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Ahstract

In this paper, we present a construction method of m-resilient Boolean functions with very high nonlinearity for low values of m.
The construction only considers functions in even number of variables n. So far the maximum nonlinearity attainable by resilient
functions was 2"~ — 22 4 /22 Here we show that given any m, one can construct n-variable, m-resilient functions with
nonlinearity 2"~ 1 — 1122~ farall n = &m + 6 which is strictly greater than 2 ~1 — 2%/ 4 2822 e 4150 demonstrate that in
some specific cases one may get such nonlinearity even for some values of i, where i = 8m + 6. Further, we show that for sufficiently
large . it is possible to get such functions with nonlinearity reaching almost 20—1 — 20/2 4 Z;‘Z”ﬂ‘l. This is the upper bound on
nonlinearity when one uses our basic construction recursively. Lastly, we discuss the autocorrelation property of the functions and
show that the maximum absolute value in the autocorrelation spectra is < 27

Kevwords: Boolean function; Resiliency; Nonlineanty : Autocomelation

L. Introduction

Resilient Boolean functions have important applications in nonlinear combiner model of a stream cipher [23,24.9.1,
7,22|. Construction of resilient Boolean functions, with as high nonlinearity as possible, has been an important research
guestion from mid eighties (by abuse of notation, when we call a Boolean function resilient, we mean an m-resilient
function for some m = 1). Recently (since 2000), a lot of new results have been published in a very shorl ime which
include nontrivial nonlinearity (upper) bounds [20,25,29.2 4| and construction of resilient functions attaining either
those bounds or reaching very close. In such a scenario, getting resilient functions with a nonlinearity, that has not been
demonsirated earier, is becoming harder.

This paper is a revised and extended vemsion of the paper presented in WOC 2003, March 2428, 2003 at INRIA, Versailles, France.
! 'The initial version of this puper has been written when the authar was doing his PhD at Depanment of Information Technology, Lund University,
Sweden.
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Consider & Boolean function on n varables with order of resiliency m. Generalized construction methods of resilient
functions with higher order of resiliency (m =n/2 — 2) and attaining maximum possible nonlinearity have been
studied in depth [25.26,8]. Also there are some interesting results available in [ 19,16]. Construction of highly nonlinear
functions with lower order of resiliency has been discussed in [19,12].

In this paper, we consider that n is even. In [15], it has been conjectured that the maximum possible nonlinearty
of a resilient function on n varables can be 2°~! — 2%/2 This conjecture has been wrned out to be false [19]. Note
that the maximum possible nonlinearity of an n-variable function is 2°~! — 221 and these functions are called bent
[18]. It 15 known that the bent functions cannot be resilient and also it has been shown [20] that for low order of
resiliency m (m<n /2 —2), the maximum possible nonlinearity is upper bounded by 27— — 20/2=1 _2m+1 Ngje that
the mid point of 27" — 2/2 (the value conjectured in [15]) and 2"~ — 22! {the nonlinearity for bent function) is
an=l _ 2 4 /22 Construction of resilient functions having this nonlinearity is known [19,12].

However, till date there has been no evidence of a resilient function having nonlinearity strictly greater than 27! —
242 4 2722 [n this paper, we show that it is possible to construct resilient functions having nonlinearity = 2! —
242 4 2021 fiyr = 14, Our construction is based on combination of linear functions with a suitable nonlinear resilient
function.

I.1. Preliminaries

A Boolean function on n variables may be viewed as a mapping from {0, 1} into {0, 1}. A Boolean function
FlXyesm xy) 15 also interpreted as the output column of its truth table f i.e., a binary string of kength 2%,

F=LA0.0,..., m, f(1L0,..., . fo.1,..., 1) FRPU Flia,...., 1]

The Hamming distance between 81, 5 isdenoted by (5}, §2),1.e.,d(5), 5)=#(5 £ 5).Also the Hamming weight
or simply the weight of a binary string S is the number of ones in 8. This is denoted by wi(§). An n-varable function f
is said o be balanced if its output column in the truth table contains equal number of Vs and s (e, wil f) = i ).

Denote addition operator over G F(2) by 6. An n-variable Boolean function f{x,. .., Xy can be considered to be
a multivarate polynomial over G F{2). This polynomial can be expressed as a sum of products representation of all
distinet &th order products (0 < k < n) of the variables. More precisely, fix,. .., Xy ) can be wntlen as

dp & @ djx & @ QijxiXj @ - @ ap aXixz... X,

l=ign lfieisn

where the coefficients ag, a5, . .., alz. € 10, 1}. This representation of £ is called the algebraic normal form { ANF)
of f. The number of variables in the highest-order product term with nonzero coefficient is called the algebraic degree,
or simply the degree of f and denoted by deg( ).

Take 0 < b<n. Ann-vadable function is called nondegenerate on b varables if its ANF contains exactly b distinet
input variables.

Functions of degree at most one are called affine functions. An affine function with constant erm equal to zero is
called a linear function. The set of all n-variable affine {respectively, linear) functions is denoted by A{r) (respectively,
Lin)). The nonlinearity of an n-variable function fis

nl{fy= min {d{f, g)).
gedln)
1., the distance from the set of all r-vanable affine functions.
Let x = (x7,..., x, ) and ey = (e, ..., e,) both belong to {0, 1} and

X - W=X1] B - - - P Xpihy.

Let f{x) be a Boolean function on n variables. Then the Walsh transform of f{x) is a real-valued function over {0, 1}"
which is defined as

Wil = Z {—1})’1-*’]*“"_

xefl), 1y®
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In werms of Walsh spectra, the nonlinearity of fis given by

al{fy=2""1'—L1 max |Wg(w)|
e R LI
In [9], an imponant characterization of resilient functions has been presented, which we use as the definition here. A
function fixy, ..., ) 18 meresilient iff its Walsh transform satisfies

Wile) =0 forOswie)<m.

As the notation used in [19.20], by an {r, m, 4, o) function we denote an n-variable, m-resilient function with degree
d and nonlinearity .

Propagation characteristics ( PC) and strict avalanche criteria (SAC) [1 7] are important properties of Boolean functions
o be used in S-boxes. Further, Zhang and Zheng [ 28] identified related cryplographic measures called global avalanche
charactenstics (GAC).

Let x € {0, 1} and fbe an n-vardable Boolean function. Define the autocorrelation value of fwith respect 1o the
VeClor o as

Ag ()= Z (—1)fWeflxs)

xell, 1}®

and the absolute indicator

A = TN Ag(a)|.
2,11 20

A function 15 sad 1o satisly PCE)af
Ap{z)=0 for l<wia)=<k.

Nowy, we present a briel outhine of the construction methods which are related w our construction. Construction of
resilient functions by concalenating the truth tables of small affine functions was first described in [1]. However, the
analysis has been made in terms of orthogonal amrays. This construction has been revisited in more details in [22] where
the authors considered the algebric degree and nonlinearity of the functions. Further analysis on this basic method is
also available in [ 13].

Moreover, in [6], construction of functions with concatenation of small affine functions under certain conditions has
beendiscussed. All these constructions used each small affine funciions exactly once. A major advancement in this area
his been done in [ 19], where each affine function has been used more than once in form of composition with nonlinear
functions. In [19], concatenation of both affine and nonlinear functions has been considered too. The construc ions in
[19] presented very high nonlinearity. The generalized algorithms, i.e., Algorithms A and B in [19] outline a framework
i this direction which has later been analysed i [3].

Chur construction idea falls under the generl construction paradigm presented in [ 19]. However, we like to highlight
that this specific construction has not been identified in [ 19.3]. To construct an n-variable resilient function (n even) we
use a set of /2 vadable linear functions (each exactly once) and a nonlinear resilient function on n/2 + k variables.
Under certun conditions, we show that this construction provides higher nonlinearity than the existing results.

Analysis of autocorrelation properties of correlation immune and resilient Boolean functions has gained substantial
interest recently as evident from [27 30,31,11.5].A Boolean function fon n-variables is said 1o have a linear structure if
there exists a nonzero vector 2 € {0, 1}" such that |4 ()] =2". In eryptographic terms, this property is undesirable for
a Boolean function. In [11.5]. it has been identified that some well-known construction of resilient Boolean functions
are not good in terms of autocorrelation properties. We show that there is no linear structure in our construction. Further,
we analyse the autocorrelation spectra of the functions and provide an upper bound on the absolute indicator A .

2. The construction method

We first present an existing construction idea [ 18,19.12].
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Construction L. Let v, 5 be even. Consider that an r-variable, m-resilient, degree d function f{x), ..., xp ) having
nonlinearity

2:‘—[ - z.l'.lll + 2.!'."1—2 + &

is available, where g is an integer 20, Select a bent function on s variables g (v, ..., vy ). Then the function

isan (r + s )-variable, m-resilient, (at least) degree d (the degiee is exactly d if s < 2d) function with nonlinearity

2[1'+.-.']—l _ 2[.!'-!—.\']."2 il zu'+.-.'.-"2]—2 s 2.-.'.-'2_

FPutting n =r + 5, one gets a function fy with nonlinearity

zn—l _& 21?;’1 i 2:?;’2—2 + & - 2[”_;-]..'2_

The nonlinearity result follows from

nl(fu) =20l f;) + 2'nl(gs) — 2ni( f;)nl(g; ).

Note that if &, =0, then & - 2"/2 is also zero. Hence, using Construction 1, it is not possible to cross the nonlinearity
bound of 27! —2/2 4 222 for an n-variable function using a nonlinearity 2~ ' =224+ 22~ function on r variables,
where r < n. However, we present aconstruction in this section, where using a nonlinearity 2" ~' —22 4 22=2 function
on r varables, it is possible to get an n-variable function with nonlinearity strictly greater than 27! — 242 4 24/2-2
We show that it is possible 1o get such better nonlinearity under certain conditions.

Theorem 1. Let l<m<n/2 —2 and 1 <k <n/2 — 1. Assume that there exists a (g =n /2 + k,m,d, 1) function h
with degree d = k + 1. Also, for a fived & € {0, 1Y"/>~* assume there exists an injective function
¢ 40, 11 x (0. 1127R (8] — (0. 1)

with property that wi({(v)) = m forany vy € {0, 1}/
Then for x, v € [0, 1Y% and v = (v, ¥v") € {0, 1}* x {0, 1}"*% construct the function

pyxBely). ¥ #9,

_,f{'t’ .1"1::' = I {.l', _1"1:}1 Fr.r =4

where g ix any finction on {0, 1 }"’II. Then the function f isan m-resilient function of degreen (2 — k+d and nonlinearity

nl{ fyz=21 —20/2=1 _24=1 4 plih).

Proof. Let (2, 1) € {0, 1}"7 % {0,1}"? and denote by f= (', f) for f {0, 1} and 8" € {0, 1} ~%, Then,
Wela, ) = Z Z{—1}If['”'-"H'i-”-y]tx.ﬂ]

P
=3 (= (—1yf @asy f
2T L

Z {_l}ﬁ[.r.}”léﬁ.r-:ﬁa}"-ff

x, | v=d
Wiz, i)
4 Z {_1}.-."0']5-{!5-}' E{_l}[lﬁu']ﬂ?:c].r_ )
viy'Ed x

Then for (z, ) such that wi{ {2, §)) < m the both sums in Eq. (1) are equal to zero. This is obvious for the lefi-hand sum
since h is an m-resilient function. The nght-hand sum is zero due to the injection property and the weight restriction
on ¢r. Hence, f 15 m-resilient.
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In case wila, 1) = m the left-hand sum in (1) s a Walsh tansform of f in point (2, §). The second sum is either 0
ar £2/2_This is because ¢ is injective function and the inner sum is nonzero (acually equal to 2%7) only if ¢(y) = =
for some v € {0, 12, Thus, for any given  there will be exactly either one (¢ is injective) or no one v such that
i v) = 2 (the ‘no one” case corresponds to those o with wiz) <m).

Moting that max,, g |Ws (2, )| =29 — 2ni(h), we obtain

max |Wr(a, 0] < max |Wy(z, 9] + 22 =29 —2nl(h) + 2%/2.
xf o f

By using max, g |Wr(z, f)| = 2" — 2nl( ), we prove that nl( f) =21 — 2021 —24=1 4 ni(h).

The maximum degree term in the ANF of frelated to function fi is n/2 — k + d. On the other hand, for any given v
the function ¢vy)x + g{y) is affine on x. Hence, the maximum degree term related to this constituent part isn /2 + 1.
The condition & — & = 1 guarantees that the degree n/2 — k4 d termis) cannot be cancelled by the degree n /2 + 1
ermis). O

Let us emphasize that given a fixed n, there are two main assumptions in Theorem 1.

(1) There are some restrictions on the parameters of the function .
(2) The injectivity of ¢ puls some restriction on k.

Note that if the function fi possesses the maximum possible algebraic degree (known as degree optimized [23,20])
d=n/2+k—m—1thendeg f)y=n—m —1,i.e, fis also degree optimized. Furthermore, according to nonlinearity
result nf( )= 2% — 2021 _29=1 4 pi(h), which means that the nonlinearity of fis increased by choosing a function
R with maximum possible nonlinearity for suitably chosen g =n /2 + k.

Nexl, we present a construcion based on Theorem 1.

Construetion 2. Let | <m <n/2— 2. and k be a positive integer satisfving ¥ 1L, ("ﬁz) < 2% Assume that the re exists
alg=n/2+k m. d, 1) function i (as described in Theorem 1) satisfving,

e d=k+ 1,
o T=20"1_24/2 4 2422 4 o forg even,
o T=29"1 _20g-12 4 &g, forg odd,

where &, =(L
Also, for a fived & € {0, 1V"2~% select an injective function

¢ 2 {0, 1} x ({0, 1J"2-4\(3)) — {0, 1)/
with property that wi ¢i(y)) = m for any v € {0, 1y,
Then for x, v € {0, 112, and y = (', ¥") € {0, 1}* % {0, 1}/2* construct the function

Ppiy)x @ gy), ¥y #4,

flx. ¥y = Bty ' =8,

where g is any function on {0, 172,

Naote that for given m and n the injective property of function ¢ in Theorem | is guaranieed here due to the condition

" w2 &
i=i) ( i ) =2

Let us now interpret the construction for a specific case. Let § be an all zero vector and giy) = 0 for all y. Consider
all the distinet linear functions on /2 variables which are nondegenerate on at least m + 1 varables. There are

. ] . . . ¥
I =Z:.1m_h| ("':.') number of such linear functions. Among them choose any v=u — (2" -3 (”".')) =ML ok
linear functions and list these distinet linear functions by f, ..., Iy in any arbitrary order. These linear functions are on

the vanables (x, ..., : Yy s2).
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Then, in language of [19,12], Construction 2 can be interpreted as follows. Concatenate the in/2 + &, m. d, 1)
function # and v = 22 — 2* distinet linear functions on n/2 variables which are nondegenerate on at least m + 1
variables. This will provide an n-variable function. Here, concatenation means the concatenation of the truth tables of
the functions.

The ANF of the function will be

Flx, M )={1 B yuz)-- - (1B g1 hlxy, ..., TnfFs Flaeens Vi)
L.
& (@ (1 Ba,; _1'Jr.-'1}' (1 fypaa, D _'!-'l}'-fi (Zisoaay -rJr.-'Z}') » 2}
i=l
where (@, 7,..., dyy2+1,i) 15 n/2-bit binary representation of the integer 2 1 +i. The bit ay, ; is the most significant

bit and a,, 2 ; is the least significant bit.

The function h, satisfying the above conditions, can be obtained for certain values of m using the construction
technigues proposed in [12,19]. We will discuss this in more detail later. Next, we concentrale on the following theorem
which imposes certain restrictions on k for given n, so that we indeed get a nonlinearity = 2~1 — 2%/2 4 2022 yyging
Construction 2.

Theorem 2. The n-variable function f proposed by Construction 2 is an (n,m, n/2 — k + d, v) function where

= zn—l _ zn.-'l—l _ 2.1r.-'4—:.&.-’1+,::—2 it 2.
Here, jt =logs 3 (respectively :—}}, if g =n/2 +k is even (respectively odd), and &5 = (.
In particular, for ¢y = 0 the nonlinearity
!‘!.”: .f::' = z.lr—| _ 21?."1 it 21?."1—1
ifnz=2k 4 8.

Proof. Results on resiliency and algebraic degree follow from Theorem 1. Also from Theorem 1, we get

tf2—1

al(fyEa a2 oe=l L,
which can be rewritten ax

nl(f) = {2”_| _ 2Jr.-'1 1 2n.-'1—1} ai 2Jr.-'1—1 _ 2:;—[ + nl(h).

nlthy =29"1 — 29/ 4 99/2-2 +eg

for g even and
nl(h) =2971 —2@-D2 4 o

for g odd. Note that a2 = 2541922 @ for positive reals a, b. Thus,
1,-__-:__.:{2”—[ i 2Jr.-'1 i 2.!?."1—1} + zn.-'-t—‘lﬂn.n'-t Aoy z.t.-'lﬂc} g 2

which gives the resull after simplification.
For &; = 0 we will show that n2 2k 4+ 8 Here, nl{ f) = an—l _oni2 4 2n/2-2 giyes that

-,Jr.-'-t—l{-,n.-'-t = -,.t.-'l—',:r} =0
This happens when

n
k+3 ft}rtﬂdq:;+k,

-

R

k+3.17 foreveng = g + k.

Note that n is always even and hence n /2 must be an integer, which gives n 22k +4. O
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MNext, we present 4 technical result.
Proposition 1. Z:.rJ:n (4"':"' ) <29 foralim=1.

Prool. It can be checked that the statement is troe form =1, 2, 3, 4. From [ 10, p. 165],

Adt

uHii
Z(I:) <2 m,

i=l
where the binary entropy function

Hi)=—ilog, & — (1 — A)log,(1 — 4).
MNow, H{_lt}l =082 and Him/(dm + 3)) = H{ﬁ}l, since Hi4) 1s increasing in 0 = A< 0.5. Thus,
i (4#! + 3) £ Q0 B2(dm+3) _ 932Bm246 _ 5—0T2m4346dm—1 - yhm—1

I
i=f

for all m = 5. Hence, the statement 18 true forallm =1, O

We now present the main result which establishes the existence of m-resilient functions (m < n /2 —2)with nonlinearty
better than previously best known.

Theorem 3. Given any m, it is possible to construct (n, m, 4m +6,2"~1 — 11 - 2%2=%) functions for all n = 8m + 6.

Proof. Following Theorem 3, we have to start with ng = 2k + 8, where ng is the smallest n satisfying the assumption
nz 2k +8. Further, g =np/ 2+ k =2k +4. The most important point in this proof is that, given m, we choose k=4m — 1.
Later in the proof we will show that it is always possible w construct a

G=2%+4,md=k+1,2971 _29/2 4 29722y

function h.
From Proposition 1,

Z (44"?’! + 3) o yhm—1
I

1=
for all m = 1. Hence, we get

LU
2 (1)
I

i=l

Givenng =2k + 8 =2(dm — 1) + 8 = 8m + 6, it is clear that ¥ |- (””.ﬂ) < 2% which satisfies the constraint given

]
in Construction 2
According o the proof of Theorem 2, the nonlinearity of the ng-variable function fis

”“: .f::':’-— {2Jr|,|—|. - z.lril."'l e 2”‘“.":—:} e 2”‘“.":—1 - 2:}—[ g H“:.h::l
— {-,Jru—l _ z.lr._..n"l i -,Jm,-j—‘l} + At f2—2 g4/ il Ag,2-2

= (@2"o~! — gm0/ | gm/2=2y 4 gm2=4 (nutting g =ngp — 4).
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Now, we discuss the construction of h. As given in [12], it is possible to get a (g, m,d, 297! —29/2 4 29/2-2) function
form =1 and g = 8m + 2. For this function d = 8 =4 =k + 1. Next, we present the case for m =2,

As givenin [21, Proposition 4.2], it is possible to get a (g, m, d, 297! —29/2 4 29/2-2) function under the condition

2P+l
4= - =3,

ap—1 _ M p—l
-y, ()
where g = 2p. We prove that this condition is always satisfied when g = 8m + 2.
For integer p =1, it is clear that
2P+l 2P+l

4= = = .
2=1 T op1 _yom (p_l)
- i =l i

Now, we present the proof of

2P+l

1 =5,
ey L] p=
2=l — x—n( ; )

wheng = 8m + 2, .e., p=4m 4 1. Note that

b+l 4
2.3 (4\}”) e T (4:” ) / 2
As the base case, TR < 5 for m = 2. Further
1— E.I:“—u{ -I:w ] ,'I'PM
4 4

= .
(m+1) { 4im+11 Adim+1) ] b Adim
e ZI:I:] ( i )/ - 1 — i=0 7 2

Hence, by induction, the proof is true for all m =2,

MNote that for the functions in [21, Proposition 42|, d 2 p+ | =4m 4+ 2 > 4m = & + 1, thus the degree condition is
also satisfied. Further, since f 15 m-resilient, {rom Theorem 1 the ng-variable functon s also m-resilient.

Once such a function on ng variables is found, using Construction 1, it is possible 1o get functions with nonlinearity
(2=t — 2 /=2y 4 2%/24 for all n 2 ng. 1t follows from Theorem 1 that the degree of these functions will be
o2 — k + d. Note that ng = 8n + 6, and d is at least 4m + 2. Hence, ng/2 — k + d is at least 4m + 6.

Thus, given any m, we will get (n, m, 4m + 6,27~ — 20/2 L 20/2=2 4 20/2-4) functions forall n 2 8m 4+ 6. O

Al this point let us highlight two important issues which can improve the result of Theorem 3.

(1) We use the Construction 1 in the proof of Theorem 3 only o make a generalized statement. Recursive use of
Construction 2 will always provide better results as will be seen in Section 2.1,

i2) In the proof of Theorem 3, we have fixed & = 4m — 1, which gives ng = 8m + 6. This in tum provides functions
with our targeted nonlinearity for n = 8m + 6. We will identify some situations when such nonlineanty may also
be found even when n < 8m + 6. This we will discuss in Section 2.2,

N{W-‘, We pn:sunl s0me concréte uxumplus.
Example 1.

(1) Casem=1:Notethat (10, 1, 8 488) function is available [ 12]. Here, g=8m+2=10, n=8m+6=14, k=d4m—1=3.
Verify that ¥, ( lJ:.ﬂ)=E§=2"L_Thm-:,usain,@_:'C:m:fatmu tion 2 and the result of Theorem 3 we geta (14, 1, 12, 8104)

function. Note that 8104 = 214-1 _ 214/2 4 214/2-2
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(2) Case m = 2: Mote that (18, 2, 4, AL T 2'_'} function is available using the technigue of [21, Proposition 4.2].
Here, g = 8m +2 =18, n =8m +6 =22, k= dm — 1 = 7. Verify that ™" ("‘-.“1) < 2% is satisfied. Thus, using
Construction 2 and the result of Theorem 3 we geta (22,2, 4 + 4, p Z e 2'_'} function.

In the following example, we do not directly use Theorem 3 where g is always even, but use the idea given in
Theorem 2 where there is a scope of using a function where g is odd.

Example 2. We explain the strategy using Construction 2. We know that (3:2]32) + (H]I,rz) = 2%, Using the tech-

mique presented i [19], it 1s possible w get a (19,1, 17, g 1 - 29} function. This, using Construction 2, provides a
{30, 1,28, 2% — 2 _ 2% function, as given in Theorem 2.

21 Recursive constrnction
In the proof of Theorem 3, we use the Construction 1 justto make a generalized statement. However, we like Lo point
out the advantage of recursively applying only Construction 2 instead of using the combination of Constructions 1

and 2.

Example 3. We know that (10, 1, 8, 488) function is available. Using Construction 2 (first time), we getain, 1, n —

2,200 w2 w21 4 2%/ function for n = 14. The algebraic degree of this 14-variable function will be 12,
Call this function gy.

Now, use this function as the initial function h (of Construction 2, second time) whichisa g, 1,g—2,29"1 - 29/2 ¢
24/2=2 4 24/2-%) function for g = 14 and take n =g + 4 = 18, In this case, we will geta(n, 1,n—2,27"1 —2%/2 4
222 4 24 4 26y fnetion forn = 18,

One more recursion using Construction 2 (third time ) provides (n, 1,n—2, 271 2% 4 20/2-2 4 w24 4 anf2-6

22—} function for n = 22. Call this function /. Note that since we have started from a degree optimized 10-variable

function, we will go on getting degree optimized functions in this case. Thus, the algebraic degree of iz will be 20,
One can use the 14-variable function gy and then use Construction 1 to construct an r = 22 variable function fy

(similar to what mentioned in Theorem 3). The function iy will be an (n, 1, 12, 2070 2202 4 20/3-3 4 9034 fuinetion.
MNote that both the nonlinearity and algebraic degree of iz are better than f.

The examples above cleady indicate that the Construction 2 is 1o be preferred to Construction 1 when iteratively
applied, and it is actually advantageous both in terms of nonlinearity and algebraic degree. We demonstrate the im-
plications of the above reasoning by the following generalized construction method of degree optimized 1-resilient
functions. Note that the functions provided by means of Theorem 3 are not degree optimized.

Propuosition 2. It is possible to construct (n, 1,n —2, 2771 —2%/2 4 %{1 - {%}IHI 12%2=2) functions for n = 104 4z,
z=0.

Prool. We start with the (10, 1, 8, 488) function and then use the Construction 2 recursively  times. Then we get
(n,1,n —2,2"1 w2 4 % 2n2-2-2) funetions for n = 10 + 4z. The proof follows from Y _;_,2%/2-2-% =

'_:{1 _{%}:+l}2n)’1—2_ O

Corollary 1. It is possible to construct (n, 1,n — 2, v) function with v = 27-1 _ 22/2 %2‘”’1_Iﬁ:rr:.'qfﬁrr'mrf_\' large
n.

Prool. The proof follows from Proposition 2, noting {%}:;’I tends o 0 as 7 takes an increasingly large value. [
Thus, we can make the following general statement.

Theorem 4. Itis possible to construct (n, m, n—dm, =l _gnf2 '—: (11— {L—}l:'i'l 22 _2}_,|Fm:c'fir.rm.'ﬁ.rr n==8m-+2+4z,

z = 0. For a sufficiently large n, it is possible to get a (n,m, n — 4m, v) function, where v 2 2%~1 _2%/2 '—{2”"'1_3.
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Tahle 1
Finding minimum n given s for Construction 2
i k. ny min &) such that min k3 such that k= min f=
- ky+4 1 k1% oa
Theorem 3 -"=ﬂ{ I } =20 SE":“{ 2 } i 2kat] max (ky, ka) M48
2 7,22 fi 7 7 2
3 11, 30 Q9 q Q9 2
4 15, 38 11 11 11 an
5 19, 46 14 14 14 3
6 2 54 16 16 16 4
T 7,62 19 18 149 4
8 31,70 2 20 21 &0
9 315,78 3 23 23 5
10 39 86 26 25 26 &l

Proofl. The nonlineanty result follows similar to Proposition 2 and Corollary 1. The result for algebraic degree is as
follows. The algebraic degree of the g-variable function, in the proof of Theorem 3, 15 at keast 4m + 2. Since g = 8m + 2,
the maximum possible algebraic degree isg —m — 1 = (8m + 2) — (m — 1) = Tm + 1 for that function. Thus, the
deficiency in algebraic degree is at most (7m + 1) — (dm + 2) =3m — 1 with respect to a degree optimized function.
Onee we start using Construction 2, no more deficiency of algebraic degree will be incorporated. Hence, in the final
construction we will get the algebraic degreein —m — 1) — (3m —1). O

Remark 1. Consider that the starting function fon 8m +2 variablesis degree optimized. Then it is possible to construct
{mom,(n—m— 1), 21 /2 4 :—,t{l - {-lt}':+ 1y2/2=2) functions for n = 8m 4+ 2 + 4z. Further, for a sufficiently
large n, it is possible to get a (n, m, (n —m — 1), v} function, where v 2 27-1 _2%/2 1 %2‘”:_1. MNote that, for the case
m = 1, the 10-variable function is degree optimized. Thus, we get the degree upl.imir_i:ﬂ result as given in Proposition
2 and Corollary 1.

2.2, High nonlinearity forn = 8m + 6

Form Theorem 3, we get that given any m, it is possible to construct (n, m, 4m 4 6, 27—1 — 22 4 20/2-2 4 /-4
functions for all n =8m + 6. Thus, following Theorem 3, the first time such a function is found when n = 8m + 6.

' o N p = . ]
Basically, we need to control two constrint in optimized manner. As given in Constroction 2, we need Z:'?J::] ("". ) <2,

Further, from Theorem 2, n 22k + 8 Hence, one needs 1o satisfy Z:-']:n (1‘1'4) < 2% From the proof of Theorem 3,

we need 2P+ pe-t 5 ('”‘._I ) =5, whereg =2p. Since, g =n /24 k =2k +4, we have p =& + 2. Thus, one

needs to satisfy 2¢+3 p2k+1 5 (k':.'l ) £ 5 which gives, 5 3 1L, (k'}'l) <2+ Hence, given m, one needs to find

oul the minimum & such that

il

Ml
k+4 & i k+1 k41
wd nd 5 : =2
(“1Y) <t wma sy (*T)

i=f i=i

and then n = 2k + & will provide the minimum value of n when one gets a nonlinearity = 27~ — 2%/ 4 2%/2-2 yging
our construction. The value & = 4m — 1 in Theorem 3 indeed satisfies these conditions, but we want o find if it 1s
possible in some cases when k = 4m — 1. In this direction, we present some results in Table 1. Note that, given an
m =3, the minimum value of » is strictly less than the value that has been chosen as ng in Theorem 3. In the wble,
we list the observation upto m = 10 and the value of n in the last column gives the minimum value for which one can
construct an m-resilient function with nonlinearity (2"~ — 2/2 4 2%/2=2 4 2n/2=4y y5ing our technique as described
in Construction 2.
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Further it may be observed that for m = 3, the value of k is determined by the value of ky as given in Table 1. We like
o present the following two interesting observations.

(1) Given 3<m <10, if one calculates the minimum & such that 372 (I‘T") = 2% is satisfied, then that value of &

automatically satisfies 53 1, ('QT l) eIt
(2) MNotethat [Tm /3] 4+ 2 is almost a tight bound for k in the range 2 < m < 10. It is not equal only in the case m =4,
when [Tm /3] 4+ 2 = 12, In all the other cases it is same as given in Table 1.

3. Autocorrelation property

In this section, we analyse the autocorrelation spectra of our construction. We follow Construction 2, with the
additional constraint that comes from Theorem 2 which gives that the minimum value of n must be 2k + 8. In fact, at
any stage of the recursive construction as mentioned in Section 2.1, we use the function fi 1o be on n /2 + k variables
and the function f1o be on n variables, with n = 2k + 8. This gives that £ is basically a function on n — 4 variables.

Theorem 5. Consider the Construction 2 with the constraintn = 2k + 8. Then Ay .

Proofl. Here, n/2 — k = 4. Thus, we fix a 4 € {0, 1}*. We have an injective function
¢ : {0, 1124 ({0, 11"\ [} — {0, 1}*2

with property that wi{gp(y)) = m forany y € {0, 1}%2. Thenforx, y € {0, 1}%, and y=(¥", ¥") € {0, 11"/ 2~4 5 0, 1}*
we construct the function

() - x @ (). ¥ AS.

.f'{-r. _'!.‘::' = I {x1 _'!r'r::h _'!.'" =4,

where g is any function on {0, 172, Now, we will consider different cases for ', [”. We consider 2 = (£, ", ") and
. " P . o PP . i) 1 » T Tk el
relate x with {, ¥ with {" and ¥* with ", 1.e., £ {0, 172, 0 e {0, 112 Hand 7 € {0, 1}

wrr

(1) " nonzem vector: Let o be such that 7 is not an all zero vector. Note that one can wrile Jilx, ¥I=hpix, v') for
aspecific y". In this case, Apg(x, ¥ )=hix, ¥). When y"54, then fipy(x, ¥') is basically concatenation of g
many distinet n/2-variable affine functions. Thus, ;1_.--{:}:221.‘_[”_ 12 yreqo,pv-+(—1 yhalx. ¥ 0B s gen (X, VIBIS.LN)
The other terms will have no contribution since Z.v:—-[:]. w2 (—1 i OB YE) — (ywhen |, {j aredistinet linear func-
L : B R TILE k- T P (U =T ™y A g et ur 5 n—d4 _
u{}ﬂh, thus Z-'-"-'—[':]-||‘.N'.2.}"'i-'[ﬂ-|=""£ 4{ ]-::' T ALY = () when I ?é 0. HLHLL, i‘l‘r {Dﬁ:” 'S:_ L =
-3

(2a) 7 all zero vector, I nonzem vector: Let 2 be such that 7 s an all zero vector but {7 is not an all zero vector

& e s = e = X == Fogsp(x, v 1a160x, v"e ;.;' _ PR
Using the similar argument as above, A p{2) = Z.r:—[:].l 12 e o, 12 af—1y"ia e Vg (e VIBEIN — (),
(20 7,0 both all zero vectors: Now, we consider that both 7,0 are all zero vectors, but { is not. Consider a
Maiorana-McFardand type bent function bi{x, v) = miv)x & gi{v), where 7 is a permutation function. In par-
ticular, consider miy) = ¢¢(v) for ¥v" £ A48ince b is bent, we know that Ap(z) = 0 for any nonzero z. Thus,

_pybix bl sl 8,5
Z.r&[:].1;“-'3.,-;[:“f*-‘ﬂ b =0.

This gives, 2oxe (0,12, e (o, 24 yreqo, 1yt 26— 1)
1Pty by, 3'”1&-(;-;'.:'11,

il

Bir,y' ¥ d@biix, v v B0 0
—Z.n-[:].|;”-'3.y'e[:].1;”-'3 + =gl

Le O B E A T Y T O A - EN el PR ¥
L€ |3 vefo, 1102 yeto, oz, yreqo 1ty (— 1) =s =2,

ie _ - _yfley e ria ' el L Iy o an—d
'-L-,|Z.n-[:].|:*-3.y':-[:].1;”-=*.y*':-[:].lr*._w;hi{ b T2

Hence, |4 (2)] <27 + | Au(L, ).

From the above discussion, it is clear that 4 ¢ < p L O |
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Now, we present a concrele example of 14-variable function fand show that in this case the A ¢ value is much better
than the upper bound provided in Theorem 5. We stat with the (10, 1, 8, 488) function fi a5 mentioned in [12]. The
truth table of the function is described below in hexadecimal format.

EF4FCETSEEZB0BT135159C4BEB4 7251 2B6F4FC635EE2ZRB0BT135159C4BRB4T2512R
EF4FCE3I5EE2ZB0BT135159C4BEB4T72512B90B0398A11DTFA48ECAEASIB44BADAEDL
CABAS3I2DD2E4AB4DS0D0OCS TTCEBEF21TCABASI 2DD2E4AB4DS0DOCYT TCAREF 21T
CABA932DD2E4AB4D90D0CS TTCABEF21T35756CD22D1BS TR2Z6F2FI6883T410DES

We calculate that Ay = 320. Now, according 1o Construction 2 (see also Example 1) we geta (14,1, 12, 8104) function
f. Theorem 5 gives Ay <2973 = 2048, We checked that the exact value of Ay is only 864,

As another example, we stat with the (10, 1, 8, 488) function i as mentioned in [ 14]. The truth table of the function
is described below in hexadecimal format.

EAB0COB0D5555555B3333333E66666668F0FOFOFSASASASABCICICICE9696969
B80FFOOFFS55AA55AA33CC33CCE66996699BFFO0FFOSAASSAASICCIZCC369966996
B8000FFFFDS55AAAA3333CCCCE66699990F0FFOFOSASARASASICICCICI69699696
BOFFFFO0OS5AAARS533CCCCI3669999660FFOF00FSAASASSAICCICIZCH9968660

It has been reported in [ 14] that Ay = 48, We checked that the exact value of Arpis B0 in this case. Though the value
of A is improved from 864 (in the previous case) to 8O0, we really do not get as high an improvement, where Ay, is
improved a lot from 320 (in the previous example) to 48, 1t is of importance o analyse the autocorrelation spectra of
Ay in more detail to get the exact behaviour,

4. Conclusion

In this paper, for the first time we present resilient functions with nonlinearity = 27! =292 41 2922 farp = 14, It is
known that up toeight variables the maximum possible nonlinearity of a resilient functionis 2"~ —2%2 4 2%/2-2 Thus,
important open questions include the cases for n = 10, 12, Moreover, we have provided a generalized construction
method for m-resilient functions with nonlinearity 2"—! — 22 4 20/2-2 4 2024 for all n=8m + 6. Applying
Construction 2, we have shown that for sufficiently large n, it is possible 0 get such functions with nonlinearity
gegn=1._anfd L '—{2”"'2_2.Thi5 is the upper bound on maximum possible nonlinearity when Construction 2 is applied
recursively. Later, we made some improvements in certain cases and found that for m =3, it is also possible to find
n = 8Bm + 6 and we specifically identified the cases form < 10 in Table 1. The autocorrelation property of the functions
has also been studied and it has been shown that the maximum absolute value in the antocorrelation spectra is < 277,
It seems that more subtle analysis may show that the functions possess much better autocorrelation property than the
upper bound described here.
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