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SUMMARY. A discrote probability distribution which forms o genoralization of some impor-
tant discrete distributions like the Binomin), Poisson, Negativo Binomial and Logarithmic Sories and their
truncated forms is introduced. It is called the “goneralized powor seriea distribution (gpsd).” In this
paper, we suggest what we call the “Ratio Mothod" for estimation of the paremeter of the gpsd and inves-
tigate its important propertios and study certoin opplicotions. Tho method is applicable not merely for
estimating the pnramotor, but aleo for ita intogra) powers. Tho porformance of the method is investigated,
M particular, in case of truncaled Binomial and tr | Poisson distribulions and correspondingly cortain
recommondations uro offered.

1. INTRODUGTION
Let g(6) be a positive funotion admitting a power series expansion with non-
negative coefficients for non-negative values of 8 smaller than the radins of covergence
of the power series :

9(6) = 1;:°a,0’ . (LY

Noack (1950) defined a random variable Z taking non-negative integral values
2 with probabilities
_af

T 2=10,1,2, ... o (12)

Prob {Z =

He called the disorete probability distribution given by (1.2) a power series
distribution (psd) aud derived some of its properties relating to its
cumulants, ete.

To be more general, we note that the set of values of an integral-valued random
variable Z need not be the entire set of non-negative integers (0, 1, 2, ...). For, let
T be an arbitrary non-null subset of non-negative integers! and define the generating
function

f6)=Z o

with a, 22 0; 6 > 0 so that f(6) is positive, finite and differentiable.

*Now with the University of Michigan.
tIn facy, one oan take 7' to bo a ble subsst of real
ever, T is chosen to bo a subset of non-negative integers.
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Then we can defino a random variable X taking non-negative integral values
in 7 with probabilities
— ab
T fey
and oall this distribution analogously a generalized power series distribution (gpsd).
It may be noted that gpsd reduces to a psd when 7 is the entire set of non-negative
integers. The properties established by Noack (1950) and Khatri (1959) for psd can
be easily deduced for gpsd by following the same lines. Further, it can be easily
seen that proper choice of 7' and f(0) reduces the gpsd, in particular, to the Binomial,
negative Binomial, Poisson and logarithmic series distributions and their truncated
forms, Incidentally, it is obvious that truncated gpsd is itself a gpsd in its own
right and hence the properties that hold for a gpsd continue to hold for its truncated
forms.

P, = Prob {X = z} zeT . (13)

Probisms of statistioal inforenco iatorl with psd’s do not seem to have
been much investigatod. Roy and Mitra (1957) have derived the uniformly minimum
varjance unbiased estimates in cortain particular cases und have provided necessary
tables for Poisson distribution truncated at zero. The author (1957) has shown that
for gpsd (1.2), the maximum likelihood method and the method of moments give the
same estimate of the parameter of the gpsd. The likelihood equation and a method
for solv'ing it are derived for the problem of estimation. In this paper, we suggest
what we call the, “Ratio Method” for estimation of the parameter of the gpsd and
investigate its important properties and study certain applications.

2. ESTIMATION BY THE RATIO METHOD FOR A G.P.S.D.

[Range T finite and 7' = (¢, ¢+-1, ... c+-k = d) with positive probabilities].
The gpsd that we oconsider here is of the form ;

P, = Prob{X = 1) =}‘(§‘7 . (20)
where zeT = (¢, c+1, ... c+k = d), d finite
116) = % o, 6% . (22)
end 8;> 0 for zeT.
Let @ (@) =% zeT e (2.3)

z

with 7 being an integer suoh that z—reT. Then
o vr
L gz)P,=6 T P, . (24)
ZmU Zml—-r
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where & and v are arbitrary with c4+r < u < v € d. From (2.4) we get the identity

o= }: 0l@)Ps | ,:-)E'_’P, . (25)

which can be made use of in problems of estimation. In a sample of size N, if , is
the observed frequency for z, then since B(n,) = NP,, the statistic

z‘:“_a"y,(x)n, / :2‘-:_31. . (2.6)

may be taken as an estimate of 6 for admissible values of » =1, 2, ete. Since u
and v are arbitrary, the same method is applicable for estimation in truncated and
censored gpsd’s also, provided that their range contains a subset of consecutive
integers. We call these estimates “‘ratio estimates.”

It is interesting to note that Plackett (1953) and Moore (1952, 1954) applied
this ratio method to the special cnses of estimating # in truncated Binomial and
Poisson distributions. The method which we call the ratio method is applicabie
not merely for estimating 6, but also for.its integral powers and for any gpsd of this
section, truncated or censored.

The ratio estimate is not generally unbiased or efficient, but is always easy
to compute. In certain cases (see Seotion 3), however, unbiased estimates can be
obtained by the ratio method. In other cases, such as those in this section, the bias

. 1
is generally of the order 5 It may be easily verified that no unbiased estimate for

6(and 6" in geveral) exists when the range of 7' is finite as in situations considered here.

Consider the following ratio estimate of § for gpsd (2.1):

o=h @.7)
ly
4
where = a1 ’
n=X (5 ) (&)
=1
and ty = ;‘:‘.an,. e (2.9)
. a1
Then, writing E(t) = N :E P, = N(1—P;) = NP, say, (2.10)
where P = 1-—P,, (2.11)
we have E\,) = NPS. (2.12)
Lat U=E() =8, and t,—E(,) = &y, . (2.13)
Then =4 _ . 83\ 2
n =0+ 5R) ()
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Since the deviations dt,, 8t; are stoohastically of order N1, we get on expansion

8t ot (8¢,)(ét 8t.)2
NPOT NPT N:;g.o’) + (yv;'},—, e (2.14)

=0 [ 14

negleoting terms of order higher than llV Thus, to this order of approximation,
" _ B3y E(8,)(3t,) ]
E(o)_o[ S ’ﬁfp'fo"]' o (2.15)

Now a little computation gives

E(8,)* = NP(1—P) e (2.10)
and E(61,)(8%,) = NO[P(1—P)—P,_y). o (217)
Thue E(0) =0+—;\-,( 8}{;“) . (2.18)

from which we get the maguitude of the bias &', to orderl—vl—.

50) =% (Bt )= 0P yNa—Pp = BO) Ly e

The variance of & correct to terms of order _;T! is

Var(0') = N,‘P, [E(5t, 3+ GAE(8L, 1 — 20 E(81,)(812)]. e (2.20)

Now E(dt,) = N(D—Pi%) . (221)

where D=,il (‘%)’P’ . (2.29)
Thus, to order -

Var (0") = mlo_z [D— P81+ 263P, ], . (2.23)

8. UNBIASED ESTIMATION BY THR RATIO METHOD FOR A G.P.S.D.

[Range T infinite and T' = (¢, c+1, ... ) with positive probabilities).
Uniformly minimum variance unbiaged estimation for psd’s has been consi-
dered by Roy and Mitra (1857). Tate and Goen (19568) have considered the same for
truncated Poieson.
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It is easy to demonstrate that the ratio method disoussed in Seotion 2 gives
the unigue unbiased eatimate of 6, linear in frequenoies, for a gpsd with range T infinite
and T = (¢, 6+1, ... ) with positive probabilities. For, consider the gpsd

— b

P, = Prob (X=z}—]-(§) z=c,c+],... L3
where fi6)= ,i ot .. (3.2)
and a,>0 foral z=g¢0+],...

Now, if in a sample of size N from gpad (3.1), the frequenoy of z is 7, and we
want an unbiased estimate for @ of the type linear in n., we should be able to demons-
trate the existence of a funotion of 2, #(x), such that, denoting the corresponding esti-
mate

b= ¥ Yz, e (3.3)
Tt
we must have E(f) = 6 for all 4 in the parameter space of (3.1). That is
N E z)a, 0 = )3 a, 0%+,
Tt Zm0

Since this is an identity in 6, equating coefficients of corresponding powers of
8, we got
0 for z=¢
=4

ﬁ(“é.-l) for z=ct1,c42, ... .

Gy

Thus, the unique unbissed estimate of 6 linear in the frequencies comes out
to be the ratio estimate . The exact variance of this estimate is

-3, () r) e

An unbissed estimate of g%(8') is

[5 (g,,t' )’%—NV‘]/N(N—I) - (88)

Tmc 4y
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the proof of whioh is almost i diate onoe one recognizea that 6’ is the mean of
N independent identically distributed random variables Y, with probability distri-
bution given by (for ¢ = 1, 2, ..., N)
Prob {¥;=0}=P,

and Prob [ ¥, = "_;-'] =P, forz=c+1, 0+2,... .

One can compare 0%(8’) with the asymptotio variance Var () of the maximum likeli-
hood estimate of 6 and the efficiency of the ratio estimate 6’ can be puted

Lastly, one may establish that

1 Gy
= ,.E,,( E) "y . (3.6)
is the only unbiased estimate of 6" (r an integer) which is a linear function of the
frequencies.

4. ESTIMATION BY THE BATIO METHOD FOR SINOLY TRUNCATED
BINOMIAL DISTRIBUTION

Fisher (1036) and Haldane (1932, 1038) discussed usea of the truncated
binomial distribution, For instance, in problems of human genetics, in estimating
the proportion of albino children produced by couples capable of producing albinos,
sampling has neoessarily to be restricted to families having at least one albino child.
Finney (1948) has cited some more applications. Fisher and Haldane derived the
maximum likelihood procedure to estimate the parameter z. Patil (1959) gave a
direot method to obtain the maximum likelihood estimate. Moore (1054) suggested
a simple “ratio-estimate” based on an jdentity bet binomial probabilities. For
a slightly different problem, where, in a sample from a complete binomial distribati
the frequencies in some lowest classes are missing, Rider (1956) suggested a method of
estimation, which uses firet two moments of the complete binomial and leads to a
linear equation.

The probability law of the binomial distribution truncated at ¢ on the left
oan be written as

b%(z, m, n) = ((B‘(c,-ﬂ, n))" (;') Pl=m% 2 =6, 61, . m .. (4.1)

mhere Beam=32 (1) w-nr . (42)
The first two momenta about the origin of (4.1), then, are

p* = p*e,m n) = nm. B*c—1,nm N=1)/B*c, 7' n) e 14.3)
and my = my(o, m, n) = u*(c, n, n) {l+p*c—1, m, n—1}. e (4.4)

The case of truncation to'the right oan be dealt with in .4 similar way by replacing
7 by 1—= and the truncation point ¢ by n—o.
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In this case 6,_, |a, = z|(n—2+1) and since & = n/(1—m), (see Patil, 105),
we have the following “ratio-estimate” for 7 :

= b v (4.5)
htiy
L zn st
= 2 dy =2 .
where ¢ :.z,-ﬂ (n—x+l ) and & oy T

To investigate the efficiency of 7' given by (4.5) its asymptotic variance can be written
down as:

n_ (1=m?® _
Var (n') = NP [(A—=m):D—Pn%+4-277 ., P,_,] ...(4.8)
where P= "._‘2‘ bz, m, n)

- % z .
b= 5, (o im ) veno

and P, ,=0b%n—1.mn).
Also the asymptotic variance of the maximum likelihood oatimate a
(Patil, 19569), is given by
A w(l—a)
Var (m) = SN
where yg is the variance of (4.1).
Therefore the asymptotic efficiency of ' takes tho form :

Eﬁ(n‘):f{ ( (l;")gD—P+2PH)_l. . @7

The special cases of some importance in genetics are ¢ = 1 and 7 = 1/4, 1/2,
or 3/4. The efficiency of the Ratio-Estimate (R) relative to the Maximum Likelihood
Estimate (ML) in these cases is tabulated and shown in Table 1.

TABLE 1. ASYMPTOTIC EFFICIENCY OF R FOR o =1

n =14 12 34
3 924 .876 .876
4 .000 .769 .12
5 L0190 \716 .80¢
8 933 .694 .663
7 947 .003 .623
052 706 481
9 .056 ,728 436
10 059 .18 .988
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Examination of tho above table shows that the efficiency of R in oase of
n = 1/4 and 7 = 1/2 deoreasea in the boginning with », reaches a minimum and then
inoreases with inoreasing values of 2. For 7 = 3/4, however, the efficiency decreases
throughout for n = 3(1)10.
Following Section 2, one gets, to order 1/N, the amount of bias of = (R) as
follows:
o (=1 g om ——_any _ B(m)
bn') = NP [P (r—2n¥)P,_,—(1—n)2D] = W
The table below gives B(n’) for ¢ = 1 and 7 = 1/4, 1/2 and 3/4.

TABLE 2. N (AMOUNT OF BIAS TO ORDER 1/N) OF R

» -4 172 34
3 —.1027 L1458 .0820
4 1227 .1307 .0833
5 .0861 1184 .0893
[ LOR4R 1062 0802
7 .0310 L0043 .0031
8 L0420 .0833 .0928
] 0355 .0736 L0916

10 0301 .0651 .0806

Table 2 shows that R is an underestimate.of 7. A closer investigation,
however, brings out that the bias to order 1/N is quite small for R. One may note
that the maximum likelihood estimate also happens to be biased in this
case (Patil, 1959).

Tlustrati ple. The detailed computation procedure of the ratio estimate
discussed above will be illuatrated with reference to K. Pearson’s data on albinism
in man. The table below gives the number of families (n,), each of five children having
exactly z children in the family, (zx =1, 2, 3, 4, 6).

number of albinos
in family {z) 1 2 3 4 6
number of families
(ng) 23 10 1 1

If 7 is the probability for a ochild to be an albino, we may aocept the truncated
binomial model:

(3)m—mr-
TI=i=ay
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for the probability of z albinos in a family of n. Here n = 5, and the problem is to
ostimate » on the basis of the data given in the table above.

n=1
Here, {, = P‘ ®, = 59 and ¢, can be computed from the following table :

= n—z+1 "z
f) .5 23
3 1 10
4 2 1
5 5 1
"
Then, 4= %) n, = 2850.
on ! 1§g (n—x+l ) e 50
The ratio estimate is obtained as n’ = __28.50 _ 0.3257.
28,504-59
To compute the variance of 7, we require
P=1— — ™ = 0.00574
1—(I—(1=m))"

P,y ="M= 1 _py = 0.04408
m

and
D= ( 117)[% {a=mE (5, mi1-n )L )P ] = 00158
where E (%.n,ﬂ) =§l 11?( ’;) 7 (l—mP=*{1—(1—m)"}

and is tabulated by Grab and Savage (1954).
By linear interpolation from the table by Grab and Savage,

E (%, n, 1—1r) = 0.33870 taking o' = 0.32567 as the estimate for 7 throughout.

Then the variance of #” is estimated from the formula

Var-(7)= %ip’.'i {Y—n)DwPrd40n2 . P,_]-= 6.0013410- -

80 that the standard error of 7' is 8.E, (7’) = 0.03662.
Incidentally, the maximum likelihood estimate 7 comes out (Patil, 1959)
to be in this cage, 7 = 0.3088 with S.E. (1) = 0.03210.
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8. ESTIMATION BY RATIO METHOD FOR TRUNCATED POISSON DISTRIBUTION

Problems of estimation in a truncated Poisson distribution with known
truncation points have been disoussed by various authors. The case of truncation on
the left has been considered by David and Johnson (1848) who gave the maximum
likelihood estimate, by Plackett (1953) who gave a simple and highly efficient ratio
eatimate, and by Rider (1963) who used first two moments, Truncation on the right
has been discussed by Tippett (1832), Bliss (1948), and Moore (1052). Tippett
derived the maximum likelihood solution; Bliss developed an approximation to it;
and Moore suggested a simple ratio estimate. Uniformly minimum variance unbiased
estimates have been obtained by Roy and Mitra (1957) and by Tate and Goen (1958).
For both types of truncations, the author (1968) has provided neat and compact
equations for estimation by the method of maximum likelihood. He has also presented
numerical tables and some suitable charts to facilitate the solution of these equations
in certain special cases. In this section, we study the Ratio Method as applied to
truncuted Poisson distributions.

The probability law of the singly truncated Poisson distribution with truncation
point on the right at d can be written es:

P p) = PP 2 2=0,1,2,..4 e (81)
d T

where Pd,p)= I e* Ll .. (6.2)
a0 z!

In this case, a, ,/a, = z, and since 6 = g, the ratio estimate for z takes the
form

d d—1
p = Z:m,/E ny ... (6.3)
Z=0

z=0

a8 first suggested by Moore (1954). Tho following table gives the asymptotic efficiency

of x4’ relative to /; for values of & =5 with z=.25 .5(.5)2.5, and d= 10
with g = .5(.5)4.5.

TABLE 3. EFFICIENCY OF R

I .26 .50 1.00 1.50 2.00 2.50
Cuse (i)d = &
Efr. 090 000 070 067 <051 .828
» .5 1.0 1.5 2.0 2.5 3.0 3.6 4 4.6

Caas (3i)d = 10
Elf. 1.000 1.000 1.000 1.000 -080 992 .98l 804 .817
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Thus, R seems to be highly efficient on the whole and its efficiency always
exceeds 82 percent in situations considered in Table 3.

The following table gives B(x') for values of d = 5 with u = .25, .5(.5)2.5 and
d = 10 with g = .5(.5)5.

TABLE 4. N (AMOUNT OF BIAS TO ORDER 1/N) OF R

8 .25 .60 1.00 1.60 2.00 2.60
Case (i) d = 5
Biw) 0003 L0008  .0015  .0700  .1077  .4461
Case {ii) d = 10
u 5 1.0 15 2.0 25 3.0 3.5 4.0 4.5 5.0
B(x)  .0000 .0000 .0003 .0006 .0022 .0081 0231  .0538 .1063 .1876

Table 4 shows that, though over-estimate, R involves almost negligible bias.

The probability law of the singly truncated Poisson distribution with trunca-
tion point on the left at ¢ can be written as :

2%z, p) = (P*(c, p)]“c"':il z=2¢,c+1,...0 ... (6.8)
where P, p) = i e v .. (6.9)
2t zl

In this case, a, ,/z. = % and aince & = x, we have the following “ratio estimate’
for p:

p= 32 :m,lN . (8.10)

Loxlb]l
when ¢ = 1, i.e., when only ‘‘zero” counts are truncated, the estimate takes the form
suggested by Plackett (19563):
-
p= % am,/N. . (68.11)
Sy
The unique unbiased estimate of 4 linear in the frequencies (ibid., Section 3) is provided
in (6.10). The exact variance of this eatimate is
m')—l[i AAP—pt 6.12)
- 3] -
and an unbiased estimate of o%(x') is
I, @At } ¥ —y) . (8.13)
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when ¢ = 1, (68.12) reduces to

o¥') =%, [a-+afler—1)] e (814)

first derived by Plackett (1953). Plackett computed also the efficiency of 4’ in this

special case. The following table gives the efficiencies of »' relative to;l. as computed
by Plackett.

TABLE 6. EFFICIENCY OF R FOR o= 1.

B 0.8 1.0 1.6 2.0 2.6 3.0 3.5 4.0

Eff. 0893 05569 0538 0588 9662 9743 0816 0872

The author is thankful to Professor C. R. Rao and Dr. J. Roy for helpful dis-
ocussions ab the Indian Statistical Institute and to the referee for helpful comments.
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