}, \ldots, G_{i m, u}^{\prime}$ to be the m points on the line $L_{u, j+i}$ but not on the line L_{0}.
Example 2.4. With $m=2, j=2, k=0$ in Theorem 2.8, choose the point $G_{0,0}(1)$ and the line L consisting of points $G_{1}(4), G_{2}(6)$, and $G_{0,1}(2)$. Then K is the plane through the line L and the point $G_{0,0}$. Choose lines $F_{1}(4,8)$ and $F_{2}(6,16)$. Let K_{1} be the plane through the lines F_{1} and L. Then K_{1} has 2 points $G_{1,1}(10)$ and $G_{2,1}(14)$ which are not on the lines F_{1} and L. Let K_{2} be the plane through the lines F_{2} and L. Then K_{2} has 2 points $G_{3,1}(18)$ and $G_{4,1}(20)$ which are not on the lines F_{2} and L. For plan (i), let K_{3} be the plane through the
points $G_{1}, G_{0,0}$, and $G_{1,2}(24)$. Then K_{3} has 4 points $G_{1,2}, G_{2,2}(25), G_{3,2}(28)$ and $G_{4,2}(29)$ which are not on the plane K. We have thus constructed the following universally optimal plan for a $4^{2} \times 2^{10}$ experiment involving 32 runs, whose linear graph is shown below:

For plan (ii), let L_{0} be the line consisting of the points $G_{0,0}, G_{0,1}$ and $G_{0,2}(3)$. Choose $L_{1,3}$ to be the line through the points $G_{1,1}^{\prime}(24)$ and $G_{2,1}^{\prime}(25)$ and choose $L_{2,3}$ to be the line through the points $G_{1,2}^{\prime}(28)$ and $G_{2,2}^{\prime}(29)$. We have thus constructed the following universally optimal plan for a $4^{2} \times 2^{11}$ experiment involving 32 runs:

Theorem 2.9. For any prime or prime power m and an integer $j, 0 \leq j \leq m+1$, we can construct a universally optimal saturated plan
(i) d_{1} for an $\left(m^{2}\right)^{j} \times m^{m^{3}+3 m^{2}-2 j+2}$ experiment involving m^{6} runs where

$$
\begin{aligned}
d_{1} \equiv & \left\{\left(F_{1} ; G_{1,1}, \ldots, G_{u_{1} m^{2}, 1}\right)_{2}, \ldots,\left(F_{j} ; G_{1, j}, \ldots, G_{u_{j} m^{2}, j}\right)_{2},\right. \\
& \left.\left(G_{1}, G_{2} ; \ldots ; G_{2 m^{2}-2 j+1}, G_{2 m^{2}-2 j+2}\right)_{1}\right\}, \quad \text { and } \quad \sum_{i=1}^{j} u_{i}=m+1 .
\end{aligned}
$$

(ii) d_{2} for an $\left(m^{2}\right)^{2} \times m^{m^{3}+m^{2}}$ experiment involving m^{6} runs where

$$
d_{2} \equiv\left\{\left(F_{1} ; F_{2}, G_{1,1}^{\prime}, \ldots, G_{j m^{2}, 1}^{\prime}\right)_{2},\left(F_{2} ; G_{1,2}^{\prime}, \ldots, G_{(m+1-j) m^{2}, 2}^{\prime}\right)_{2}\right\}
$$

Proof. Let $F_{1}, \ldots, F_{m^{2}+1}$ be $m^{2}+1$ lines which partition a 3 -flat H in $P G(5, m)$. There are $m+14$-flats through the 3 -flat H in $P G(5, m)$, say M_{1}, \ldots, M_{m+1}. To obtain plan (i), for $i=1, \ldots, j$ and $v=1, \ldots, u_{i}$, let $K_{(v-1) m^{2}-1, i}, \ldots, K_{v m^{2}, i}$
be the m^{2} planes in the 4 -flat M_{i} which pass through the line F_{i} but are not in the 3 -flat H. For $t=1, \ldots, m^{2}$, choose $G_{(v-1) m^{2}+t, i}$ to be a point on the plane $K_{(v-1) m^{2}+t, i}$ but not on the line F_{i}. For $i=1, \ldots, m^{2}-j+1$, choose $G_{2 i-1}$ and $G_{2 i}$ to be two distinct points on the line F_{j+i}.

To obtain plan (ii), for $i=1, \ldots, j$, let $K_{(i-1) m^{2}+1,1}^{\prime}, \ldots, K_{i m^{2}, 1}^{\prime}$ be the m^{2} planes in the 4 -flat M_{i} which pass through the line F_{1} but are not in the 3-flat H. For $t=1, \ldots, m^{2}$, choose $G_{(i-1) m^{2}+t, 1}^{\prime}$ to be a point on the plane $K_{(1-1) m^{2}+t, 1}^{\prime}$ but not on the line F_{1}. For $i=1, \ldots, m+1-j$, let $K_{(i-1) m^{2}+1,2}^{\prime}, \ldots, K_{i m^{2}, 2}^{\prime}$ be the m^{2} planes in the 4 -flat M_{j+i} which pass through the line F_{2} but are not in the 3 -flat H. For $t=1, \ldots, m^{2}$, choose $G_{(i-1) m^{2}+t, 2}^{\prime}$ to be a point on the plane $K_{(1-1) m^{2}+t, 2}^{\prime}$ but not on the line F_{2}.
Example 2.5. (i) With $m=2, j=3$ and $u_{1}=u_{2}=u_{3}=1$ in Theorem 2.9 (i), we obtain the following universally optimal plan for a $4^{3} \times 2^{16}$ experiment involving 64 runs:

(ii) With $m=2, j=1$ in Theorem 2.9 (ii), we obtain the following universally optimal plan for a $4^{2} \times 2^{12}$ experiment involving 64 runs:

Theorem 2.10. For any prime or prime power m, we can construct a universally optimal saturated plan d for an $\left(m^{2}\right)^{m^{2}+m} \times m^{m^{4}-m^{2}+m+1}$ experiment involving m^{6} runs where

$$
\begin{aligned}
d \equiv & \left\{\left(G_{0,1} ; F_{1,1}, \ldots, F_{m, 1}, G_{1,1}, \ldots, G_{m^{3}-m^{2}, 1}\right)_{2}, \ldots,\right. \\
& \left.\left(G_{0, m+1} ; F_{1, m+1}, \ldots, F_{m, m+1}, G_{1, m+1}, \ldots, G_{m^{3}-m^{2}, m+1}\right)_{2}\right\} .
\end{aligned}
$$

Proof. Let L be a line in a 3 -flat H in $P G(5, m)$, and let $G_{0,1}, \ldots, G_{0, m+1}$ be the $m+1$ points on L. There are $m+1$ planes through the line L in the 3 -flat H, say K_{1}, \ldots, K_{m+1}. For $i=1, \ldots, m+1$, let L_{i} be a line on the plane K_{i} which does not pass through the point $G_{0,1}$, and let $P_{1, i}, \ldots, P_{m, i}$ be the m points on
L_{i} but not on L. Let M_{1}, \ldots, M_{m+1} be the $m+14$-flats through the 3 -flat H. For $i=1, \ldots, m+1$, let $H_{1, i}, \ldots, H_{m, i}$, and H be the $m+13$-flats through the plane K_{i} in the 4 -flat M_{i}. For $j=1, \ldots, m$, choose $F_{j, i}$ to be a line through the point $P_{j, i}$ but not on the plane K_{i} in the 3 -flat $H_{j, i}$. Let $K_{j, i}$ be the plane through the lines $F_{j, i}$ and L_{i}. Choose $G_{(j-1)\left(m^{2}-m\right)+1, i}, \ldots, G_{j\left(m^{2}-m\right), i}$ to be the $m^{2}-m$ points on the plane $K_{j, i}$ but not on the lines $F_{j, i}$ and L_{i}.

Example 2.6. With $m=2$ in Theorem 2.10, we obtain the following universally optimal plan for a $4^{6} \times 2^{15}$ experiment involving 64 runs:

Theorem 2.11. For any prime or prime power m and integer $j, 1 \leq j \leq m$, we can construct a universally optimal saturated plan d for an $\left(m^{2}\right)^{m^{2}+1} \times m^{m^{3}+1}$ experiment involving m^{6} runs where

$$
\begin{aligned}
d \equiv & \left\{\left(G_{0} ; F_{1}, \ldots, F_{m^{2}+1}\right)_{2},\left(F_{1} ; G_{1,1}, \ldots, G_{u_{1} m^{2}, 1}\right)_{2}, \ldots,\right. \\
& \left.\left(F_{j} ; G_{1, j}, \ldots, G_{u_{j} m^{2}, j}\right)_{2}\right\}, \quad \text { and } \quad \sum_{i=1}^{j} u_{i}=m .
\end{aligned}
$$

Proof. Let $F_{1}, \ldots, F_{m^{2}+1}$ be $m^{2}+1$ lines which partition a 3 -flat H in $P G(5, m)$. There are $m+14$-flats through the 3 -flat H in $P G(5, m)$, say M_{0}, \ldots, M_{m}. Choose G_{0} to be a point in the 4 -flat M_{0} but not in the 3 -flat H. For $i=1, \ldots, j$ and $v=1, \ldots, u_{i}$, let $K_{(v-1) m^{2}+1, i}, \ldots, K_{v m^{2}, i}$ be the m^{2} planes in the 4 -flat $M_{u_{1}+\cdots+u_{i-1}+v}$ through the line F_{i} but not in the 3 -flat H. For $t=1, \ldots, m^{2}$, choose $G_{(v-1) m^{2}+t, i}$ to be a point on the plane $K_{(v-1) m^{2}+t, i}$ but not on the line F_{i}.

Example 2.7. With $m=j=2, u_{1}=u_{2}=1$ in Theorem 2.11, we obtain the following universally optimal plan for a $4^{5} \times 2^{9}$ experiment involving 64 runs:

Remark. The plans constructed in this section have some factors at m^{2} levels and the others at m levels, where m is a prime or a prime power. In principle, the
methods described so far can be extended to obtain optimal plans for experiments of the type $\left(m^{n_{1}}\right) \times \cdots \times\left(m^{n_{u}}\right)$ in m^{r} runs where the $\left\{n_{i}\right\}$ and r are integers. However, such plans generally have too many levels and runs to be attractive to the experimenters and we do not report them.

3. Some More Optimal Plans for Asymmetric Experiments

The plans obtained in the previous section are such that the number of levels for each of the factors and the number of runs is a power of m, which itself is a prime or a prime power. Such plans are restrictive in nature in the sense that (i) except for $m=2$, the number of levels and the number of runs generally become too large to be attractive to experimenters, and (ii) the methods cannot be used for obtaining optimal plans for experiments in which the number of levels of the factors and the number of runs are not powers of the same prime; for example, the methods described in the previous section cannot produce optimal plans for the practically important experiments of the type $3^{n_{1}} \times 2^{n_{2}}$. In this section, we propose two methods of construction of optimal plans for asymmetric experiments where the number of levels of different factors and the number of runs are not necessarily powers of the same prime. We make use of orthogonal arrays.

Recall that an orthogonal array $O A\left(N, n, m_{1} \times \cdots \times m_{n}, g\right)$, having N rows, n columns, $m_{1}, \ldots, m_{n}(\geq 2)$ symbols and strength $g(<n)$, is an $N \times n$ matrix with elements in the i th column from a set of m_{i} distinct symbols $(1 \leq i \leq n)$, in which all possible combinations of symbols appear equally often as rows in every $N \times g$ submatrix. If $m_{1}=\cdots=m_{n}=m$, then we have a symmetric orthogonal array, which will be denoted by $O A(N, n, m, g)$.

Consider an orthogonal array $O A\left(N, n, m_{1} \times \cdots \times m_{n}, 2\right)$ of strength two, say A, and suppose for $1 \leq j \leq n, m_{j}=t_{j 1} t_{j 2} \ldots t_{j k_{j}}$, where $t_{j i} \geq 2,1 \leq i \leq k_{j}$ are integers. Replace the m_{j}-symbol column in A by k_{j} columns, say $F_{j 1}, \ldots, F_{j k_{j}}$, having $t_{j 1}, \ldots, t_{j k_{j}}$ symbols respectively, and call the derived array B. It is not hard to see that B is an $O A\left(N, \sum_{j=1}^{n} k_{j}, \prod_{j=1}^{n} \prod_{u=1}^{k_{j}} t_{j u}, 2\right)$. We then have the following result whose proof is straight forward.

Theorem 3.1. The fractional factorial plan d represented by the orthogonal array B is universally optimal in the class of all N-run plans under a model that includes the mean, all main effects and the two-factor interactions $F_{j i} F_{j i^{\prime}}, 1 \leq$ $i<i^{\prime} \leq k_{j}, 1 \leq j \leq n$.

We next discuss another class of plans. Suppose there exists a plan d^{*} for an $m_{1} \times \cdots \times m_{n}$ factorial in N / t runs, where $N, t \geq 2$ are integers such that d^{*} satisfies the conditions of Theorem 2.1. Thus d^{*} is universally optimal in a relevant class of competing designs for the estimation of the mean, all main
effects and the two-factor interactions $G_{i_{1}} G_{j_{1}}, \ldots, G_{i_{k}} G_{j_{k}}$, where $1 \leq i_{u}, j_{u} \leq n$ for all $u=1, \ldots, k$. Here, for $1 \leq u \leq n$, the factor G_{u} is at m_{u} levels. Let the treatment combinations of d^{*} be represented by an $(N / t) \times n$ matrix A. Let B be an orthogonal array $O A\left(t, p, s_{1} \times \cdots \times s_{p}, 2\right)$ of strength two. Form N treatment combinations of an $s_{1} \times \cdots \times s_{p} \times m_{1} \times \cdots \times m_{n}$ factorial as [$B \otimes \mathbf{1}_{N / t}: \mathbf{1}_{t} \otimes A$], where for a pair of matrices $E, F, E \otimes F$ denotes their Kronecker (tensor) product. Let d be the plan represented by these N treatment combinations. Furthermore, for $1 \leq i \leq p$, let F_{i} denote the factor at s_{i} levels. Then, one can prove the following result.

Theorem 3.2. The N treatment combinations forming the fractional factorial plan d is universally optimal for estimating the mean, all main effects and the interactions $F_{i} G_{j} ; 1 \leq i \leq p, 1 \leq j \leq n$ and $G_{i_{u}} G_{j_{u}}, 1 \leq u \leq k$.

Acknowledgements

The authors thank the two referees and an associate editor for their very constructive comments on an earlier version.

References

Chatterjee, K., Das, A. and Dey, A. (2002). Quasi-orthogonal arrays and optimal fractional factorial plans. Statist. Sinica 12, 905-916.
Chiu, W. Y. and John, P. W. M. (1998). D-optimal fractional factorial designs. Statist. Probab. Lett. 37, 367-373.
Dey, A. and Mukerjee, R. (1999a). Fractional Factorial Plans. Wiley, New York.
Dey, A. and Mukerjee, R. (1999b). Inter-effect orthogonality and optimality in hierarchical models. Sankhyā Ser. B 61, 460-468.
Dey, A. and Suen, C. (2002). Optimal fractional factorial plans for main effects and specified two-factor interactions: A projective geometric approach. Ann. Statist. 30, 1512-1523.
Hedayat, A. S. and Pesotan, H. (1992). Two-level factorial designs for main effects and selected two factor interactions. Statist. Sinica 2, 453-464.
Hedayat, A. S. and Pesotan, H. (1997). Designs for two-level factorial experiments with linear models containing main effects and selected two-factor interactions. J. Statist. Plann. Inference 64, 109-124.
Hirschfeld, J. W. P. (1979). Projective Geometries over Finite Fields. Oxford University Press, Oxford.
Ke, W. and Tang, B. (2003). Selecting 2^{m-p} designs using a minimum aberration criterion when some two-factor interactions are important. Technometrics 45, 352-360.
Kiefer, J. (1975). Construction and optimality of generalized Youden designs. In A Survey of Statistical Designs and Linear Models (Edited by J. N. Srivastava), 333-353. NorthHolland, Amsterdam.
Sinha, B. K. and Mukerjee, R. (1982). A note on the universal optimality criterion for full rank models.J. Statist. Plann. Inference 7, 97-100.
Wu, C. F. J. and Chen, Y. (1992). A graph-aided method for planning two-level experiments when certain interactions are important. Technometrics 34, 162-175.

Theoretical Statistics \& Mathematics Unit, Indian Statistical Institute, 7, SJS Sansanwal Marg, New Delhi 110 016, India.
E-mail: adey@isid.ac.in
Department of Mathematics, Cleveland State University, Cleveland, OH 44115, U.S.A.
E-mail: c.suen@sims.csuohio.edu
Theoretical Statistics \& Mathematics Unit, Indian Statistical Institute, 7, SJS Sansanwal Marg, New Delhi 110 016, India.
E-mail: ashish@isid.ac.in
(Received September 2003; accepted April 2004)

