A STUDY OF LARGE SAMPLE TEST CRITERIA THROUGH
PROPERTIES OF EFFICIENT ESTIMATES

PART I: TESTS FOR GOODNESS OF FIT AND CONTIGENCY TABLES

By C. RADHAKRISHNA RAO
Indian Stalistical Instilule

SUMMARY, The oxislenco of nil. and ni.l, vquation catimatve und their efcienvy, in tho caso
of sanipling from a Snits multinomial distribution, hnve hoen established under conditiona wenkor than
thoso ussumed by curlior writors, For instance, tho oxistenco of the sceond derivatives of the cell probabi-
lities ns functions of tho paramoters is not necessary. Tho asymptlotic distributions of the chi-squaro
goodness of fit lest and test critoria for examining composito hypotisos in contingeney tables have been
abown to dopend miinly on the cficiency (in the new scnso) of estimalea used in the construction of the

tost critoria.  Tho m.. vsti fioa the ofcicncy Jition and iy, in tho sensc of sccond ordor efficiency,
moro suitablo for the construction of tesl critorin than other cfficient estimates. A new test has been
proposed for ining the oxpected fi i puted under two different bypothescs of a spevial
nature.

1. INTRODUCTION

In two previous papers (Rao, 1960a, 1960b), the author gave a new formulation
of the concept of asymptotic efficiency of estimates of parameters and established an
optimum property (second order efficiency) of the maximum likelihood {m.l.) estimate.
This shows that although the class of estimation procedures providing efficient esti-
mates is very wide, the m.l. method is distinguishable from the rest by its maximum
second order efficiency. It has been observed that m.l. estimates (which are efficient
in the new sense) provide a good summary of data in large samples in the sense that
inference based on these estimates is equivalent to that obtained by utilizing the whole
data. The approach to the problem of estimation and the specific results obtained
have been based on the concepts introduced by Fisher (1921, 1923).

It is also well known that in tho construction of large sample test ecriteria
efficiont estimatos play an important role. For instance, in obtaining a x* goodness
of fit, the expected values are caloulated by inserting efficient estimates such as those
obtained by maximising likelihood or minimising x*. The object of the present series
of artioles is to show how the concept of efficiency in the now sense plays a key role in
the construction of large sample criteria and in the derivation of their asymptotic
distributions. It is also suggested that preference should be given to m.l. estimates,
because of its maximum second order efficiency, among all efficient estimates in the
construction of large sample criteria.

Incidentally, the existence of the m.l. estimates, their consistency, efficiency
and asymptotio normality of distribution have all been deduced, in the case of the
finite multinomial under conditions weaker than those,sssumed by Cramér (1946);
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for inatance, without ing second order differentiability of the cell probabilities
as functions of unknown parameters. The y* goodness of fit criterion is shown to have
the usual asymptotic distribution even under these weaker conditions.

2. DEFINITIONS AND ASSUMPTIONS

Let m,, ..., m;, the probabilities in the k cells of a multinomial distribution,
depend on a vector 8 = (0, ..., 8,) of parameters belonging to a ¢ dimensional real
space R or to 8 nondegenerate interval of R?. If p,, ..., p; are the observed propor-
tions in the k cells for a sample of size #, the log likelihood of 8 is proportional to

pilogmy + ... + pylog 7y

When 7, are differentiable functions of 8, the maximum likelihood (m.l.) equations are
defined by

2 —EPF‘)—"‘—O

2, = = =1..4q .o {2
=k 9 (2.1)

The information matrix. which is the variance covariance matrix of z,, is denoted by
A = BB’ = (i,, ), where the matrix B and i,, are defined as follows:

B=( 1 07'), i,,=2‘.l am, Om

e ST Jal Al . 2.2
‘v, a6, n 06, a6, (22)

Unless otherwise stated, the variables z; and the elements i,, denote the values at
8, = (6%, ..., 62), the true value of the parameter supposed to be an interior point
of the admissible region of 8, such that m,(8,) > 0 for each 1.

We introduce the following assurptions,

Assumption 1 : Every m; has continuous first derivatives dm;/08, at the
true value 6.

Assumplion 2a: Given a § > 0, it is possible to find an ¢ > 0, such that

inf % m(6ylog %)L 5 ¢ . (23)

(08 > ~l8)

Assumption 2b :  m(8) % m,(B) for at least one s, when 6 7 @, which is the
identifiability condition.

It is easy to ses that Assumption 2b ==) Assumption 2a, when the admissible
interval of 6 is olosed and ,(6) are continuous functions of 8. If the interval is open,
it may happen that

|7:(8,)—m:(8,)| = O, for each i as 6,— B 6,

Assumption 22 prevents such a thing happening and is in & certain sense & strong
identifiability condition.
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LARGE SAMPLE TEST CRITERIA
Assumption 3: There exists an estimate 8 = (,, ..., §,) such that

i) plim 6 =8,
ii) 4/nd"= +/7(6;—6%) has an asymptotic distribution (a.d.).
iii) The estimate 9 is efficient in the new sense (Rao, 1960a, 1960b), i.e.,

plim [v/n(z,—irdy—...—id))] =0, r=1,..,¢ e (24)
or in matrix notation plim (Z— AD)=0

where Z and D denote the column vectors of the elements 4/n z, and 4/nd, respectively.
We may, in theory, allow 6, itself to depend on the unknown true value 8, but it is
necessary for the application of the results derived that 7; = m(8), the estimate of
m;(6) should be independent of the assumed true value.

Assumption 3 may appear as a blanket assumption but is deliberately
introduced to demonstrate the key role played by the efficiency condition
(2.4). Whatever may be the method by which 8 is obtained the propositions considered
in the paper are valid provided only it satisfies the Assumption 3.

We will, in fact, show in Section 3.5 that Assumptions 1 and 2bimply Assump-
tion 3 when the rank of A is g, and Assumptions 1 and 2 imply the stronger result
that m.l. estimates exist and satisfy the conditions of Assumption 3 when the rank of
A i8 ¢. The conditions under which the results relating to existence of m.l. estimates.
their consistency, efficiency (implying asymptotic normality of distribution) are obtained
are much weaker than those considered by earlier writers. It can be proved that under
the same or similar less restrictive eonditions other methods of estimation such as
minimum x? (Neyman, 1949; Rao, 1955a), modified minimum y? (Neyman, 1949),
minimum discrepancy (Haldane, 1951), minimum Hellinger distance (Rao, 1960b),
also provide estimates satisfying the Assumption 3.

Situations, however, exist where the Assumption 3 is satisfied without even
the rank of A being g, s0 that the treatment of the paper is, in some respects, more
general.

We have not made any assumption about the rank of A at the true value 6,
and the proofs adopted are valid whatever may be the rank of A. If the rank is full,
i.e., equal to g, then the Assumption 3 is equivalent to

Blim [/ (&~ 2 —...~i"2)] = 0 .. (2.5)

and the proofs of the propositions considered are extremely simple when (2.5) holds.

It has been shown in (Rao, 1960b) that the rate of convergence in (2.4) is highest

when 8 is an m.1. estimate, which indicates some merit in using an m.l. estimate in
preference to any other efficient estimate.
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3. CHI-SQUARE GOODNESS OF FIT AND ASSOCIATED PROBLEMS

3.1. Preliminary lemmas. We shall assemble, to begin with, the key notations
and their rolationships to be used in the | The transpose of a col vector
is indicated by a prime. The probabilities m; and their derivatives are taken at the
truo value 8, of the parameter unless stated othorwise.

7= (i B

M

m—m Mp—m;

U’=( Va ﬁ,..‘, Vn \/;;—)

g 3
Z =(Vaz, wnVnz), z=3 11"4 a_’ofl

(4

D = (v dy .o, Vady), di=08—6)

w_ (1 om , . . . _
Blgxk) = (1/;" _679,_) 8o that BB’ = A, the dispersion matrix of Z and Z = BV.

Observe that U ~ B’D, since

Vi i';/_—f_'-_ ~s 3@ am

m n; 06,

which follows from the continuity of the derivatives of =;(f), where ~ stands for
equivalence of asymptotic distributions.

By cov(X, ¥), where X and Y are vectors, is meant the matrix of covariances

cov (zy, 4) ... €OV (zy, ¥i)

COV (T 1) .o COV (T i)
For instance, by straight computation, we find
cov(V, 2)=B.

Lemma 1: The a.d. (asymptotic distribution) of Z is q-variate normal with
digpersion matriz A.

This result is & consequencé of every linear function Z’'L, (L being & non-
random vector) having -an asymptotic normal distribution (Wald and Wolfowitz,
1944). The distribution is, however, singular when the rank of A is not full.
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LARGE SAMPLE TEST CRITERIA

Lemma 2a: Under the Assumptions 1 and 8, the a.d. of D' A D 13 x¥q) when
the rank of A s full.
If the rank of A is g, then by (2.5)
D~A2Z, DAD~Z A 2.
The a.d. of Z' A1 Z is x¥g) in virtue of the result of Lemma 1 and the same is then;
true of D' A D.

Lemma 2b: Uunder the Assumplions 1 and 3, the a.d. of D’A D is x3(t), where
t 45 the rank of A.

There exists & matrix C, non-singular such that C A ¢’ = A, where A is dia-
gonal and of order ¢, but with only ¢ elements > 0 and the rest equal to zero. Denoting

by v the matrix obtained by replacing the non-zero elements of A by their reciprocals
we find*

A=ACVCA
DAD=DACVIVICAD
~Z'OVivez. (3.1.1)

The a.d. of D’ A D is same as that of sum of squares of linear functions 2’ C’ y* of
Z. The dispersion matrix of Z' ¢' gt is

VIOAO'V =VIAVI = I,
where I, is a diagonal matrix with ¢ elements equal to unity and the rest to zero.
Henoe the a.d. of (3.1.1) is ¥%(¢) and so is that of D’ A D.

Lemms 3: Under the dssumptions 1 and 3 the a.d. of U'U = nE(m—m,)3m;
48 xXt) where ¢ = rank A.

Since U'U~ D’BB'D = D' A D, the result follows from Lemma 2a or 2b.
Lemms 4: The Assumptions 1 and 3 imply plim (V—UYU = 0 or writing
out in full
plim n = (Pv—"')(":r_”v) = 0.
,
This follows from

(V=UYU = V'B'D—D' AD = (2'—~D' A)D— 0 in probability by (2.4).
Lemma 8: Under the same conditions as in me;m 4, ac(V—-U,U)=0.
Since BB' = A, there exists a matrix @ such that B = A @, and ‘therefore,
U~BD=@& AD~@Z. Covsider
8.0. (V—-@'Z, FZ) = a.0(V, (" Z)—a.0. (2, '2)
oV, 2)4—G A ¢
= B@—F AGF=(B-G A& =0.

Il

1 The matrix 0’ V 0 is dofined to bo a psoudo-inverss of A. Tho proportics of such invoracs and thoir
uso in statistics aro discussod by the author (Rao, 1066b). The rolationship A = A C’ v C A is estab-
lished by post ond pro-multiplying with ¢’ and 0 and wsing the rolation CAC’ = 4.
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Lemma 8* :  Let X be a p-variale normal variable with mean zero and dispersion
matriz H of rank f< p. If Q(X) and QX) are lwo quadratic forms such that
(@uUI)+Qu(X))ia ¥* (c), Qu(X)is x5b) and Qy(X) is non-megative, then @y X)is x* (c—b).

Transform X to W such that w,, ..., w, are each independently N(0, 1) and
Wy .., w, are all N(0,0). The transformed quadratic forms @, (W), Q; (W) are,
therefore, equivalent, with probability one, to those obtained by omitting 2y,,, ..., w,.
The problem reduces to the case of @ = I and p = {.

Consider an orthogonal transformation from X to Y such that

X'X = Y'Y and Qy(X)+QyX) = Ayt
Since Q,(X)+@Qy(X) is x¥(c), it follows that A ; = 1, ¢ < ¢ and zero otherwise. FHence
Y32 = QU)LY . (312)
Since Q,(¥)is non-negativa and Q,( ¥) is non-negative being distributed as x2, ,(¥) and
@,(Y) contain only the variables ,,..., 4. The problem is thus reduced to the case
of ¢ independent normal variables, ench with zero mean and unit variance, together
with the condition (3.1.2). Under such conditions. given that Q,(Y) is x}b), it
follows that Qy(Y) is x*(c—b), as mpy be proved by considering an orthogonal
transformation from Y to Z such that
T =Xz and Q(Y)=2z2 4. 42}
3.2, The goodness of fit lest.
Theorem 1: Under the Assumptions 1 and 3, the a.d. of
)t
2_"{1"?_”'.).
1”

is 3 k—1—1), where t = rank A.

Consider

e’ 5 wlp—m)? + = =) + product terms
m, n, m,

or in matrix notation,

V'V ~(V=-UY(V-U)+U'U - (3.2.1)
sinco the product term—0 -in probebility by Lemma 4. The a.d. of V'V is x¥k—1)
and that of U'U is x*(!) by Lemma 3. Hence by an application of Lemma 8, (V —UYy
(V=U) is x¥k—1—t). Alternatively, since n.o. (V—U,U)=0 by Lemma 35,
(V=UY(V—U) and U'U are asymptotically independently distributed. Hence
the a.d. of (V=U){(V—-U) is x*k—1—t). In order to prove the result of Theorem
1 wo observe that

b Mﬂyf‘”'_r_) ~% MPr"’"r)

1"

because of continuity of ,(8).

¢ This lomma was proved and included at tho tion of niy coll : Dr. 8. K. Mitra. For
proving Thoorom 1, wo noed eithur Lomma 5 or Lomma 8.
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General vemarks on the result of Theorem 1. The decomposition of the total
x* in (3.2.1) deserves some comments. If the observed frequency in any cell is indi-
cated by O = np, the hypothetical frequency by # = nw and the estimated (or expected)
by E = nn, the equation (3.2.1) may be written
O—Hy _ 5 (O-EF, 5 (E-H?
x H z & 4+ g (3.2.2)
Xik—1) = x¥b—et—1)+x%0).
For an application of the x* goodness of fit test, it is neceasary to enquire whether
the rank of A is constant over the admissible set of parameters, since the true value
of the parameter @ is unknown. What is asserted by Theorem 1 is that the degrees
of freedom of a.d. i3 dependent only on the rank of A at the true value, although the
rank of .\ may not be samo at all points.
The statistic X(E— H)?/H may be used to test tho hypothesis that a particular
set of probabilities is true given that the admissible set has the representation 7,(6).
3.3. Test for deviations in any particular get of cells. Cochran (1954), and Rao
and Chakravarty (1956) considered problems where attention is concentrated
on the deviation of the observed from the expected frequency in a particular cell or
the deviations in a particular set of cells. Tests for examining the singificance of such
deviations are extremely useful as they may lead to a suitable explanation of the
departure from hypothesis when indicated by a large value of the x* goodness of fit
test. The result of the following lemma will be useful in computing the variances
and covariances of the deviations.
From Lemma 5 we have

a.c. (V—-U, U)=0=>a.0(V, U) = a.c. (U, U).
Hence a.c. (V—U, V—U)=c.(V, V)—sa.c.(U, U)
=c.(V, V)~G@ A @ where G is 83 defined in Lemma 4}
= 0,(V, V)—B' A-'Bwhenrank A = q.

We have, thus, very simple formulae for finding the asymptotic variances and covari-

(3.3.1)

ances of the deviations (p,—ﬁ,). For instance, to test the departure in the r-th cell we
need
v [Vilp,~7)] = v.[va(p,—n)]—e.v.[/n(m,~n,)]

= n{l—n)—a.v.[v/nl7,—m,)].
When the rank of A is g, the last expression can be evaluated in terms of A-! = (i*)
which representd the asymptotio variances and covariances of the estimates 4,

. an, O, .u
a.v.[vum,—m)] =L Z 20, 70:1

The deviation p,—7, can be tested using its standard error.
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If the deviations in a number of cells have to be tested simultaneously we have
to compute the variance-covariance matrix of the deviations by using the result
(3.3.1). With the inverse of the matrix so computed we can construct a quadratic
form in tho deviations, which has a x* distribution with d.f. equal to the number of
deviations to be examined. It may, however, happen that the rank of the variance-
covariance matrix of the deviations is not full, in which case the significance of all the
devintions cannot be examined simultaneously. We consider only those deviations
for which the dispersion matrix remains non-singular.

3.4. Test for the hypothesis that the paramelers belong lo a subsel. We need
some further assumptions to considor the problem of testing whether the parameter
0 belongs to a subset assuming the specification 7,(8) to be true.

Assumplion 4 : The locus of 8 in the subset is represented by

0; = gilay, ..o a0, t=1,..., ¢

where ¢; admit continuous first derivatives and {(a,,

..., &,) is confined to R or to
some non-degenerate interval in R'.

Assumption 5: There exist consistent estimates af, having asymptotic distri-
butions such that

plim /3 [y —julei—ad)—...—julr—a)] =0, u =1, ..., r
[
where y, = da L p;log m;, and (j,,) is the information matrix for the parameters
u
ay, ey &

Assumption 5 is same as Assumption 3 in terms of the new parameters.
Lemma 7: The Assumplions 1, 3, 4 and 6 imply

plim n S (ﬂ;)’("-'-;"u): 0.

By the same argument as in Lemma 4 we have

plim » % (pu—mR)(my—m,) =0 "
My
and, therefore, Lemma 8 is true if

plim % ¥ (P-——"-)(:ﬂ =0 @3.4.0)
Since Vaimi—m)~ mE Mgt _om 4o 4.1) it
u 2%, (as—a?), to prove (3.4.1) it is enough to show

pim = _%f _(gz: pa—ty) = O. (3.4.2)
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LARGE SAMPLE TEST CRITERIA
The left hand side of (3.4.2) is equal to

LW O e M éﬂ,, .
20 g VB OTupy g,
pim X e ag, P

=3 % plimx VA G g
? 0,

o, m, @
=¥ _%Z‘.plim Vilz—indy— e —bd)) = 0 by (2.4).

Theorsm 2: Under the Assumplions 1,3, 4 and 5, the a.d. of

n e (7’.'1'_1_’1.")1
) »
is x(t—a), where t = rank A and a = rank(j,).

The result follows from the decomposition

R i N . P O o

m m
M " n

(3.4.4)

where the left hand side is asymptotically x*(f) by "Iheorem 1, and by Lemma 3, the
second term on the right hand side is asymptotically x*(a). Lemma 7 justifies the
expansion (3.4.4) and finally an application of Lemma 6 gives the desired result.

General commenis on the resull of Theorem 2. 1f we represent by B, = nn*,
expected or estimated frequency under the sccond hypothesis (that the parameter
8 js confined to a subset) the test criterion is

5 (BB

(3.4.5)
2

where it may be noted that E, is written for £, th expected frequency under the first
specification. Combining the decompositions (3.2.2) and (3.4.4) we have

s (O—HP | c(O—E | o (By—By) . (E,—H) )

X —F - + B, + g (3.4.6)
Some years ago, the author (Rao, 1948) suggested a general criterion from which several
large sample tests having asymptotic y? distribution were deduced as special cases.
The test (3.4.5) is, however, different from the provious test. Under the null hypothesis
both are asymptotically equivalent and so also other tests proposed for the purpose

(Mitra, 1956; Rao and Chakravarty, 1966). But differences may exist in their
relative efficiencies in finite samples,

3.5.  Sufficient conditions for the validily of the Assumption 3. The Assumption
3 or 5 as stated may be difficult to verify and it may, therefore, be useful to have
some simple conditions under whioch they are true.

The following lemmas provide
80Me answers.
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Lemma 8 : The Assumplions | and 2a, logcther with the non-singulurity of A
imply the Assumption 3.

We first consider the set S of 8, such that

I [md8)+€,] log m;(8y) > X [m,(8,)—e€,] log m,(6)
where g, > 0is fixed to make m(8)—e; > 0. For p;such that m(8,)—¢, < p; < m; (8,)
+€5. where €; < €,

I p,log 7i(8y) > X [m(85)+¢;] log m(8) > X [m(8y)—e,] log m(8) > X p; log n(8).
For 8 outside 8, and (8—8,)® > &, log {n(0,)/7,(8)} aro bounded in which case
m(8,)

m(8)

can be made uniformly close {within e difference) to

Z p;log

m,(80)

(8)

Ly choosing p; sufficiently close to n(6;), say m,(85)—e; < p; < m(8)+€;.  Since by
Assumption 2

% 7,(8y) log

inf  Em@ylog ™% Seso0
(0_00)2 >é m(0)

X p; log %‘;‘;’ > 0 for all 6 such that (6—8,)2 > & (3.5.1)

whon m,(8,)—¢; < p, < 7,(8)+¢,, where ¢, is smaller of €, and ¢

Since 7,(8,) > 0, and 7.(8) are continuous, the result (3.5.1) shows that the
supremum of £ p, log m,(8) is attained in the open interval (8—8,)2 < 8. As 8 can bo
chuson arbitrarily small, and p; is closo to 7,(8,) with probability one, the value 0 at
which the supremum is attained provides a consistent estimate of 8. So far we have
used only Assumption 2 and continuity of m(8).

If m(8) nre differontiable, the derivative of X p; log m(6) vanishes at 8. This
whows that the m.l. equation has at least one root which maximises the likelihood
and which provides a consistent estimate.

Wae shall uge the condition that rank :\ is g, and the continuity of the deriva-
tives, to prove Assumption 3. The rank of the matrix A, however, does not play a
significant role in the proof. It is felt that a weaker condition than this may be
sufficient for this purpose.

The m.l. equation is

or X P g:}i' =0=% ‘/:"(1_’_"') Z—Z'—);: ‘/"(’:"_”')i (3.5.2)

L
n, (] 7, (] w, a0,
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The first term on the right hand side of (3.5.2) ir ~ 4/nz, Using the expansion
Valm,—m,) = 2( gg’ +en ) V/md, where e, 0as 8- 0,
(3

the second term on the right hand side of (3.5.2) becomes
Vn Zjud, (3.5.3)

1 37;, ( on,

where ju=2 o0, \ 26,

+or )

_v 1 dan, B om, , -
=3 ("’ 2, +e,,)( 2, +e,‘), e,—0 83 858,
=i,te, ¢e,~0 as 08 e (3.5.4)
-1, a8 0 8,.

We may write the equation (3.5.2) as the equivalence
A/nz,~ Ej,/nd,. (3.5.5)

By the assumption that |i,| = 0, when 8 is sufficiently close ta 8y, |j,.| # 0 in virtue
of (3.5.4). Therefore, the equivalence (3.5.5} may be writton

Vnd,~ZjHynz, () = ()7 .. (3.5.8)

~ Zi%/nz, a8 - i¥ in probability .. (35.7)
which shows that the a.d. of v/ndy, ..., v/n d, is multivariate normal with dispersion
matrix A-1, Inverting the relation (3.6.7) we have

vz ~Zig/nd = /A X, d,
which is (iii) of the Assumption 3.

The Assumption 2 used in Lemma 8 is important as it specifies the condition
under which we can assert that the m.l. estimate has the properties mentioned in
Assumption 3. But if merely the existence of estimates satisfying Assumption 3
has to be established, Assumption 2 may be replaced by the weaker identifiability
condition.

Lemma 9 : Assumptions 1 and 2b imply Assumption 3.

We consider a aphere of radius & round 6, Since

inf T 7(0,) log ’1”;‘((%0)) e (35.8)

over the sphere is attained, because of continuity of # (8), at some paint on the sphere
the identifiability Assumption 2b ensures that the expression (3.6.8) is greater than
e¢> 0, The argument of Lemma 8 applied to points over the chosen aphere shows
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that the likelihood at 8, exceeds the likelihood of any point on the sphere with probabi-
lity unity as n— c0. This shows that a local maximum of the likelihood is attained
at some point inside the sphere. The firat derivative of log likelihood vanishes at that
point. Henoce there exista a root of the m.l. equation which is istent. The rest
of the argument is as in Lemma 8.

3.8. oodness of fit tests when the Assumption 3 is not salisfied. If the estimated
parameters do not satisfy the Assumption 3 the statistic X(0— E)?/E need not have a
x? distribution. But in some cases, as when the method of moments is followed one
may construct an nlternative statistic with its a.d. as y® on the same d.{. as the goodness
of fit y2.

Let the parnmeters be estimated by the method of moments i.e., by equating
the observed moments of the grouped distribution to the hypothetical values for
the grouped distribution. As the estimating equations are linear in the frequencies,
the estimated deviations

Bi—Ts oer Ps—Th . (3.8)

are subject to as many linear restrictions as there are independent parameters, besid
their sum being zero. If the matrix of derivatives of #, has rank q, the asymptotic
dispersion matrix of the deviations will have rank (k—g—1). We need only choose
(k—g—1) independent doviations and using the reciprocal of their dispersion matrix
construct the quadratic form. This has x? distribution with (A—q—1) d.f. The
asymptotic dispersion matrix of the deviations can be easily computed by the usnal
methods.

We can also test the significance of deviations in any particular cell or devia-
tions in & particular set of cells as in Section 3.3 using the asymptotic variances and
covariances of the deviations (3.6.1).

There is another situation where the parameters are estimated by an efficient
method utilizing the individual observations and not simply the observed frequencies
in certain class intervals. In euch a case the statistic Z(O—E)/E, when used as
x}k—g—1) over estimates significance. The extent to which this happens has been
studied by Chernoff and Lehmann (1954). An sltema.hve expressxon is given for the
excess in terms of the difference b b btained in two different ways.

Let us indicate by 0*, the estimate of 6, and by #* that of 7, obtained from the
original observations by an efficient method of estimation such as the m.l. The
information matrix for a single observation is denoted by (j,), reserving (i,,) for the
grouped distribution. Let y, = n~Y(d log L/36,), where L = f(z,, 8) f(z,, 0) ... f(z,, 6)
and f(x, 8) is differentiable. We make the following assumption regarding the estimate
6%,

Assumplion 6:

Phm  A/A{Y =GB — O — ..~ 0= O] = 0, 8 =1, ..., q.
36



LARGE SAMPLE TEST CRITERIA
Lemma \1: Under the Assumptions 3 and 6
i) av. Vap—m) = v[Viup—r)}—evVa(m—m,)]
i) scfvilpi—nd), Valp—m)]
= °-[\/’—‘(Pi—”‘)‘\/’_'(Pl’".q)]_a-c-[\/;l(":—"i)) \/;l(";'—"j)]
jiiy plimn ¥ @%’i’ =o.

The results (i) and (ii) are immediate consequences of the equations

a.c. [Va{p,—m)/u(m—ma,)] = 0 for all » and s ... (3.8.2)
which are true if
a.c. [Va(p,—m)/ay] =0 foralrands. ... (3.8.3)

Let. us assume for simplicity that the ranks of (j,) and (%,,) are both equal to q, the
number of parameters. To prove (3.8.3) we have to show that

a.c. (v/a(p,—m)V/nY] = a.c. W —a,), Vel
= —31;1 (obtained by expanding 7y in terms of y;) ... (3.8.4)
£
Since E(p,) = m,.i.e.,

2, fl@) oo flan)dy ,.. deg = 7,
differentiating with respect to A,, we obtain

[pL 258 as, ey = [(WVaR) (VAL d2y o diy = T (3.05)

Comparing (3.6.4) and (3.6.5) we find (3.6.3) is true. Further ValT,—m) A~ \/n
61r,

(0 —6;). Hence result (iji) of the lemma follows if

plim v/ a;" (Pr—"r)

which is true in virtue of (3.4.3).

The results of Lemma 11 are important in many ways, For instance the
significance of the deviations in any given set of cells can be tested. although the esti-
mates are not obtained from the grouped distribution, since the variances and covari-
ances of the deviations can be easily computed by using the results (i) and (ii). Thus

ov. [Valp—m) = mi1—m) -5 5 T T
8.0, [VAD,~7}) , VD —7)] = —m7,— z%_ g"u .

It may be observed that the disperaion matrix of all the deviations (p;—}) may have
the maximum rank (k—1), so that a x* based on (k—1) degrees of froedom may be
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constructed to test goodness of fit. But this is not likely to be an efficient test. On
the other hand the statistic
ag@em)
m

need not have a x? distribution asymptotically as shown below. We use the result
(iii) of Lemma 11 to obtain the decomposition

2 (Pi—‘"i.) ~nZ (P. .) + a2 ' ("(_7’()

i m m

The first term on the right hand side is asymptotically x*(k—g—1) as shown in
Theorom 1. The second term which is asymptotically independent of the first provides
the excess and depends on the numerical difference between estimates obtained in
two ways.

4. TESTS IN CONTINGENOY TABLES

Problems associated with a single multinomial distribution have been fully
discussed in the earlier sections. Another group of problems, which is important in
practice, is related to contingency tables, or independent samples from a number of
multinomial distributions. Let us suppose that we have samples of sizes =y, ..., 0,
(ny+...+n, = n) from m finite multinomial populations, all not necessarily having
an equal number of cells. One of the problems is to test the hypothesis that the cell
probabilities could be represented in terms of ¢ parameters, 6, ..., 6,. The likelihood
of the parameters is the product of the likelihoods

LL,..L,
corresponding to the m samples. Let us define

_ 1 dlogk
Y7 W o6

n, =2
and (it,) is the information matrix per single observation from the ¢-th multinomial
distribution. We make the following assumptions.
Assumption 7: The rank of (g,,) is ¢, where g, = X As*,.

Assumption 8: Every cell probability 7, as a function of the parameters
admits continuous first order differential coefficients.

Assumption 9: If my,, <o Mg, 670 the probabilitiea for the i-th multinomial
then

E 74(8) log ”"‘f;;

is bounded away from zero when (8—8,)® > 6, however small, for each s.

a8
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Following the urguments of Lemma 8 it can be shown that there exist consis-

tent estimates 0',, 0; having asymptotic distributions, such that

plim /R[E Aizy— (0, ~ 00— ... —g;p(0—0)) = 0
for j=1,...,mand fixed Ay, ..., A,» We may now prove the following in the same
way us Theorems 1 und 2.

Theorem 3: Under the Assumptions 7, 8 and 9 the asymplolic distribution of
the statistic

§ Smpy—my _ g 5 O—ER

iml §=1 my E
is Y}(Zk;—m—q).

We use the decomposition
vy megmmt gy Pyl oy g U =) )
Ty my i

where the left hand side is asymptotically x2 (X &;—m) and the last term in (4.1) is
asymptotically x%(q).

Theorem 4: Under the Assumptlions 7, 8 and Y and the further assumplions
that (i) 6y, ..., 0, can be represented us functions of ¢ < g paramelers ay, ..., 2, (ii) every
0, admits first partial derivatives in ay, which are continuous and (iii) @ condition similar
to Asumption 9 in lerms of a; i3 satisfied, the a.d. of

py =Tty (BB

i 4 m E,
i X3q—1), where mj denoles the estimate of n;; as a function of paramelers 2;, and E,, E,
are the expeclations under the original and new specifications.

To prove the result we first obtain the decompositivn

3 3 Ty |y gl oy mm— )t
i iy m; ”ij

e g Bi—HY _ gy (BB | gy (Ba—HP
or ‘ZT LL..,EQ_-.—f—E).. 5

and proceed as in Theorem 2.

Theorems 3 and 4 concerning several multinomial distributions cover the
multidi ional contingency tablesin so far as hypotheses specifying the cell prubabi-
lities are concerned.

Asg an application let ug ider the phenotypic frequencies of O, 4, B, 4B,
blood groups in two samples of individuals from two communities. The first hypothesis
is that for each community the freq ies are istent with Bernatein’s theory.
There are then four parameters, p,, g,, representing the 4 and B gene frequencies in
one community and p;, ¢;, in the second. The second hypothesis specifies further
that the gene frequencies in the two communities are same, so that all the cell

a9
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probabilities involve only two parameters p,¢. For estimating thesc parameters by
the m.l. method reforonce may be made to Rao (1952).

community 1 community 2
T [ E,y E; 0 E, Es
o 121 118.89 11794 18 119.03 121.82
A 120 122,44 105.52 96 92.88 108.81
B n 81.54 oM. 4 121 118.74 101.190
AB 3 30.13 31.40 30 32.66 32.37

Tho test for tho first specification (cunsistency with Bernstein's theory) is

E%: 0.44  forcommunity 1, d.f =1
1

= 0.35 for " 2, df. =1
or a total of 0.79, which is small for x}2). To test the equality of gene frequencies

tha statistio is
bp> (ELEE”L)’ = 1104, with 4—2 = 2 df.
2

This iy significant at 1% level, indicating differences in the geno frequencies, In
a previous papoer (Rao, 1048), tho author examined the second hypothesis by using
a different large sample test. The present test based on the difference between ex-
pented values under the two hypotheses seems to be more attractive in practice,
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