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Abstract: We sdy the stabonary distnbuton of the standard Abelian sandpile model
inthe box A, =[—n.n E"' N7 ford = 2. We show that as n — oo, the finite volume
stationary distributions weakly converge 1o a translation invariant measure on allowed
sandpile configurations in Z9. This allows us to define infinite volume versions of the
avalanche-size distibution and related quantities. The proof is based on a mapping of
the sandpile model o the uniform spanning tree due o Majumdar and Dhar, and the
existence of the wired uniform spanning forest measure on 29 In the case d = 4, we
also make vse of Wilson's method.

1. Intreduction

The Abehian sandpile model (ASM) was miroduced by Bak, Tang and Wiesenfeld [2]
as a model exhibiting self-organized criticality (SOC). Roughly speaking, SOC arises
when a dynamics drives a system Wwwards a statonary state chametenzed by power
law comrelations in space and time. The concept of SOC was proposed in [1, 2], as
a mechanism that could explain the occurrence of fractal structures in diverse natural
phenomena. Vanous physical siwations where the concept may apply are discussed in
the book [11]. The ASM 1s one of the simplest models o which the complex phenom-
enon of S0OC can be studied. Due 1o its rich mathematical structure and tractability, the
miodel has recerved substantial interestin the physics hitemature and inrecent years in the
mathematical literature as well; see the review papers [9, 6] and [14].

The Abelian sandpile 15 an interacting particle system (particles = “grams of sand”)
living on a finite subset A of the d-dimensional integer lattice Z¢. In finite volume A,
the model is defined as follows. Every site i € A is occupied by a number of particles
e 1.2, ... 0 IF 1 = z; = 2d then the site 15 called stable, if z; = 2d. 1Lis called
unstable. The value z; is also called the height of the site. The value z,. = 2d is called the
critical height. The height configuration undergoes the following discrete-time dynam-
ics. Given a configuration in which all sites are stable, we add a particle at a random
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site i € A which is chosen according o a distribution g, with ga(i) = 0§ € A If
as a result, i becomes unstable, 24 panicles jump from sile i, one to each adjacent site,
decreasing the height of i by 24 and increasing the height at each nearest neighbor by
1. If the unstable site i was on the boundary of A, we sull decrease the height of i by
2d, and one or more particles leave the system through the boundary. This operation
is called toppling, and it can be concisely writlen as z; — z; — Ay, where A is the
discrele Laplacian in A,

2d ifi=j,
A= 4 —1 if i — j| =1,
0 otherwise.

It may happen that new unstable sites are created by the woppling of . We topple them
as well, untl eventually all sites become stable again. The order m which we do the
wpplings does not matter. One can show that any possible sequence of wpplings leads
o the same stable configuration [3, 20]. This new stable configuration is the state of
the system after a single time-step. The result of particle addition at i and subsequent
relaxation 15 given by an operatora; @ 24 — Q4 where Q24 = {1, ..., 2:!}"‘. Due to
the random chowee of 1, we have a Markov-cham with state space £2,. The operators
a; commute (hence the name Abelian), which makes it possible 1o analyze the chain in
some detail. In particular, there is a unique stationary distribution vy , which is uniform
on the set of recurrent states of the Markov chain, and is independent of g4 [5, 20]. For
this reason, iLis quite natural o fix g, 1o be the uniform measure. We note that the above
defimtions and resulls camry over Lo a general graph [6, 20].

The first mathematical results about the ASM, including the statements above, were
proved by Dhar, see [4, 5, 8] Addinonal background 1s provided by [6, 9], For a detaled
introduction to the basic properties of the model we refer the reader to [20]. A thorough
review of ‘exactly solvable” models exhibiting SOC is carned out in the lecture notes by
Dhar [7]. A unified mean field sudy of SOC, including sandpile and forest fire models,
can be found in [25]. Further background about SOC is provided by [11, 6, 9] and the
references therein.

The main object of study in the model is the sequence of topplings performed in
one time-step, called an avalanche. A basic problem is w0 determine the properties of
avalanches under the stationary diswibution v . Some quantities of interest are:

(a) the number of wopplings in an avalanche (siee),
ib) the number of sites affected by an avalanche (range), and
ic) the distance of the furthest affected site from the inital toppling (radius).

It is often assumed that these quantities have distributions with a power law tail in
the limit A 7~ 24 Numercal results in ¢ = 2 indicate a rich fractal and multi-fractal
structure of the distributions of (a) and (b) [24]. Also, it has been argued that above the
upper critical dimension «, = 4, the probability of an avalanche of size v decays like
572 (again in the large volume limit) [23]. To the best of our knowledge, there is no
rgorous proof of power law behavior, either in « = 2 or higher. Exact computations are
possible ford = 1 [7] and on the Bethe lattice [8]. In the former case, the probability of
an avalanche of size s occurring goes to O for fixed 5. In the latter, the probability of an
avalanche of size 5 15 asymptotic 1o a multiple of a2 [see (614 [8])

As astep in analyzing the above distributions, in this paper we sudy some aspects of
the limit A 7 29, and define avalanche characteristics in the infinite volume. In the two-
dimensional case, Priezzhev [22] caleulated the exact values of limy P talzn = k),
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k=1,..., 4. By an idea of Majumdar and Dhar [ 18, 17], it possible o compute, in
principle, the limiting probability of any finite height configuration that satisfies a cer-
tain minimality property. In this paper, we prove that vy converges weakly to a limit
v in dimensions d = 2 (see Theorem 1), which implies the existence of the thermody-
namic limit of the full height configuration in the stationary state. Since the distributions
of the quantities (a}-(c) above can be defined in terms of vy alone (without referring
to the dynamics), we obtain that limiting distributions for (a)—(c) exist It remains an
important open problem to describe the limit in more detail, and to determine the effect
of the boundary in finite volumes. Recently, infinite volume versions of the sandpile
process have been constructed on the one-dimensional lattice [16], on an infinite tree
[14], and for a dissipative model [15]. Unlike in these aticles, we do not construct a
dynamics in the limit. However, our Theorem 1 18 a necessary ingredient in such con-
strucons.

Our proof is based on the deep observation of Majumdar and Dhar [19], that the set
of recurrent states of the ASM can be mapped onto the set of spanning trees on AL This
observation has also been used i [22, 23], [tis known that vy 15 the uniform measure
on the set of recurrent states, and therefore vy, coresponds o the uniform spanning tree
measure on A . Itis also known that the uniform spanning tree has a limitas A 7 29
[21, 3], called the uniform spanning forest (USF). Therefore it is not surprising that vy
converges as well, and in fact, when 2 = d = 4, a continuity property of the comrespon-
dence is indeed sufficient 1o prove this. However, in the case d = 4, the correspondence
becomes non-local, and making the argument precise requires effort. The non-local-
ity is due to the fact that the uniform spanning forest has infinitely many components
when d = 4. As a consequence, the correspondence between sandpile configurations
and trees breaks down in the infinite volume when d = 4, and a bit of extra random-
ness is necessary 1o describe the limit. This leads to the extra permutation in (19) of
Lemma 3.

The rest of the paper is organized as follows. In the next section we state some basic
notation and preliminaries. In the following Sect. 1.2 we stale our main theorem and
comment on its implications. Sect. 2 contains a review of the burning test and the con-
nections of the ASM with the uniform spanning ree. Finally in Sect 3, we provide a
proof of our main result.

L1 Notation and Preliminaries. We let Py denote the product of the measures vy
and g4 . We think of Py as the joint law of the stationary height configuration and the
position of particle dropping. We write X 4 for the random site of A specified by g, . We
somelimes restrict our attention to volumes of the fomm A, = [—n.n i"r ME4 and wrile
Uy = vy, Py = Py, ele. We regard vy, as a measure on the space £2 = {1, ..., 2d }3,..
in the natural way. We denote the natural o-algebra on 2 by G.

By a cylinder event we mean an event in G depending on the heights of finitely many
sites only. For v € Z9 let 1, denote translation by v. If E is a cylinder event depending
on a set of sites A, then 7, E depends on the set of sites 1, A = {u+v:u e A} Fora
random variable ¥ we define 1, ¥ similarly.

Given a function f{A) taking values in a metric space with metrc p, and defined
for all {or all sufficiently large) finite subsets A of Z9 we say that lim , ~zd f(A)=a,
if given any & = 0 there is a finite Ag C £ such that for all finite A 5 Ag we have
Al fiA),a) = &

When i and j are neighbors in Z¢ we denote this by i ~ j.
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1.2. Results. Our main result is concemed with the limit of vy as A 7 294 In its
statement, we assume that X, satisfies

lim lim sup Pp{dist( Xy, dA,) = en) = (L (1)

EJ0 p—no
This condition is clearly satisfied when X, is uniform on A,

Theorem 1. Let d = 2. The measures v, weakly converge to a translation invariant
measure v on $L For any cylinder event E and any v € T4 we have

WE)= lm vy(E) = hm vty E) = hm Fyiry E). (23
n—0a n—00 n—0a

Remark 1. (1) The first two limits in (2) exhibit the weak convergence and translation
invariance. In (10) and {34) we give expressions for v E) in terms of the USF on
Z4 . The third equality in (2), which is a consequence of translation invariance,
says that the configuration at the position X, has the same limiting law as at0). See
remark (v) below,

(i) As mentioned eadier, there is a difference in the proof according to whether 2 =
d = dord = 4 In the former case the USF is a.s. a single tree, and in this case
the one-to-one correspondence between spanning trees and allowed configurations
extends to configurations on Z9. When d = 4, the correspondence breaks down
on E"r, due to the fact that the USF has multiple trees. However, the limit can still
be described in terms of trees using extra randomness.

(iii) For 2 = d = 4, we establish the first two limits evenas A 7 Z9. Ind > 4, the
first two limits hold for growing regions of the form A, = (nG)N 24, where G is
an open set in BY with smooth boundary. We believe the former stronger result to
hold also whend = 4, but it was convenient o restret o regular volumes al certan
points in the proof. In the case of the third limit in (2), the restriction w volumes
with regular boundary is necessary, if we want condition (1) to apply when X,
is uniform. In the case 2 = d = 4, our proof allows us to relax condition (1) to
limy .~ Ppidist{X,, dA,) = N)=0forany N = 0.

(iv) It is known that for any A the set of recurent states can be characterized as those
that do not contain any forbidden sub-configurations |20, 5]. Since forbidden sub-
configurations are finite, they do not occur in the limit, and hence v is supported
on allowed height configurations.

iv) Given a configuration in £2, it makes sense w0 talk about the size, range, radius,
ele. of an avalanche when a particle is dropped at a fixed site, leU's say the on-
zin. Let § denote one of these guantities. Then Theorem 1 implies that p(s) =
limy nc 1, (5 = 5), 0 = 5 = oo is well defined, since the event {§ = s} is a
cylinder event. By the third equality in (2), pis) also equals the limiting probahil-
ity of {rx, 5 = s} when a particke 1s dropped at a random site X ;. In particular,
when § = avalanche size, pis) is the asymptotic avalanche-size distibution. 1t
remains an open problem to determine whether 37, p(s) = 1 or = 1, the latter
case being equivalent wo the absence of infinite avalanches. The absence of infinite
avalanches for d = 4 will be investigated in [ 10].

ivi) It is possible to show that pis) = O fors = 0 when d = 2 To see this, we
give an explicit finite configuration C, such that v(C,) = 0, and C, produces an
avalanche of size s on addition at 0. For 5 = 0, Cy consists of a single 1 at the
origin. Let ey, ..., g denote the coordinate vectors. For s = 1, we consider a
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string of 5 siles iy = (k — L)ep (1 = k& = 5), and we set zj, = 2d. We also set
Ziji—e = LiZide; =1 Q@ = j=d)zpae =22 =j=d,2 =<k =<3s),and
Zj,+e, = 2. These values make up the configuration C,. We denote the support of
Cy by AL I s easy o check that Cp s allowed (does not contam any forbidden
sub-configurations), and produces an avalanche of size s if we add at 0. Also, C; is
minimal, inthe sense that decreasing any value creates a forbidden sub-configura-
tion. By the technigque of Majumdar and Dhar [ 18, 17], recurrent configurations in
A containing C; are in one-to-one correspondence with recurrent configurations
containing C; in a modified graph A" (with toppling matrix A"). In A", the set A
is connected by the single edge {i; + e, i; + 21} o the rest of the lattice. This
ives v (C) = v (Cyddeti A" /det{ A). The ratio of the two determinants can
be evaluated in terms of the Green function by the method of [18]. In any case,
the ratio remains strictly positive in the limit A 7 Z¢ (one way to see this is by
counting spanning trees, and using Wilson’s algonthm [3]). In the cases s =10, 1,
onechasv (Cy) = 1and fors = 2, v,.(C;) isa positive number that only de pends
on A, These observations imply vi{Cy) = (0L

(vii) In [ 18], the authors compute the correlation between the events that sites O and x
irespectively) have height 1, in the large volume limit. Their computation directly
implies that

wzo=1, zx=1)—vzo=Dvizx =1) ~ |x|~2¢, as|x| = co.

That is, under v, at least the random field Iz, = 1] has power law comrelations.
(wiii) It is natural to ask if one can define dynamics in the infinite volume. This gues-
tion has been addressed in the one-dimensional case [16]. for the Bethe lattice
[14] and for a dissipative model [15]. In the last two cases, the absence of infinite
avalanches was an important ingredient (see remark (v)). Construction of infinite
volume dynamics for d = 4 will be addressed in [ 10]. There the authors will also
investigate ergodic properties of v, based on tail tiviality of the USF [3].

2. Relation to the Uniform Spanning Tree

Below we review the comrespondence between the ASM and the uniform spanning tree
[19], and then quote the necessary results about the USE

2.1. The buming test. The following algorithm, called the “buming west™ [5, 19, 20],
checks whether a configuration in £, is recurrent. At the same lime, it establishes a
one-lo-one map between recurrent configurations and spanning trees on a suitable mod-
ification of A. Define the graph A by adding a new sile §4 o A which is joined 1o
each i in the boundary d A by 24 — deg(i) edges. Given a stable configuration, we set
Ap = {84}, and call Ay the set of sites burning at time 0. Fort = 1 we recursively define
Ay (the set of sites buming at time 1) as follows. Site § is burning at time ¢ if its height
is larger than the number of its unburnt neighbors.
In other words, for § € A let

nj)=#ieA i~j, igU_LA,} and A,={jeA:z;=nj), jgU_LA)

Given a recurrent configuration 2 = (z;);e s we define a spanning tree Ty = ¢(z)
of A rooted at §,. We build the tree in such a way that A; is the set of sites at graph
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distance ¢ from the root. It is easy 1o see from the definitions that any site j € A; has
at least one neighbor in A, (¢ = 1). Therefore, to complete the definition of Ty, we
only need to specify how w choose the parent of j € A;, when there is more than one
neighbor in A;_ . For this first observe that for 1 = 1 we have

JE A if and only if ne_ 1 (j) =z = nel ), (3)
where we set ngl f) = z, = 2d. The number of possible parents of j, that is
rj) =nea(f) —ne i), (4)

is therefore equal o the number of possible values of z; that are allowed by (3). Thus
we can choose the parent of j depending on the value of z; in a one-to-one fashion
according o some fixed rule.

The above algorithm produces a tree Ty, , which spans A if and only if the sets (A, dr=1
exhaust AL 1t is known that this happens if and only if  was recumrent [ 19, 20].

The procedure can be reversed o show that ¢ 1s one-wo-one and onto. We also describe
¢~ in detail. Given a spanning tree Ty, let B, denote the set of sites at graph distance
tfomthe root, r = 0. Letm, (j)y =#i i ~ j, i & L.'f__::l]ﬂj.}. For any j £ B, the
number of neighbors of jin By is my_ () — m;(j), and one of these neighbors is
the parent of j. We set the value of z; in such a way that for § € B, the inequalities
my_(j) = zj = mlj)are satisfied, and we pick that value which corresponds Lo the
parent of j according to our fixed rule. It is clear that the resulting configuration z is
such that in the buming test A, = Byono(f) = me () and ¢iz) = Ty

Remark 2. (i) In order to reconstruct z 7, it is enough to know the distance of § from
the root of T, relative to the distances of its neighbors from the root. This usually
allows one to reconstruct 7 ; knowing only a small portion of Ty, Let v denote the
eardiest common ancestor of all neighbors of j (earliest means furthest from 44 ),
and let F denote the subtree consisting of all descendants of v. We regard the site v
as the root of F. The pair (F, v) already determines the value of z;. This is because
the distances of j and its neighbors from v in F give us the necessary information
about sy i ) and m, i §), even without knowing for which r we have j € B;.

(i) By the argument of (i), it is enough o know, in fact, the relative order of the dis-
tances from each neighbor of § 1o the root. This observation will play a key role in
the cased = 4.

Since all recurrent states have equal weight under vy, the image of vs under ¢ is
uniform on all spanning trees of AL 1tis called the uniform spanning tree on A with wired
boundary conditions. We denote its law by s IUis known (see Theorem 2 below) that
as A 7 T4, s weakly converges to a limit called the wired uniform spanning forest.
We refer to the limit simply as the USE. (On 29 the wired and free spanning forests
comcide [3].)

2.2, Properties of the USF. The theorem below summarizes the results we need about
the USE The theorem was proved by Pemantle [21], except for an extension proved in
[3]. For more background on spanning trees see [3]. In the statement of the theorem
below, 4 is the law of a random subset Ty of edges of 294,

Theorem 2. fetd = 1.

(i) if B is any finite set of edges in ¥, and B C A C A" with A’ finite, then
pa(B CTa) = pn(BCTy). (3
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(i) For any finite sets B C K of edges in Z¢ the limit

WTNK=B)E lim ua(TaNK = B) (6)
AR

exists, and defmes a translation invariant probability measure, called the USE.

{iii) The USF has no cveles p-a.s Ifd = 4, the USF is asingle tree aus. For2 = d = 4
the USF has one end a.s., meaning that any two infinite paths in T have infinitely
many verices in commaon.

{iv) If d = 4 then as. the USF has infinitely many components, each component is
infinite and has a single end.

Proaf All statements, except for the last statement of {iv), are either proved in [21]
or are implicily present there. The last statement of (iv) is proved in [3], and proofs
of the other statements can be found there as well In particular, (i) follows directly
from [3, Cor. 4.3]. For the special case K = B, the existence of the limit in (6) follows
from the monotonicity in (3). The general case 8 © K follows by inclusion-exclusion.
Statements (1) and (iv) follow from [3, Cor. 9.6], and [3, Theorem 10.1] 0

3. Proof of Theorem 1

3.1 The case 2 = d = 4 As indicated eadier, the proof of Theorem 1 in this case
is accomplished by exploiting the continuity of the comrespondence between spanning
trees and the sandpile model. In Sect. 3.2 we use a more concrete approach that would
also apply here. We begin by listing some conventions and definitions.

1. It will be convenient to regard py, and g (from Theorem 2) as measures on the space
Q' =0, I}E“l .where EY denotes the set of all bonds of Z¢, and 1 represents an edge
being present. We consider £2° with the metrizable product topology. For e £ 27 let
| denote the restrction of w to edges joining vertices in A. Let X' < £ denote
the set of spanning trees of Z¢ with one end.

2. Let F be a finite rooted tree in 29 with oot x. F will be assumed to denote the edge
setand V{F) the verex set. For a set of sites B < V(F), we define eca(B; F) as the
‘earliest common ancestor’ of B in F. More formally, this can be described as the
unique site furthest from x and common to all paths that star in B, end at x and stay
in £ 1t may so happen that for certain B, eca(B; F) = x. Let desei B; F) denote the
tree (or forest) consisting of all descendants of B in F.

3. We consider the sandpile configuration in a fixed finite set Ay C Z9 for A 5 Ap. Let
A denote the set of sites that are either in Ay or have a neighbor in Ag. Let

= g T
F=FA)=(F.x: F 15 a finite rooted tree in Z29 with root
r, AC ViF),ecald; Fy=x

Given (F,x) € F, let Hp, denole the set of edges incident on a site in V(F),
excluding those edges meident on x that do notbelong w F. Inparticular, F C Ay ..

4. We wrte T for the USE that is, T & Q2 with distabution g, 16 we define the “root”™
of T to be at infinity, we call x* = eca( A; T') and F* = dese(x™; T).

5. We use the notation H*{w) for the set valued random variable whose value is Hy |
on the event @ N Hp . = F and Z¢ otherwise. We also extend the definition of F*
and ¥ whenever H*{w) is finite by leting F*{w) = F, x*(w) = x on the event
wNHrp,=F.
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Before we proceed o the proof, we observe the consistency of the above list. First,
note that due to Theorem 2 (i), p(A) = 1. Similady, pa(Xs) = | for the set Xy
defined by

poia . |4 has no eycles, and each component of
K R g 18 joined o A® by a unique edge
Secondly, Theorem 2 (iii), ensures that (F*, x*) is g-a.s well-defined for 2 = d = 4,
and we have (F*, x*) € F. Thirdly, for different (F, x) € F, the events {wNHg . = F}
are disjoint, which implies that H* is well defined.
Finally, observe that

{F*. %)= (F.x)} = {TNHpy =F).  peas., )

which means that the extended definition of F* and x* makes sense. We will assume
the last observation for now and provide a proof at the end of this subsection.

Proaf of Theowem [. We observe that by Remark 2(i), for e £ X'y, the sandpile config-
uration in Ap is already determined by (F*, x*), independently of A, when H* < AL
More precisely, defining the auxiliary space 24, = {1...., 24140, the configuration is
given in terms of a function W @ F — £2,4,. The correspondence in Sect. 2.1 can be
recast in terms of functions fi, f: Q@' — Q4 defined below. Let 4, = 24, U {*]
iendowed with the discrete opology), and define

- e wlalae @ e Xy,
Jalw) = L e

: _ wiF,x) when H%w) = Hg .,
L= !* otherwise.

By the observations above, for w € A, and H¥(w) C A, © A we have fulw) =
Flaw) = (F*, x*). This implies that forn € 24,

lim supfif[f;, =u|—JI[f =ulldps = hm lim LalH*® Z A =0 (&)
AT k—oo A #5d

Here in the last step we used that {H* < Ay} is a eylinder event, and that H* is finite
p-as, It is easy to see using the definition of H* that f is continuous at every @ € A,
and therefore by the general theory of weak convergence [13, Sect. 12]

lim ff[_f':ulﬂ'_u;, =ff[_f'=u|du. ()

AT

Now (8) and (9) imply that for any € Q2 4,,

lim va(z|s, =u)= lim ff[fn =ulduy = f If=uldu e vZ| a4, = u).
& 72d & 72d

This exhibits the weak convergence of vy 1o a limit v. For a eylinder E depending on
the set of sites Ag we have

wWE)= Y  u(TNHp,=F), (10)
(FxeFg
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where
Fe={iF.x)eF:W(F, x)e E}. (113
Translation invariance of the limit follows, since for any fixed v € Z¢ we have
J.lli/rn:l?.“l rait, E) = , IirrE!.“l v alE) = J-,Ii/n:!g.\l valE) =v(E). (12

For the third equality in (2), observe that for fived N andn = N,

Pa(tx,E) = Pultx, E. dist(Xu, 0A) S N)+ ) vn(nE) Pl Xy = v).

vEhL!
distip, Ay 1=N

The first term is bounded by Py (dist(X,, dA,) = N),and goes w0 as n — oo By (12)
the second term s arbitranly close o v{E) when N s large, andn — oo, 0O

Proafof (7). First we show that (F* x*) = (F, x) implies the event on the right hand
side. Since F = F*, wehave F C T, and hence F © T N Hy .. Consider an edge
F={luy, 2y € He \ F,withu) € V{F). We show that f & T. In the case when we
also have uz € V(F), we are done, since T has no eyeles. If wz & V(F), then first note
that 1y # x, by the definition of H . Therefore, if we had f € T, then w; would be a
descendant of v* in T, and we would have f € F* = F, a contradiction.

Now assume that TN Hi , = F occurs. First, this imphies F < T It also implies,
by the definition of Hg ., that if an edge incident on any w € V(F) with ¢ # v does
not belong to F, then it does not belong 1o T either. Hence the only site in V(F) that
is connecled (in 7) to infinity without using edges of F is x. This implies that V{F) is
precisely the set of descendants of v in T, and that F consists precisely of those edges
of T that are descendants of x. [tis simple 1o deduce from this that v* = yand F* = F.
[}

3.2, The case d = 4. We will be borrowing most of the definitions and conventions
from the previous case. The few modifications we will make are due to the fact that there
are muluple components in the USFE.

1. We need to modify the definition of the set F. We let

F; are vertex-disjoint finite rooted trees in
F=FA)={(F.x)_ : Z¢ with wot x;, eca(A N V(F); Fi) = x5,
i=1,...,r,and A C L.'j-=| ViFi,r=1
We write ( £, ¥) o denote an element of F.

2. For A o A, recall Ty from Sect. 2.1, Since Ty, falls apart into multiple compo-
nents as A 7 29, any two fixed sites u and v are either connected within a “short
distance’, or the connection occurs through the rool 8, . We decompose Ty into ver-
tex disjoint trees by removing 8, With slight abuse of language, we refer o these
trees as the components of T, . The decomposition of T, induces a decomposition
of A ino (random) sets A;, | = i = r, where u, v € A belong to the same A; if
and only if eca({u, v}; Ta) # 4. Here r is mndom, and the indexing of the 4;%s
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is determined by some fixed rule that assigns a particular indexing 1o any parti-

ton of A. We let .1':.1_‘- = ecalAj; Ta) and Fx_‘- = d&%u{xz_‘-: T Itis clear that

(FR XR) = {(Fg ¥} Dis} € F.

It is straightforward to extend these definitions to the case A = 29, noting that
each component of the USF has one end as. Letting 4;, 1 = i = r denote the
non-empty intersections of A with a component of T, we define x[" = cca(A; T')
and F* = dese(x; T). By Theorem 2 (iv), (F*. %) = (FF, x)i_, 18 p-as well-
defined, and 1s an element of .

3. Define

Xpi= diSLTh{.‘CR_‘-,ﬁ,-,}I, l=i=r

where disty, denotes the graph distance in Ty, Let I, denote the set of permuta-
tions of {1, ..., r}. We define the random permutation o € E, by the conditions
Xaog (= X4 a3 whur:: in case of ties we make a choice fora § in a fixed
but arbitrary manner. We also define
Ya= min [Xa;— Xa;l
=i = =

For convenence, wesel Yy, = oc whenr = 1.

4. We need some more notation in order to formulate the analogue of (11). We define
the events

Daix) = D,-,{{.r; }:.'=|]| = {Xlseees x, belong 1o distinet components of Ty},

forxy.....x %9 and
Bo(F,3) = DA(X)N{TaNHg, =F,1=i=r], (13}

for (F.T) = (Fp. x; Yi_; E F.When A = 29, we denote the corresponding events

by D{x) and B{.E', ). Analogously to the case 2 = d = 4, we can show
[(Fhx3) = (F.©)} = Ba(F.5)  ((F* ") =(F.%)} = B(F.%), (14)
forany (F, ) € Fand A D \S_ HF, 5.

Remark 3. Note that the events on the right hand side of (14) are disjoint for different
{F.x) € F. By Remark 2 (i), the occurrence or not of E is already determined by
{F'J.’: ) and (X, ;)i_ ). Infact, it is enough to know {F': i} ) and the value of all dif-
ferences Xp j— Xa j. 1 =i = j = r.In view of Remark 2 (ii), even less information
about the Xy ; is sufficient. The configuration in Ay is determined by the relative order
of the distances distr, (w. d4) for w € A, For w € A; we have

disty, (w, d4) = dis[;.-;”{u:, .r:.i_‘-}l + Xai.

Therefore, the relative order within the i'™® component only depends on (F} ;. x} ;). To
determine the relative order between wy € A; and us £ Aj i # f,owe need 1o consider
disty, (w84 ) —disty, (w40 = [disLF;u{Jm . .r:.‘l .J'}' — disl;-;__l {u'}:,.r:.‘l ._."”

+[XJ‘L.I_X1'|._,I'|- (13}
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We can expect that the fluctuations of the differences X 7 — Xy grow as A 7 7
and that the second term on the right hand side of (15) will dominate, and determine the
order. For this, itis in fact enough if ¥4 = max, <=, diam(F} ), where diam denotes
the graph diameter. When this happens, we say that the X ; are ‘well separated’. If
the X 4 ; are well separated, then by Remark 2 (ii), already the permutation o} defined
above and {.E'_j: . 3 ) determine the oceurrence or not of E.

3. Fix {.E',.f’}l e Fanda € E,, where r is the number of components of {.E',.i’}l.
Assume that the events B,-,{,E',i’}l and {a'].‘: = o} occur. By the above consideration,
this already determines whether E oceurs or not, independently of A, whenever ¥y
is larger than some constant K = K(F). We take K (F) = max; <<, diam(F;). Let

BA(F. %) and 0f = o imply ¢~'(T4) € E,

Fe = {(F,%,0): F '
FE (F,x,0) whenever ¥y, = K(F)and A DU HFf 4

(16)

The family Fr collects those spanning tree configurations and permutations, that
contribute 1o the event £, given that the X 4 ; are well-separated. It will be pant of
Lemma 3 below to show that configurations with ¥, = K{.E'} do not contnbute in
the limil; see (18).

6. Let H} denote the mndom set whose value equals US| Hr, 5, on theevent By ( F.x),
(F.x) e F.

We will need the following lemma.
Lemma 3. Let d = 4 We have

lim liminf pa(HE © Ag) = 1. (17)
k—+oo a4 2T

For fixed U—?, X,a)e j"_-"f, we have

im pa(Ba(F, %), Yo = K(F)) =0, (18}
H—00
andd
g = _ - 1 -
nllmw u,r{Bn{F,.r}, crj:‘ =a, ¥, > K{F}} = JI_—I;;{E{F,.r}}I. (1%

Due to (18), the event ¥, = K{.E'} in the last statement could be omitted, without
affecting the limit. However, it is instructive o keep it in for its use in the proof of
Theorem 1; see (35).

FProof of Lemama 3. Denote by ¥+ v the event that sies x and y belong o the same
component of Ty (or 7). The first stepin showing (17) is to prove that for any x, v € A,

limsup palx < v, bul notinside Ay) — 0, asm — oo, (20}
A FEA
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To see this, note that when x «= v, there is a unique self-avoiding path @ : v — v in
A (or in %) such that the edges of @ belong to Ty (or T). Therefore, using (5), the
expression in (200 can be bounded by

lim sup Z Halm CTa) = E plm C T) = pix < vy, but not insde Ay ).

AAE gex—y anx— v
i A ar(f
W Am

Here the right hand side goes 1o 0 as m — oo, Now assume that m is such that for
any ¥,y € Aeither x « yinside A, orx < y. Then Hi C A; can be ensured if
desciMy: Ta) © Ag_q. Since each component of T has a single end, for fixed m we
have limg g pidese{ Ay T) C Ag—1) = 1. By Theorem 2 (1) this implies

lim himinf padescif,,: Ta) C A1) = 1.
k—+oo A AT

This proves (17).
We next turn to the proof of (18). For asite x, let Za(x) = distr, (x, 84). Then it is
sufficient w prove that for any x, y € A,

”Iimx x5 v, |Z,0x) — Z,0v)] = 2K(F) =0 21y

Indeed, ¥4 = K(F) and the occurrence of By (F,%) would imply that there exist
x, ¥ € Asuch that x 5 vy, and |Z4(x) — Za(yv)| = 2K .E'}l. Therefore we are going Lo
study the paths from x and y 0 the boundary of A conditional on x <+ y. The key tool
for this is Wilson’s method. 1t is descrbed for example in [3, 26].

Wilson's method gives a construction of Ty via loop-erased random walks [12]. In
particular, using the method with root at 84, it follows that the paths from x and v 10 4,
can be generated in the following way. Let {S[”{n}l}”:__:::], i = 1,2 be two independent
simple random walks starting at §'V(0) = x and §'2(0) = y. Let T = T} be the
hitting time of A* by the two walks. Let £F denote the operation of erasing loops from
apath in sequence, as they are created, and let yﬁ:] =LE {S“.][ﬂ', T“']}l},f =1,2. Then
conditional on GG 5 = {§'2'[0, T I'"lylfll] = W}, the joint law nl’{yl:tl], yj_lll]}l 15 the same
as the joint law of the paths in Ty from x and v 1o §, conditional on x <% y. In the
sequel we assume that the latter paths have been generated by the random walks in this
way. In particular, we assume that the constructions in different volumes A are coupled
by using the same infinite random walks ' and §'%.

Denote by p{n) the number of points remaining of the first n points afler loops are
erased from a random walk 5[0, o). Itis shown in [12, Theorem 7.7.2), that ford = 5
there exists a constant @ = 0 such that

lim pn) =g, 4.5 (22)
H—=00 n
We claim
Zatx) =p"NTM + Ei, (23)

where E;/T"" — 0as. as A 7 Z9 We use the notion of a (two-sided) loop-free
point, a concepl mirodouced in [12, Lemma 7.7.1]. A mndom walk 5[0, o¢) has a natural
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exlension 1o a two-sided random walk 5{—oc, oc). We call a point  loop-free for §, if
Si—oc, jIN S(j,00) =011 jo = | = j» are loop-free, then loop-erasure on [ fy, fi]
does not interfere with loop-erasure on [ ji, f2]. Let

L{ﬁl] = max{j = T;ll] : j is loop-free}.
MNole that £, = T].lll] _,rﬁl] Let 7'M (n) denote the number of loop-free points in [0, n)
for the mndom walk $'"'. By the ergodic theorem,

. an)
lim

H—= 00 "

= b= Pilis loop-free) =0,  as,

where in the last step we used & = 5[12]. This implies that forany § = 0, as A 7~ Z¢
we have

(1 (L o0l Ly;gl10 1 (1
(I+8bj, =27, V=T ) —1=(1-8)bT,

eventually as. This implies that (1 —&8)/(1 + 4) = _,r[.ll]l.-’T.[ll] = | eventally a.s., and

therefore £,/ T'Y — 0 follows. Similarly to the above one can show that on the event
(7a.
Zaty) = p T ) + Ea, (24)

where E2/T? — Oas A 7~ Fas
It follows from (22), (23) and (24), that

Lalx) T[ )

— 1, asA ~Z%as.onG, (25)
zf.{m}r“]

where G = [§@[0, 00) N LE {510, o)} = #}. Since ford = 5the walks 5V [0, oc)
and 5[0, oc) have finitely many intersections as. [12, Prop. 3.2.3], we have

Ilm HiGGs ] = 1G] a.s
AT

For simplicity, let us restrict to A = Ay, and consider n — oo, Consider two inde-
pendent Brownian motions in BY started at 0, and let £, i = 1, 2 denote their first exit

times from (—1, 1)%.
It follows from Donsker’s theorem [ 13, Sect. 42.2] that

|
T:lr[] 1'“]

- =, A8 R — 00, (26)
T3 7 2
L3

where = denotes weak convergence. [Uis simple o deduce from (26), (25)and [ G| —
T[] that

g 3 ; Zplx) % 2
lim limsup P | G, =—— [l —4,14+4])=0. 27
H—00 Zyly)

This in turn implies (21), since Z, (x), Z,(v) — ocasn — oo, Note that the fact that
Ly {.r}ll.-’Z,r_{}‘}l does not ‘concentrate mass at 17 provides the proof that the probability of
¥, = K{F) vamshes,
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Finally, we show that a strengthening of the preceding argument also proves (19).
For this we describe the event in (19) in terms of Wilson's algorithm. Enumerate the
sites in L _, V(F}) starting with xy, ..., x,p and followed by an arbitary list vy, va, . ..
of the rest of the sites. We apply Wilson’s method with root 84 and with paths staring
successively at the sites enumerated above. Let §7, i =1, ..., r beindependent simple
random walks started at x;, with 7' the hitting time of A*. Let y__f:] be the loop-erasure
of S0, Ty as before. For the event Dy (¥) we require the occurrence of the event

Ga=1{s90, 1) (UyP)=0.i=1..., rl. (28)

In addition, EJ-,{F', 1) gives conditions on the paths starting at vy, vz, crey namely these
paths have 1o realize the events Ty, M Hg, o, = Fi, given the paths }rﬁ:]. We denote the
latter event by Cy. Thus Cy is a sub-event of G, which occurs if and only if given
the paths implicit in the event 7, the loop-crased random walks stanted at vy, va, ...
realize Ta M Hy, 5, = Fi. Analogously we can define events G and C < G, which are
the A = 79 versions of G4 and Cy.

Applying Wilson's algorithm in Z¢ with root at infinity, it is clear that P{C) =
p{B(F. 1)), As before, (27) takes care of the condition ¥, = K{F) in (19). Therefore,
specializing to A = Ay and using (27), (19 will be proved, once we show

3 9 i 1
Jrll.-mx P (Cus Zu(%a) < Zn(xagen) i =1,0.., r—1)= P{L}i-! v )
Arguing as in the proof of (18), we have
7 ) T-:r[:'-é—l]
fif oon2ag)_Ta =1, asonG,i=1,...,r—1, (30

w00 Zy(Xgiis1y) Tj:’[”

Since O C G, the above convergence also holds as.on C.

Next we show T[{Cys| — I[C] a.s. We may assume the occurrence of G, since as
before, we already know I[G | — T[G] When C occurs, the random walks stanted at
¥1, ¥2, ... remain inside a finite (random) box up Lo their respective hitling tmes. This
implies that Cy, oceurs for large enough A, If G occurs but C does not, then two things
can happen. One is that for some § the random walk started at y; has infinite hitting time.
In this case C 4 cannot occur. The other is that all hitting times are finite, but at least one
of the events TN Hp, x, = Fiis not realized. When this happens, it also happens for all
large A, and thus C» does not occurn

By the previous paragraph, we can replace C, by C in (29) without affecting the
limit. Also, by (30) and (27) we can replace each Z,; by the comresponding hitling time
without affecting the limit. Therefore we are left to show

; i 1
lm P(C, T30 < T30, i=1,...,r =1) = P(C)—-. (31)
rl

=00

We complete the proof by approximating C by Oy, for 0 = m = n, keeping m fixed but
large. The probability on the left hand side of (31) can be wrillen as

P (Cm, PO P fe g r— 1) + yim, n), (32)
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where limy, oo limsup,_, . nim, n) = 0 by I[Cy] — [I[C]. Also, we can replace
7Y oy 1,7V — 704 in (32). For fixed m, C,, and (T, — T:PE'”}:';I are conditionally
independent given (YT 1)/, . Similarly to (26) we have

i=l*

(il (i1 ]
L —Ta g f i
—[_.'.] [_.'.] _U.], ]. E I = Jl' E r,
T;r = T:m E

uniformly in (5 Ty

i for fixed m as n — oo, This gives

Ji‘li*m'_‘;:P (Clhh T:,";"-” < T-:l?[‘.+l]~ i=1,.... F— 1)
<Py (B £, ru, 1) 33)
el
= P{Lm}j-
Fi

Since P(Cy) — P(C),(32) and (33) proves (31) by letting m — oo, This completes
the proof of the lemma. O

We are now ready to present the proof of the theorem.

Proof of Theorem 1. We write down an expression for the limit v(E). In the lemma
we have shown that conditioned on By (F, x), f:rj: is asymptotically uniform on X,
Therefore we define
def 1 P
WE)'= ) | MBE.D), (34)
(F i mefF;

where the value of 7 in the summand is the number of components of F.

For k& = 1 we let

Flk) = [(F, ®x)_y € F o U_Him 5 C Al
Felk) = {(F.%,0) € Fe: (F. D) € F(b)}.

Let & be large, and isolate contributions to the event E where H* ¢ Ay, or where
separation of the X 5 ; does not occur. By the discussions preceding (16), we have

| - =
E) = > pn(Bu(F. D), of = Yu > K(F))]
(F&oefFpi

smlH CA)+ Y palBoF.5), Yy = K(F)).
(Fi el

(35)

Given £ = 0, by (17) we can choose k large, so that the lim sup of the first term on the
right hand side, as n — oc, is at most £. Fixing such a k, and noting that ,}E'f{.k}l 15 finile,
the second term on the right hand side of (35) is less than £, if 7 is large enough, by (18).
Also, for each (F, ¥) € Fg(k), the summand on the left hand side of (35) approaches
i Bl F, 0/r! by (19). Now letting £ — 0 proves that lim,,_, . v, (E) = v{E).

For the second limit in Theorem 1, we can apply the same argument, usmg a minor
modification of Lemma 3. Note that the convergence is in fact uniform in v, as long as
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the distance of v from the boundary is at least an, for any fixed o = (0. To see this, first
note that under this condition, no problem arises where we have shown convergence as
A 2 T4 Therefore we only need to verify that there is uniformity in the application of
Dionsker's theomem as well.

To make the last observation more precise, etz =z, ..o ) e[ =1 —a) 1 —a I‘J,
and let Ty z) be the exil tme from [—n, n |"r for simple random walk staned at v = nz.
Then ']'"”{z}ll.-’{Edn:} = t(z), where 7(z) 15 the exit tme from (—1, l}l"r for Brownian
motion stared at z. What we need o venfy is that for any ¢ = 0,

P(Ty(z) /(2dn®) <t) — P(t(z) <1) uniformlyinz. (36)

Let (85ydp=0 = (81, - - .. 84 d Ju=0 be simple random walk started at (0.The event on the
ket hand side of (36) can be recast as

i
S i Sim,i
U T HEA =1—gz mmin =—1—zi|-
O<m=Xdns D=m=Xdn?r RN

=l

Thus the claim follows from the weak convergence of the joint law of the maxima and
minima in this event

With this observation we can prove the third equality of the theorem arguing similarly
Wwthecase2 = d < 4 and letting e — (0. 0O
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