A generalized Luria—Delbriick model

A. Dewanji *, E.G. Luebeck °, S.H. Moolgavkar ™*

* Indian Statistical Institute, Applied Statistics Division, 203, B T. Road, Kolkata 700 108, India
® Fred Hutchinson Cancer Research Center, Modeling and Methods, 1100 Fairview Ave. N.,
M2-B500, Seartle, WA 0RO 124 1154

Abstract

We develop extensions of the Luria—Delbriick model that explicitly consider non-exponential growth of
normal cells and a birth-death process with mean exponential or Gompertz growth of mutants. Death of
mutant cells can be important in clones arising during cancer progression. The use of a birth—death process
for growth of mutant cells, as opposed to a pure birth process as in previous work on the Luria—Delbriick
model, leads to a large increase in the extra Poisson variation in the size of the mutant cell populations,
which needs to be addressed in statistical analyses. We also discuss connections with previous work on
carcinogenesis models.
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1. Introduction

The Auctuation test proposed by Luria and Delbriick in 1943 [1] 1s an elegantly simple method
to address a fundamental question in biology. Do mutations occur spontaneously and randomly
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or do they occur in response to pressure in a hostile environment? The specific question considered
by Luria and Delbriick concerned the appearance of phage resistant clones of bacteria. When a
bacterial culture 1s attacked by a phage, most of the bacteria die; however a few bacteria that have
acquired resistance as a result of mutation survive and give rise to clones. The question then is the
following. Had the mutation that protects the bacterium ansen by chance in the bacterial culture
before the phage was added or did the mutation occur directly as a result of the hostile environ-
ment created by the phage? For details of the fluctuation test addressing this specific question, the
reader is referred to the pertinent literature. For a review and relevant references, see [2].

Ower the vears, the Luria—Delbriick problem has attracted perniodic attention from a number of
mathematicians and statisticians. In their original paper, Luria and Delbriick adopted a very sim-
ple probabilistic model for cell growth and the process of mutation. They assumed deterministic
and exponential growth with the same rate of growth for both normal and mutant bactena. The
process of mutation was stochastic with each normal bacterium having a small probability, of the
order o(dr), of giving nse to a mutant in a small time interval of length di. Under these modeling
assumptions, they obtained the mean and variance of ¥(¢), the number of mutant bacteria at time
t, which is the variable of interest. The distribution of ¥{(¢) has over the years come to be known as
the Luria-Delbriick distribution, and is different from the distribution obtained by assuming that
mutations occurred in response to the addition of phage. In a slight generalization of the original
model, Lea and Coulson [3] allowed the mutant bacteria to grow stochastically according to a lin-
ear birth process (also known as the Yule process), and derived an approximate probability gen-
erating function for ¥{¢). The exact probability generating function for the Lea—Coulson model
was first published by Armitage in 1952 [4]. In that paper, Armitage considered several variations
of the assumptions of the Lea—Coulson model and derived the corresponding cumulants. Crump
and Hoel [5] viewed the accumulation of mutants as a filtered Poisson process (FPP) and derived a
simple formula for the probability generating function of ¥{¢) under both deterministic and sto-
chastic growth of the mutant bacteria. Ma et al. [6] and Sarkar et al. [7] developed a recursive for-
mula for the probability distribution. Kepler and Oprea [8] considered inference of mutation rates
based on an integral representation for the Luria—Delbriick distribution, conditional on the total
size of the bacterial culture. In a second paper, Oprea and Kepler [9] suggested an approximate
method of inference based on simulation of the non-Markovian case, when the waiting time to
cell division may not be exponentially distributed, as is commonly assumed. In these publications
(except [9]), the growth rates for normal and mutant bacteria were assumed to be equal. Zheng [2]
provided an excellent and comprehensive review, and in a later paper [10] developed a software
package, appropriately called SALVADOR after Salvador Luria, for computing probability dis-
tributions under various scenarios and for statistical analyses of data. In a recent paper, Natara-
jan etal. [11] developed a discrete time stochastic model for estimation of mutation rates in cancer
progression, and illustrated its usefulness by application to data derived from a colorectal cell line.

The set of assumptions underlying the Luria—Delbriick distribution need to be generalized to
make it applicable to a broader range of problems. There are many possible generalizations.
We consider some of these here. First, the rates of growth of normal and mutant cells might
be different. That is, even in a non-selective medium, the mutation might not be neutral, confer-
ring either a growth advantage or disadvantage on the mutant cell. This is particularly likely with
cancer cells, in which clonal evolution is thought to depend on selective growth advantage for spe-
cific mutations. Second, the growth of both normal and mutant cells may involve not only cell
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divisions but also cell death. Again, in cancer cells, both cell division and cell death occur. Third,
the rate parameters could be time dependent. Fourth, particularly in the case of mutations occur-
ring in cancer, many distinct mutations might be of interest. Then the focus of analyses would be
the size distribution of clones carryving distinct mutations, rather than the size distribution of a
single mutant clone. Stewart et al. [12] developed a recursive method of obtaining the Luria—
Delbriick distribution (conditional on the total size of the culture) in very general terms covering
a broad class of Markovian situations, including the one being studied here. This general repre-
sentation, however, does not explicitly provide the size distribution of individual clones, although
it introduces several related concepts. Angerer [13] also attempted some generalizations incorpo-
rating cell death.

The mathematical and statistical development of a general Luria—Delbriick process has paral-
lels in the development of a stochastic model for carcinogenesis by Moolgavkar and Venzon [14]
and Moolgavkar and Knudson [15] Specifically, expressions for the number and size distribution
of intermediate lesions on the pathway to cancer, based on this model and developed by Dewanji
et al. [16]and Luebeck and Moolgavkar [17], are directly relevant to the Luria—Delbriick process.
In this paper, we exploit this connection to develop the mathematical theory of an extension of the
Luria—Delbriick process in which cell death is explicitly considered in addition to cell division.
Such a process would be particularly helpful in analyzing mutations in populations of cancer cells.
We introduce the general framework in Section 2 and then discuss the FPP approach in Section 3.
Section 4 works on the probability distribution of ¥(¢) and its moments, while Section 5 investi-
gates the effect of cell death. Section 6 focuses on the distinct mutations leading to the number and
size distribution of the mutant clones. Section 7 ends with a discussion.

2. A general framework

In the most general framework, both normal and mutant cells would grow stochastically with
possibly different rates for both cell division and death. The mutations would occur randomly. 1f
both nomal and mutant cells grow via linear birth-death processes with possibly different rates,
then a Riccati differential equation for the joint probability generating function for normal and
mutant cells can easily be derived as in [14]. Specifically, let X{¢)and ¥ ) be the number of normal
and mutant cells at time «, respectively, and suppose that these populations grow according to
linear birth-death processes with cell division rates = and x> and cell death rates ff, and [,
respectively. Suppose further that the mutation rate per cell division is v/(z; + v). Then, using
an argument analogous to the one in [14] a Riccati differential equation for the joint probability
generating function for (X{(z), ¥(1)), ¥ix,»t) = ZJ.__JR-,-{E}IJ}"', where Py(t) = PriX(1) =i, Y(1) =),
15 given by the following expression

s t) = 0 W x,p50) + (v r) — (a + B + )} (x50 + B,

where ¢ Y:r) is the probability generating function of the linear birth—death process with param-
eters =, and 15 (see, e.g., [18]). This rather general framework for an extended Luria—Delbrick
process is not particulardy vseful for data analyses. In what follows e develop a generalized
Luria—Delbriick process based on a FPP approach as described in [5.16,17].
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3. A filtered Poisson process approach

Let Xir) denote the number of normal cells at time r described by an arbitrary deterministic
growth curve. In earlier papers, X{(r) was restricted to be exponential. Let the random mutation
rate per normal cell per unit of time at time ¢ be denoted by v(t). That is, mutations occur accord-
ing to a Poisson process with rate v(1)X(¢). Once a mutation occurs at time s (resulting in one mu-
tant cell and one normal cell), the mutant cell grows according to a linear birth and death process
with rates =(¢,5) and fi(¢, 5), respectively, depending most generally on both the current time ¢ and
the time of its origin 5. In particular, the rates may depend on the difference (r — 5), or may be
constants. Specifically, when i) 1s a constant v, X{¢) an exponential given by X(¢) = exp(y1),
a(t,5) = =, a constant, and fi{r, s) =0, the general model reduces to the model of Lea and Coulson
(3]
From Luebeck and Moolgavkar [17], the probability generating function of the number of
mutant cells, ¥(¢, 5), in a colony at time ¢ originating from a single mutant ansing at time 5 and
growing according to a linear birth and death process with rates (s, 5) and i1, 5). respectively,
is given by

y—1

B = et s 0
with the initial condition ¢ y; 5, 5) = v, where

g(t,s) =exp [— [I{x{u._s} — Blu, s))du|, and (2)

Git,s) = /Ix{u,s}g{u,s}du. (3)

In the special case when the birth and death rates are constants « and /i, respectively, the prob-
ability generating function reduces to the well-known probability generating function for the
linear birth-death process with constant parameters (e.g., [18]).

Bl —y) — (B — ay)e =Pl
21 — y) — (B — ay)ela-Rli—s) "

P(y:t,s) = (4)

For the linear birth process (with f = 0), used in the Lea and Coulson [3] model (referred to as LC
maodel hereafter), the above probability generating function reduces further to

'I’E_IU_"' |

Plyit,s) = 1 —y(1 —e—2-) ?

Mote that, even in the most general case as descnbed above, ¥ ¢) can be wntten as a filtered
Poisson process

M)

V) =Y ¥(ts),
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where M(¢) denotes the number of Poisson mutations ( from normal bacteria) by time ¢ with rate
v(s) X{s) at times 5. From the corresponding theory (see, e.g., [19]), we have the probability sener-
ating function of ¥(r) as

W5 =exp { [ Vo x©l00:0.9) - 11as ©)

The integral in ( 6) does not simplify in general; but for the special case when ¥(¢,5) 1s described by
a linear birth process (with §=10), using (5), we have

W) = exp {— [ (X () ds + Zq,.(r}y*}-. @)
where )
glt) = ﬁ [1 — e 2] e 29y () X (5) ds.

See Eq. (49) of [2] for a special case of this when v(s) = v and X{s) = exp(ys), the LC model. This
representation (7) of the probability generating function is useful to obtain the probability distri-
bution of ¥(¢) using the recursive formula in Lemma 2 of [2]. A similar recursive formula can be
derived in the most general case and used to compute the probability distribution of ¥{¢). This wall
be descnbed in the following section.

4. Probability distribution of ¥{r)

Recall that the coeflicients of the powers of y in the expansion of (y;¢) represent the probabil-
ity distribution of ¥(r). Thus, we get Palt) = P[ Y1) = 0]=(0;¢) and, for m =1,

Pty =P[Y(f) =m] = ml‘ W™ (0: 1), (8)

where " 0; 1) is '""(y; 1), the mth order partial derivative of y(y; ) with respect to y, evaluated
at y = 0. Using (6), we get

Pot) = exp { [ v eioins) - IJdv}

= exp {— ./ﬁr v(s)X(5) |Gz, 5) + 2(2, s}]_l ds}, using (1),

= exp {—A(z)},
where A(1) is the expected number of bacterial clones at time ¢ (see Section 6). Note that ¢(0; ¢, 5) 15
the probability of extinction at time ¢ for the mutant clone ¥t s) originating at time 5. A simple
expression for this probability is available when ¥{(:,5) grows according to a linear birth and death
process with constant rates (see, e.g., [18]).
For the probability distribution of ¥{z,5), we need the mth order partial derivative of ¢{y; ¢, 5)
with respect to v, denoted by ¢'"'(y;1,5) as before, for m = 1. We have

| :
PlY(t,s)=m] = = d"(0;1,5) = a{.: ;}ﬁH{LS}[] —H(,s)]", ©)
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where H(t,5) = g(1,5)[G(1,5) + g(t,5)]"". See [17] for a similar result. Therefore, ¢'"'(0;1,5) can be
obtained in closed form as
m!

G(t,5)
Write &(y;1) = [} v(s)X (s)¢p(y:1,5) ds so that the mth order partial derivative of £(y; 1) with respect
to y can be written as " (y;1) = [} v(s)X(s)¢"™ (v:t,5)ds. Then, by simple calculation of succes-
sive derivatives of both sides of (6) with respect to y and using the method of induction, one can
prove the following Lemma.

H(t,s)[1 — H(t, s)]".

Lemma. Form = 1,

n—1
i m— 1 i wfar—i]
" () = Z ( ; )n,ﬂr['{v:r}.;[ (v 1),
i=i
where W0 = Wy
From (8), we need y"(0;7)’s for the probability distribution of ¥{¢). For each m, £"(0;1) can
be obtained from (9) as
! 1
' g = AT
m! ﬁ v(s).X(5) Gy H(t,s)[1 — H(t,5)]" ds.
These &")0;¢)’s are closely related to the probability distribution of individual clone sizes (see
Section 6 for more detail), as in Eq. (10) of [17]. From the above Lemma and using ( 8), the prob-
ability distibution of ¥(¢) in general can be obtained by the recursive formula

m—1

B =30 L), (2), (10)

=0 m

where p(t) = f; r{s}X{s}G"{I,S}H{Ls}[] —H{r.s}]‘ds, which is proportional to the probability
that an individual mutant clone 1s of size & at time . This pg(t) 1s identical to gu(t) in (7) for
the special case mentioned there. The integral in py(f) can be analytically worked out for a large
class of growth parameters (called Gompertz growth; see Section 6) but with at most piecewise
constant v(¢) and X{¢) (see [20]). For the LC model, the above Lemma yields Lemma 2 of [2].
The probability distribution of ¥(¢) under the LC model, given by Egs. (46), (47) and Lemma
2 of [2], can also be obtained by using the Lemma above. See also [7] for a similar recursive result.
One can also obtain the commonly available recursive formulae for cumulants and moments of
different orders, by using the above Lemma, under the most general case.

It is useful to derive the mean and variance of ¥(¢f) in the most general case. Note that
E[ Y1) = '"1; 1) and E[Y(e) Y(£)—1)]= y**Y 1;1). Using the above Lemma, we have

E[¥(t)] = "V (1;0) = W (1;0) = ﬁ v(s)X(s)g'(1;2,5) ds

= frv{s}X{s}g"{r,s}dm using (1)

0

= [Ir{s}X{s} exp [[I{x{u,s} - ﬁ{u,s}}du] ds, using (2). (11}
o) o5
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Similarly, one can calculate the variance of ¥(r) as

I

VIY@)] =9 (150 + EY ()] - (Y ()] =2 f V(s (5)G(t,5)g (1, 5) ds + E[¥(1)]

= fI v(5)X (5)[2G(1, 5) + g(1,5)]g (2, 5) ds. (12)
0

In the special case when the growth of normal bacteria X{r) is described by the exponential
curve explye), vit)=v, xz(t,5) ==z and fi(t,5) =} (LC model with death of mutants, referred to
as LC-D model hereafter), the mean and variance of ¥(¢) are, using (11) and (12),

and
If'[]"{r}] - E[Y{r}] e fjxﬁ { _e;[;‘“j = [E[}._J[rﬂ]]: rs ]] s % [E[;-_[z—J'J]]: — ]] }

(14)
As expected, the mean depends on x and /f only through the growth rate (x — f§) of the mutant
bacteria. However, there is considerable extra-Poisson variation, as evidenced in (14). In fact this
extra vanation depends on the birth rate x. For(x — /1) fixed, the extra-Poisson variation increases
with z (see the next section for more detail).
For the LC model, the above mean and variance reduce to

E[¥(1) = % [et==¥ — 1] (15)
and
ve™ [y —2)r it -7
V[F{r}]=m{?[el- M —2¢" + 1] + 2x[e” — 1]}, (16)

which are the same as those in Eqgs. (52) and ( 53) of [2].

5. Effect of incorporating death of mutant cells

In this section we consider incorporation of the death of mutant cells and compare the resulting
distributions with those generated by the Lea—Coulson model ( cell death is zero). The probability
distributions of ¥(¢), given by (10), for the LC-D model, are shown in Fig. 1. The effective cell
division rate, (x — 1), 1s kept fixed. The parameter values for the LC model are the same as those
in Fig. 1 of [2]. With = — f kept fixed at 2.5, Fig. 1 shows four distributions corresponding to
=100, 10, 5, and = = 2.5, which comresponds to the LC model. With positive death rates, the
mode is shifted to the left when compared with the LC model. With larger values of = and 7,
the spread is larger, as expected. However, as seen from (13), since (x — ff) 1s fixed (at 2.5) in
all three distributions, the distributions have the same mean.
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Fig. 1. Probability distribution of ¥{#) for ¢ =6.7, y =3, and 2 — =25, for different values of z as indicated. The
solid line (2= 2.5) corresponds to the LC model, also shown in Fig. 1 of [2]

In Fig. 2, we plot P[¥(¢) = 0], the probability of no mutant bactena at time ¢, against time ¢ for
the LC-D model. As expected, for a given ¢, this probability is larger with positive death rates than
for the LC model. Moreover, it is larger with larger # values (death rate), even though (x — /i) is
fixed. This is also quite intuitive by noting that a larger ff implies a larger asymptotic probability
of extinction for any one mutant colony, which is given by fi/z. As a consequence, the expected
number of non-extinct mutant clones (given by A(¢) in the next section) also decreases.

1.0

0.8

prob. of no mutations

3 4 5 [+] 7
time

Fig. 2. Probability of no mutants, Pg¢). as a function of time ¢ for the same parameter values as used for Fig. 1.
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Fig. 3. Extra-Poisson vanation, F{¥(7]— E[ ¥{7]]. as a function of time ¢ for the same parameter values as used for
Fig. 1.

It may be noticed, from (14), that the extra-Poisson variation F[¥(f)] — E[¥{¢)] has a factor
af/(z — ), which is unity in the LC model and is otherwise greater than one (assuming x> fi).
Therefore, for a fixed (x — /i), the extra-Poisson variation increases with increasing x and fi. This
phenomenon is illustrated in Fig. 3 in which the extra-Poisson variation is plotted against time ¢
for various values of = with « — f§ fixed. The parameters used in Fig. 3 are identical to those in
Fig. 2. As expected, the extra variation increases with time and «. The presence of extra-Poisson
variation has been explicit in the Luria—Delbriick distribution. However, the fact that its
magnitude increases with time and birth rate (in the presence of cell death) of mutant cell, with
fixed growth rate, has not been recognized before. This recognition is critical for appropnate
statistical analyses.

6. Number and size distribution of individual clones of mutant cells

The classical Luria—Delbriick problem addresses the distribution of the total number of mu-
tants in the colony of cells. As mentioned in Section 1, there is scope for the Luria—Delbriick dis-
tribution to be applicable in a wider range of applications. In some of them, information may be
available on the surviving progeny of a single mutant arising from normal cells. Then this infor-
mation should be used to estimate rates of mutation and of cell division and cell death. Such infor-
mation is available, for example, in rodent hepatocarcinogenesis experiments. Moreover,
fluctuation tests could be designed to specifically exploit this information. The requisite mathe-
matical theory has been developed in a couple of papers (see [16.17]). We briefly review it here.

For the mathematical development, we follow Luebeck and Moolgavkar [17]. Note that, given
that a mutation occurs at time s, the probability that the corresponding clone is extinct at time
t > 5 is given by ¢(0;1,5), which turns out to be 1 — [G(t,5)+ g(t,5)]"", from (1). From Luebeck
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and Moolgavkar [17], the number of non-extinct mutant clones at time ¢, denoted by N1), say,
follows a Poisson distribution with mean A(r) = [j v(s)X (s)[G(z,s) + g(,s)] ' ds. For the LC-D
model, A(f) reduces to

-1
A{I ﬁ]’ [ |: —[1—_|'JI[I—\I:| ds

= 'H —1'[1—]']]1 ila—+y
(]_1);:()*{1—13}+?[El -1

When the death rate is zero, 1.e., with LC model, we have
A() =~ [6" — 1].

Let us denote the sizes of the N(¢) non-extinct mutant clones by Wi, i=1,..., N(t). From
Luebeck and Moolgavkar [17], the W(t)s are independent and identically distributed with the
probability distribution given by pu(r)/A(r), k=1,2,..., where py(1) is as given after Eq. (10).
For LC and LC-D models, the p,(¢) reduces to

'y
pi(t) = ve ™ f e[‘+"'-""[] - e_‘“""-']&_l ds
[

(see Eq. (47) of [2]) and

T [ — g-la-Mi—g]*]
p‘:{[} =y (] s III_?) E_ll—.ll-l_“'f E[:.—_l'.|+;.'_|.-.- [ J — dS‘
X 0 [] =2 ﬂe—lz—jl_l[:—.-.-]]

respectively. These two forms of p,(¢) have been used in ( 10) to obtain the probability distribution
plots of Fig. 1.

A further generalization is possible to reflect the eventual slowing down of the growth of mu-
tant clones as the total population approaches the carrying capacity of the environment. In that
case, the growth of mutant colonies is better described by a Gompertz rather than an exponential
growth curve. Then a stochastic Gompertz birth—death process [21] can be used to model ¥z, s5).
In this model, the net growth rate =(:.5) — f(¢,5) 1s modeled as

x(t, 5) — Plt,s) = bexp|—a(t —s)) = d(t —s), say,

where §(0) =5 = 0 and a is the shape parameter with —oc < g < oo, Taking a = 0, we recover the
exponential model with net proliferation rate h.

After modeling the growth rate «(t,5) — fi{1,5), it becomes natural to work with the ratio fi(z,s5)/
a(t, 5), which is the asymptotic extinction probability for a linear birth and death process with con-
stant rates. For algebraic and computational simplicity, we assume this ratio to be a constant (i,
say) independent of both ¢ and 5. We can then recover the birth and death rates as

a(t,s) = a(t —5) = EEE__;}
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and
Bt,s) = Bt —s) = ""ﬁ{%ﬂ

We can then use the results of Sections 3 and 4 with these expressions for «(s,5) and fi(r,s) and
obtain the quantities of interest. Most of these expressions are available in Luebeck and Moolgav-
kar [17]. We however give here expressions for the two important quantities:

A(f) = £ Y($)X(s)5 s

I—nglt—s)
and
_ Y glt—s) (1-g(i—-s5))\"
p () = (1 - ar}ﬁ V)X (s) e (1 —nglt -.q}) .
with

g(05) = g(0—5) = exp [~ 2(1 =),

7. Discussion

In this paper, we have provided the mathematical theory for a generalization of the Luria—Del-
briick process to arbitrary (but still deterministic) growth of normmal cells and with mutant cells
growing according to a linear birth—death process with either mean exponential or Gompertz
growth. A completely stochastic model to include stochastic growth of normal cells appears to
be mathematically cumbersome and not particularly useful at the moment. We have also derived
expressions for the number and size distnbution of individual mutant clones following Dewanji
et al. [16] and Luebeck and Moolgavkar [17]. These expressions are needed in analyses of data
in which information on individual clones is available as is often the case with expenmental car-
cinogenesis studies, in which the focus is on understanding early lesions on the pathway to cancer.
Likelihood methods for such analyses using results on the number and the size distribution of
individual clones are given in a number of publications [22-24). In general, one can hope to have
observations from a number of bacterial cultures, or tumor-bearing animals, at different time
points. Using the theory developed in this paper, likelihood methods for inference on the model
parameters are readily applicable to such data.

It 1s clear from the derivations in previous sections that similar results can be obtained, at least
in theory, when the birth and death rates differ from those of exponential and Gompertz growth,
as long as the Markovian assumptions are valid. More generally, as long as the mutations occur
according to a Poisson process, if the growth of an individual clone ¥(t,5) can be described by a
probability distribution p(i;t.s) = p[ ¥it,5) = n] (mimicking the notation of Stewart et al. [12]),
Markovian or not, the FPP approach of Section 3 goes through. However, we need the assump-
tion that the individual clones, given their mutation times, grow independently of each other.
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With p(mt,s) replacing the right hand side of (9), the py(r) in (10) have the form p (1) =
ﬂ vs)X(s)plk:t,5)ds and A(r) has the form j:: vis)X (s)(1 — p(0; 1,5} )ds. Hence, this FPP
approach, which is mathematically simpler, is capable of covering the most general situations
including those of Stewart et al. [12] and Oprea and Kepler [9). This approach has the added
capability of considering other observables, like number and size distribution of individual clones,
as described in Section 6. Even the consideration of different types of mutations can be easily
accommodated in the FPP approach simply by mmtroducing the corresponding mutation rates,
leading to a generalization of the formulation in Stewart et al. [12].

When both X and v are constant, the distribution of sizes of mutant clones is described by a
logarithmic series distribution [16]. The total number of mutant cells is the Poisson sum of indi-
vidual clone sizes and has a negative binomial distribution. This version of the Luria—Delbrick
problem is formally identical to a problem on the relative abundance of species of insects ad-
dressed by Fisher et al. in the 19405 [25].
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